{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,8]],"date-time":"2024-08-08T00:09:29Z","timestamp":1723075769801},"reference-count":48,"publisher":"MDPI AG","issue":"20","license":[{"start":{"date-parts":[[2022,10,14]],"date-time":"2022-10-14T00:00:00Z","timestamp":1665705600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Soil monitoring is a key topic from several perspectives, such as moisture level control for irrigation management and anti-contamination purposes. Monitoring the latter is becoming even more important due to increasing environmental pollution. As a direct consequence, there is a strong demand for innovative monitoring systems that are low cost, provide for quasi-real time and in situ monitoring, high sensitivity, and adequate accuracy. Starting from these considerations, this paper addresses the implementation of a microwave reflectometry based-system utilizing a customized bifilar probe and a miniaturized Vector Network Analyzer (m-VNA). The main objective is to relate frequency-domain (FD) measurements to the features of interest, such as the water content and\/or the percentage of some polluting substances, through an innovative automatable procedure to retrieve the Debye dielectric parameters of the soil under different conditions. The results from this study confirm the potential of microwave reflectometry for moisture monitoring and contamination detection.<\/jats:p>","DOI":"10.3390\/s22207805","type":"journal-article","created":{"date-parts":[[2022,10,17]],"date-time":"2022-10-17T07:43:58Z","timestamp":1665992638000},"page":"7805","source":"Crossref","is-referenced-by-count":6,"title":["A Method for Extracting Debye Parameters as a Tool for Monitoring Watered and Contaminated Soils"],"prefix":"10.3390","volume":"22","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-9031-7690","authenticated-orcid":false,"given":"Andrea","family":"Cataldo","sequence":"first","affiliation":[{"name":"Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8401-997X","authenticated-orcid":false,"given":"Iman","family":"Farhat","sequence":"additional","affiliation":[{"name":"Department of Physics, University of Malta, 2080 Msida, Malta"}]},{"given":"Lourdes","family":"Farrugia","sequence":"additional","affiliation":[{"name":"Department of Physics, University of Malta, 2080 Msida, Malta"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3213-2879","authenticated-orcid":false,"given":"Raffaele","family":"Persico","sequence":"additional","affiliation":[{"name":"Department of Environmental Engineering DIAM, University of Calabria, 87036 Rende, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8462-5563","authenticated-orcid":false,"given":"Raissa","family":"Schiavoni","sequence":"additional","affiliation":[{"name":"Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy"}]}],"member":"1968","published-online":{"date-parts":[[2022,10,14]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Bloem, J., Schouten, T., S\u00f8rensen, S., Rutgers, M., Werf, A., and Breure, A. (2005). Monitoring and evaluating soil quality. Microbiological Methods for Assessing Soil Quality, CABI Publishing.","DOI":"10.1079\/9780851990989.0023"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"1888","DOI":"10.2136\/sssaj2013.03.0093","article-title":"State of the Art in Large-Scale Soil Moisture Monitoring","volume":"77","author":"Ochsner","year":"2013","journal-title":"Soil Sci. Soc. Am. J."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"543","DOI":"10.1071\/S98017","article-title":"Effluent irrigation\u2014An environmental challenge for soil science","volume":"36","author":"Bond","year":"1998","journal-title":"Soil Res."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"1421","DOI":"10.1111\/j.1672-9072.2007.00556.x","article-title":"Deficit Irrigation as a Strategy to Save Water: Physiology and Potential Application to Horticulture","volume":"49","author":"Costa","year":"2007","journal-title":"J. Integr. Plant Biol."},{"key":"ref_5","unstructured":"Chowdhary, P., Raj, A., Verma, D., and Akhter, Y. (2020). Environmental pollution: Causes, effects, and the remedies. Microorganisms for Sustainable Environment and Health, Elsevier."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"166","DOI":"10.1016\/j.geoderma.2009.02.001","article-title":"The effect of phosphate on the sorption of copper by acid soils","volume":"150","year":"2009","journal-title":"Geoderma"},{"key":"ref_7","first-page":"85","article-title":"Use of Pesticides and Their Role in Environmental Pollution","volume":"4","author":"Khan","year":"2010","journal-title":"Int. Sch. Sci. Res. Innov."},{"key":"ref_8","first-page":"251","article-title":"Assessment of industrial effluent and its impact on soil and plants","volume":"22","author":"Barman","year":"2001","journal-title":"J. Environ. Biol."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1590\/2179-10742016v15i2591","article-title":"Measured Dielectric Permittivity of Contaminated Sandy Soil at Microwave Frequency","volume":"15","author":"Abdelgwad","year":"2016","journal-title":"J. Microw. Optoelectron. Electromagn. Appl."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"243","DOI":"10.3997\/1873-0604.2014042","article-title":"Effect of the height of the observation line on the the diffraction curve in GPR prospecting","volume":"13","author":"Persico","year":"2015","journal-title":"Near Surf. Geophys."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"391","DOI":"10.1097\/00010694-195205000-00007","article-title":"Determination of Soil Moisture by Neutron Scattering","volume":"73","author":"Gardner","year":"1952","journal-title":"Soil Sci."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"721","DOI":"10.2136\/sssaj1964.03615995002800060014x","article-title":"Soil Water Measurement with Gamma Attenuation","volume":"28","author":"Reginato","year":"1964","journal-title":"Soil Sci. Soc. Am. J."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"393","DOI":"10.2136\/sssaj2003.0285","article-title":"Spectral Reflectance Methodology in Comparison to Traditional Soil Analysis","volume":"70","author":"Nanni","year":"2006","journal-title":"Soil Sci. Soc. Am. J."},{"key":"ref_14","first-page":"178","article-title":"Resonant Cavity Perturbation-Some New Applications of an Old Measuring Technique","volume":"31","author":"Kraszewski","year":"1996","journal-title":"J. Microw. Power Electromagn. Energy"},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Costa, F., Borgese, M., Degiorgi, M., and Monorchio, A. (2017). Electromagnetic Characterisation of Materials by Using Transmission\/Reflection (T\/R) Devices. Electronics, 6.","DOI":"10.3390\/electronics6040095"},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Vergnano, A., Godio, A., Raffa, C.M., Chiampo, F., Vasquez, J.A.T., and Vipiana, F. (2020). Open-Ended Coaxial Probe Measurements of Complex Dielectric Permittivity in Diesel-Contaminated Soil during Bioremediation. Sensors, 20.","DOI":"10.3390\/s20226677"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"71","DOI":"10.2528\/PIER12081402","article-title":"Experimental Validation of a Tdr-Based System for Measuring Leak Distances in Buried Metal Pipes","volume":"132","author":"Cataldo","year":"2012","journal-title":"Prog. Electromagn. Res."},{"key":"ref_18","doi-asserted-by":"crossref","unstructured":"Persico, R., Farhat, I., Farrugia, L., and Sammut, C. (2022). A Numerical Investigation of the Dispersion Law of Materials by Means of Multi-Length TDR Data. Remote Sens., 14.","DOI":"10.3390\/rs14092003"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"493","DOI":"10.1016\/j.measurement.2016.04.046","article-title":"A comparative assessment of microwave-based methods for moisture content characterization in stone materials","volume":"114","author":"Piuzzi","year":"2018","journal-title":"Measurement"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"118","DOI":"10.3997\/1873-0604.2017046","article-title":"Measurement of dielectric and magnetic properties of Materials by means of a TDR probe","volume":"16","author":"Persico","year":"2018","journal-title":"Near Surf. Geophys."},{"key":"ref_21","unstructured":"Schwarzler, C., and Schwarzler, M. (2022, September 13). A Guide to the NanoVNA: NanoVNA Users Manual; Jokalym Press: 2020. Available online: https:\/\/books.google.com.hk\/books\/about\/A_Guide_to_the_NanoVNA.html?id=7dCWzQEACAAJ&redir_esc=y."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"548","DOI":"10.2136\/vzj2008.0089","article-title":"Apparent Dielectric Constant and Effective Frequency of TDR Measurements: Influencing Factors and Comparison","volume":"8","author":"Chung","year":"2009","journal-title":"Vadose Zone J."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"236","DOI":"10.1016\/j.measurement.2015.02.050","article-title":"Embedded TDR wire-like sensing elements for monitoring applications","volume":"68","author":"Cataldo","year":"2015","journal-title":"Measurement"},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Schiavoni, R., Monti, G., Piuzzi, E., Tarricone, L., Tedesco, A., De Benedetto, E., and Cataldo, A. (2020). Feasibility of a Wearable Reflectometric System for Sensing Skin Hydration. Sensors, 20.","DOI":"10.3390\/s20102833"},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Schiavoni, R., Monti, G., Tedesco, A., Tarricone, L., Piuzzi, E., De Benedetto, E., Masciullo, A., and Cataldo, A. (2021, January 17\u201320). Microwave Wearable System for Sensing Skin Hydration. Proceedings of the 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK.","DOI":"10.1109\/I2MTC50364.2021.9460018"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2022.3154804","article-title":"Portable Microwave Reflectometry System for Skin Sensing","volume":"71","author":"Cataldo","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Cataldo, A., Schiavoni, R., Masciullo, A., Cannazza, G., Micelli, F., and De Benedetto, E. (2021). Combined Punctual and Diffused Monitoring of Concrete Structures Based on Dielectric Measurements. Sensors, 21.","DOI":"10.3390\/s21144872"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"202","DOI":"10.21014\/acta_imeko.v10i3.1143","article-title":"Microwave reflectometric systems and monitoring apparatus for diffused-sensing applications","volume":"10","author":"Cataldo","year":"2021","journal-title":"Acta IMEKO"},{"key":"ref_29","doi-asserted-by":"crossref","unstructured":"Pittella, E., Schiavoni, R., Monti, G., Masciullo, A., Scarpetta, M., Cataldo, A., and Piuzzi, E. (2022). Split Ring Resonator Network and Diffused Sensing Element Embedded in a Concrete Beam for Structural Health Monitoring. Sensors, 22.","DOI":"10.3390\/s22176398"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"355","DOI":"10.1016\/j.measurement.2016.10.044","article-title":"TDR-based monitoring of rising damp through the embedding of wire-like sensing elements in building structures","volume":"98","author":"Cataldo","year":"2016","journal-title":"Measurement"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1412","DOI":"10.1109\/TIM.2008.2009199","article-title":"Assessment of a TD-Based Method for Characterization of Antennas","volume":"58","author":"Cataldo","year":"2008","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Kim, D.-J., Yu, J.-D., and Byun, Y.-H. (2020). Horizontally Elongated Time Domain Reflectometry System for Evaluation of Soil Moisture Distribution. Sensors, 20.","DOI":"10.3390\/s20236834"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"2747","DOI":"10.1109\/TIM.2010.2045445","article-title":"An Improved Reflectometric Method for Soil Moisture Measurement Exploiting an Innovative Triple-Short Calibration","volume":"59","author":"Piuzzi","year":"2010","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"1230","DOI":"10.1109\/TIM.2017.2770778","article-title":"TDR-Based Measurements of Water Content in Construction Materials for In-the-Field Use and Calibration","volume":"67","author":"Cataldo","year":"2018","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"1051","DOI":"10.1109\/TIM.2015.2495720","article-title":"Measurement System for Evaluating Dielectric Permittivity of Granular Materials in the 1.7\u20132.6-GHz Band","volume":"65","author":"Piuzzi","year":"2016","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"109066","DOI":"10.1016\/j.measurement.2021.109066","article-title":"A new measurement algorithm for TDR-based localization of large dielectric permittivity variations in long-distance cable systems","volume":"174","author":"Cataldo","year":"2021","journal-title":"Measurement"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"1215","DOI":"10.1109\/TIM.2015.2495721","article-title":"Criteria for Automated Estimation of Time of Flight in TDR Analysis","volume":"65","author":"Giaquinto","year":"2016","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"105010","DOI":"10.1088\/0957-0233\/23\/10\/105010","article-title":"A TDR-based system for the localization of leaks in newly installed, underground pipes made of any material","volume":"23","author":"Cataldo","year":"2012","journal-title":"Meas. Sci. Technol."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"963","DOI":"10.1016\/j.measurement.2013.09.010","article-title":"Leak detection through microwave reflectometry: From laboratory to practical implementation","volume":"47","author":"Cataldo","year":"2014","journal-title":"Measurement"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2020.3038491","article-title":"A Microwave Measuring System for Detecting and Localizing Anomalies in Metallic Pipelines","volume":"70","author":"Cataldo","year":"2020","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1016\/j.measurement.2006.11.006","article-title":"Simultaneous measurement of dielectric properties and levels of liquids using a TDR method","volume":"41","author":"Cataldo","year":"2008","journal-title":"Measurement"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"1781","DOI":"10.1016\/j.measurement.2011.07.011","article-title":"Systematic errors and measurement uncertainty: An experimental approach","volume":"44","author":"Attivissimo","year":"2011","journal-title":"Measurement"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"2079","DOI":"10.1016\/S0955-2219(98)00273-8","article-title":"Dielectric response of materials: Extension to the Debye model","volume":"19","author":"Mantas","year":"1999","journal-title":"J. Eur. Ceram. Soc."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"025015","DOI":"10.1063\/1.5129634","article-title":"An iterative Debye dispersion model for a horizontal multi-layered material","volume":"10","author":"Huang","year":"2020","journal-title":"AIP Adv."},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Cruciani, S., De Santis, V., Feliziani, M., and Maradei, F. (2012). Cole-Cole vs Debye models for the assessment of electromagnetic fields inside biological tissues produced by wideband EMF sources. 2012 Asia-Pacific Symposium on Electromagnetic Compatibility, IEEE.","DOI":"10.1109\/APEMC.2012.6237915"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"2321","DOI":"10.1029\/1999WR900123","article-title":"Theoretical model of a multisection time domain reflectometry measurement system","volume":"35","author":"Feng","year":"1999","journal-title":"Water Resour. Res."},{"key":"ref_47","unstructured":"Gregory, A.P., and Clarke, R.N. (2022, September 13). Tables of the Complex Permittivity of Dielectric Reference Liquids at Frequencies up to 5 GHz; National Physical Laboratory Report; 2012. Available online: https:\/\/eprintspublications.npl.co.uk\/2076\/."},{"key":"ref_48","doi-asserted-by":"crossref","unstructured":"Farr, E.G., and Frost, C.A. (1997). Ultra-Wideband Antennas and Propagation. Volume 4: Impulse Propagation Measurements of Water, Dry Sand, Moist Sand, and Concrete, Farr Research Albuquerque Nm, Paseo Del Mar NE.","DOI":"10.21236\/ADA328785"}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/22\/20\/7805\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T14:28:44Z","timestamp":1723040924000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/22\/20\/7805"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10,14]]},"references-count":48,"journal-issue":{"issue":"20","published-online":{"date-parts":[[2022,10]]}},"alternative-id":["s22207805"],"URL":"https:\/\/doi.org\/10.3390\/s22207805","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2022,10,14]]}}}