{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,29]],"date-time":"2025-04-29T17:05:02Z","timestamp":1745946302642,"version":"3.37.3"},"reference-count":131,"publisher":"MDPI AG","issue":"15","license":[{"start":{"date-parts":[[2022,8,5]],"date-time":"2022-08-05T00:00:00Z","timestamp":1659657600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) stand as state-of-the-art techniques for non-invasive functional neuroimaging. On a unimodal basis, EEG has poor spatial resolution while presenting high temporal resolution. In contrast, fNIRS offers better spatial resolution, though it is constrained by its poor temporal resolution. One important merit shared by the EEG and fNIRS is that both modalities have favorable portability and could be integrated into a compatible experimental setup, providing a compelling ground for the development of a multimodal fNIRS\u2013EEG integration analysis approach. Despite a growing number of studies using concurrent fNIRS-EEG designs reported in recent years, the methodological reference of past studies remains unclear. To fill this knowledge gap, this review critically summarizes the status of analysis methods currently used in concurrent fNIRS\u2013EEG studies, providing an up-to-date overview and guideline for future projects to conduct concurrent fNIRS\u2013EEG studies. A literature search was conducted using PubMed and Web of Science through 31 August 2021. After screening and qualification assessment, 92 studies involving concurrent fNIRS\u2013EEG data recordings and analyses were included in the final methodological review. Specifically, three methodological categories of concurrent fNIRS\u2013EEG data analyses, including EEG-informed fNIRS analyses, fNIRS-informed EEG analyses, and parallel fNIRS\u2013EEG analyses, were identified and explained with detailed description. Finally, we highlighted current challenges and potential directions in concurrent fNIRS\u2013EEG data analyses in future research.<\/jats:p>","DOI":"10.3390\/s22155865","type":"journal-article","created":{"date-parts":[[2022,8,9]],"date-time":"2022-08-09T08:16:55Z","timestamp":1660033015000},"page":"5865","source":"Crossref","is-referenced-by-count":116,"title":["Concurrent fNIRS and EEG for Brain Function Investigation: A Systematic, Methodology-Focused Review"],"prefix":"10.3390","volume":"22","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-8006-7333","authenticated-orcid":false,"given":"Rihui","family":"Li","sequence":"first","affiliation":[{"name":"Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA"},{"name":"Department of Biomedical Engineering, University of Houston, Houston, TX 77004, USA"}]},{"given":"Dalin","family":"Yang","sequence":"additional","affiliation":[{"name":"School of Mechanical Engineering, Pusan National University, Pusan 43241, Korea"},{"name":"Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, 4515 McKinley Avenue, St. Louis, MO 63110, USA"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1004-7876","authenticated-orcid":false,"given":"Feng","family":"Fang","sequence":"additional","affiliation":[{"name":"Department of Biomedical Engineering, University of Houston, Houston, TX 77004, USA"}]},{"given":"Keum-Shik","family":"Hong","sequence":"additional","affiliation":[{"name":"School of Mechanical Engineering, Pusan National University, Pusan 43241, Korea"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1979-4942","authenticated-orcid":false,"given":"Allan L.","family":"Reiss","sequence":"additional","affiliation":[{"name":"Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA"}]},{"given":"Yingchun","family":"Zhang","sequence":"additional","affiliation":[{"name":"Department of Biomedical Engineering, University of Houston, Houston, TX 77004, USA"}]}],"member":"1968","published-online":{"date-parts":[[2022,8,5]]},"reference":[{"key":"ref_1","first-page":"31","article-title":"The human brain in numbers: A linearly scaled-up primate brain","volume":"3","year":"2009","journal-title":"Front. Hum. Neurosci."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/S0531-5565(02)00151-1","article-title":"Aging and the human neocortex","volume":"38","author":"Pakkenberg","year":"2003","journal-title":"Exp. Gerontol."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"1264","DOI":"10.1126\/science.929199","article-title":"Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters","volume":"198","author":"Jobsis","year":"1977","journal-title":"Science"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"921","DOI":"10.1016\/j.neuroimage.2012.03.049","article-title":"A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application","volume":"63","author":"Ferrari","year":"2012","journal-title":"Neuroimage"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"6","DOI":"10.1016\/j.neuroimage.2013.05.004","article-title":"A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology","volume":"85","author":"Scholkmann","year":"2014","journal-title":"Neuroimage"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"527","DOI":"10.1007\/BF01797193","article-title":"\u00dcber das elektroenkephalogramm des menschen","volume":"87","author":"Berger","year":"1929","journal-title":"Arch. F\u00fcr Psychiatr. Und Nervenkrankh."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1038\/nrn3241","article-title":"The origin of extracellular fields and currents\u2014EEG, ECoG, LFP and spikes","volume":"13","author":"Buzsaki","year":"2012","journal-title":"Nat. Rev. Neurosci."},{"key":"ref_8","unstructured":"Schomer, D.L., and Da Silva, F.L. (2012). Niedermeyer\u2019s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, Lippincott Williams & Wilkins."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1017\/CBO9780511546396.003","article-title":"Electroencephalography and high-density electrophysiological source localization","volume":"3","author":"Pizzagalli","year":"2007","journal-title":"Handb. Psychophysiol."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"2359","DOI":"10.1093\/brain\/awv156","article-title":"Connectivity measures are robust biomarkers of cortical function and plasticity after stroke","volume":"138","author":"Wu","year":"2015","journal-title":"Brain"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"108447","DOI":"10.1016\/j.jneumeth.2019.108447","article-title":"Establishing functional brain networks using a nonlinear partial directed coherence method to predict epileptic seizures","volume":"329","author":"Zhang","year":"2020","journal-title":"J. Neurosci. Methods"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"375","DOI":"10.3389\/fneur.2020.00375","article-title":"Deep convolutional neural network-based epileptic electroencephalogram (EEG) signal classification","volume":"11","author":"Gao","year":"2020","journal-title":"Front. Neurol."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"108904","DOI":"10.1016\/j.jneumeth.2020.108904","article-title":"Single-trial EEG Emotion recognition using granger causality\/transfer entropy analysis","volume":"346","author":"Gao","year":"2020","journal-title":"J. Neurosci. Methods"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"4721863","DOI":"10.1155\/2019\/4721863","article-title":"Driving fatigue detection from EEG using a modified PCANet method","volume":"2019","author":"Ma","year":"2019","journal-title":"Comput. Intell. Neurosci."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"618408","DOI":"10.3389\/fnbot.2021.618408","article-title":"EEG-based driving fatigue detection using a two-level learning hierarchy radial basis function","volume":"15","author":"Ren","year":"2021","journal-title":"Front. Neurorobotics"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"366","DOI":"10.3389\/fnagi.2018.00366","article-title":"Early detection of Alzheimer\u2019s disease using non-invasive near-infrared spectroscopy","volume":"10","author":"Li","year":"2018","journal-title":"Front. Aging Neurosci."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"2423","DOI":"10.1109\/TMI.2019.2900978","article-title":"The cortical network of emotion regulation: Insights from advanced EEG-fMRI integration analysis","volume":"38","author":"Nguyen","year":"2019","journal-title":"IEEE Trans. Med. Imaging"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"2050051","DOI":"10.1142\/S0129065720500513","article-title":"Dynamic reorganization of the cortical functional brain network in affective processing and cognitive reappraisal","volume":"30","author":"Fang","year":"2020","journal-title":"Int. J. Neural Syst."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1109\/TNSRE.2019.2956464","article-title":"Functional network alterations in patients with amnestic mild cognitive impairment characterized using functional near-infrared spectroscopy","volume":"28","author":"Li","year":"2019","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"2808","DOI":"10.1016\/j.neuroimage.2010.10.069","article-title":"A quantitative comparison of NIRS and fMRI across multiple cognitive tasks","volume":"54","author":"Cui","year":"2011","journal-title":"Neuroimage"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"1123","DOI":"10.1109\/5.939829","article-title":"Motor imagery and direct brain-computer communication","volume":"89","author":"Pfurtscheller","year":"2001","journal-title":"Proc. IEEE"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1918","DOI":"10.1109\/TBME.2011.2139210","article-title":"Electrophysiological imaging of brain activity and connectivity-challenges and opportunities","volume":"58","author":"He","year":"2011","journal-title":"IEEE Trans. BioMed. Eng."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"1211","DOI":"10.3390\/s120201211","article-title":"Brain computer interfaces, a review","volume":"12","year":"2012","journal-title":"Sensors"},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Waldert, S., Tushaus, L., Kaller, C.P., Aertsen, A., and Mehring, C. (2012). fNIRS exhibits weak tuning to hand movement direction. PLoS ONE, 7.","DOI":"10.1371\/journal.pone.0049266"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1152\/japplphysiol.00966.2005","article-title":"Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease","volume":"100","author":"Girouard","year":"2006","journal-title":"J. Appl. Physiol."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"863","DOI":"10.1038\/nrn1246","article-title":"Alterations in the BOLD fMRI signal with ageing and disease: A challenge for neuroimaging","volume":"4","author":"Deouell","year":"2003","journal-title":"Nat. Rev. Neurosci."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"101622","DOI":"10.1016\/j.nicl.2018.101622","article-title":"Dynamic cortical connectivity alterations associated with Alzheimer\u2019s disease: An EEG and fNIRS integration study","volume":"21","author":"Li","year":"2019","journal-title":"Neuroimage Clin."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"519","DOI":"10.1016\/j.neuroimage.2011.07.084","article-title":"Enhanced performance by a hybrid NIRS-EEG brain computer interface","volume":"59","author":"Fazli","year":"2012","journal-title":"Neuroimage"},{"key":"ref_29","doi-asserted-by":"crossref","unstructured":"Buccino, A.P., Keles, H.O., and Omurtag, A. (2016). Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks. PLoS ONE, 11.","DOI":"10.1371\/journal.pone.0146610"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"041411","DOI":"10.1117\/1.NPh.4.4.041411","article-title":"Simultaneous functional near-infrared spectroscopy and electroencephalography for monitoring of human brain activity and oxygenation: A review","volume":"4","author":"Chiarelli","year":"2017","journal-title":"Neurophotonics"},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., and Group, P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med., 6.","DOI":"10.1371\/journal.pmed.1000097"},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Hernandez, S.M., and Pollonini, L. (2020). NIRSplot: A tool for quality assessment of fNIRS scans. Optics and the Brain, Optical Society of America.","DOI":"10.1364\/BRAIN.2020.BM2C.5"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"623","DOI":"10.1006\/nimg.2000.0657","article-title":"Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults","volume":"12","author":"Obrig","year":"2000","journal-title":"Neuroimage"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"3078","DOI":"10.1364\/BOE.7.003078","article-title":"Mayer waves reduce the accuracy of estimated hemodynamic response functions in functional near-infrared spectroscopy","volume":"7","author":"Yucel","year":"2016","journal-title":"Biomed. Opt. Express"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"1366","DOI":"10.1364\/BOE.4.001366","article-title":"Autoregressive model based algorithm for correcting motion and serially correlated errors in fNIRS","volume":"4","author":"Barker","year":"2013","journal-title":"Biomed. Opt. Express"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/j.neuroimage.2013.04.082","article-title":"Motion artifacts in functional near-infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data","volume":"85","author":"Brigadoi","year":"2014","journal-title":"Neuroimage"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"015001","DOI":"10.1117\/1.NPh.7.1.015001","article-title":"Functional near-infrared spectroscopy for speech protocols: Characterization of motion artifacts and guidelines for improving data analysis","volume":"7","author":"Novi","year":"2020","journal-title":"Neurophotonics"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"649","DOI":"10.1088\/0967-3334\/31\/5\/004","article-title":"How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation","volume":"31","author":"Scholkmann","year":"2010","journal-title":"Physiol. Meas."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1088\/0967-3334\/33\/2\/259","article-title":"Wavelet-based motion artifact removal for functional near-infrared spectroscopy","volume":"33","author":"Molavi","year":"2012","journal-title":"Physiol. Meas."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.neuroimage.2015.02.057","article-title":"A kurtosis-based wavelet algorithm for motion artifact correction of fNIRS data","volume":"112","author":"Chiarelli","year":"2015","journal-title":"Neuroimage"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"015004","DOI":"10.1117\/1.NPh.3.1.015004","article-title":"Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering","volume":"3","author":"Zhang","year":"2016","journal-title":"Neurophotonics"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"505","DOI":"10.3389\/fnhum.2018.00505","article-title":"Current Status and Issues Regarding Pre-processing of fNIRS Neuroimaging Data: An Investigation of Diverse Signal Filtering Methods Within a General Linear Model Framework","volume":"12","author":"Pinti","year":"2018","journal-title":"Front. Hum. Neurosci."},{"key":"ref_43","first-page":"012101","article-title":"Best practices for fNIRS publications","volume":"8","author":"Yucel","year":"2021","journal-title":"Neurophotonics"},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"3489","DOI":"10.1007\/s10439-010-0087-2","article-title":"The removal of ocular artifacts from EEG signals using adaptive filters based on ocular source components","volume":"38","author":"Chan","year":"2010","journal-title":"Ann. Biomed. Eng."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1007\/s10548-009-0131-4","article-title":"Automatic removal of eye-movement and blink artifacts from EEG signals","volume":"23","author":"Gao","year":"2010","journal-title":"Brain Topogr."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"1301","DOI":"10.1109\/JBHI.2015.2450196","article-title":"The Removal of EOG Artifacts From EEG Signals Using Independent Component Analysis and Multivariate Empirical Mode Decomposition","volume":"20","author":"Wang","year":"2016","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1007\/s40708-017-0074-6","article-title":"Removal of muscular artifacts in EEG signals: A comparison of linear decomposition methods","volume":"5","author":"Frolich","year":"2018","journal-title":"Brain Inform."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"031001","DOI":"10.1088\/1741-2560\/12\/3\/031001","article-title":"EEG artifact removal-state-of-the-art and guidelines","volume":"12","author":"Uriguen","year":"2015","journal-title":"J. Neural Eng."},{"key":"ref_49","doi-asserted-by":"crossref","unstructured":"Jiang, X., Bian, G.B., and Tian, Z. (2019). Removal of Artifacts from EEG Signals: A Review. Sensors, 19.","DOI":"10.3390\/s19050987"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"312","DOI":"10.1097\/WNP.0b013e3181f534f4","article-title":"Automatic removal of various artifacts from EEG signals using combined methods","volume":"27","author":"Gao","year":"2010","journal-title":"J. Clin. Neurophysiol."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"491","DOI":"10.1016\/j.eplepsyres.2013.12.011","article-title":"fNIRS-EEG study of focal interictal epileptiform discharges","volume":"108","author":"Peng","year":"2014","journal-title":"Epilepsy Res."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"883","DOI":"10.1016\/j.eplepsyres.2014.03.007","article-title":"Hemodynamic changes during posterior epilepsies: An EEG-fNIRS study","volume":"108","author":"Pouliot","year":"2014","journal-title":"Epilepsy Res."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"830849","DOI":"10.1155\/2015\/830849","article-title":"Modeling Neurovascular Coupling from Clustered Parameter Sets for Multimodal EEG-NIRS","volume":"2015","author":"Talukdar","year":"2015","journal-title":"Comput. Math. Methods Med."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1016\/j.neuroimage.2015.11.045","article-title":"Using patient-specific hemodynamic response function in epileptic spike analysis of human epilepsy: A study based on EEG-fNIRS","volume":"126","author":"Peng","year":"2016","journal-title":"Neuroimage"},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"479","DOI":"10.3389\/fnhum.2018.00479","article-title":"Early Detection of Hemodynamic Responses Using EEG: A Hybrid EEG-fNIRS Study","volume":"12","author":"Khan","year":"2018","journal-title":"Front. Hum. Neurosci."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"301","DOI":"10.3389\/fnhum.2019.00301","article-title":"Simultaneous EEG-NIRS Measurement of the Inferior Parietal Lobule During a Reaching Task With Delayed Visual Feedback","volume":"13","author":"Zama","year":"2019","journal-title":"Front. Hum. Neurosci."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"2789","DOI":"10.1109\/TBME.2020.2971679","article-title":"Enhancing fNIRS analysis using EEG rhythmic signatures: An EEG-informed fNIRS analysis study","volume":"67","author":"Li","year":"2020","journal-title":"IEEE Trans. BioMed. Eng."},{"key":"ref_58","doi-asserted-by":"crossref","unstructured":"Sirpal, P., Damseh, R., Peng, K., Nguyen, D.K., and Lesage, F. (Neuroinformatics, 2021). Multimodal Autoencoder Predicts fNIRS Resting State From EEG Signals, Neuroinformatics, online ahead of print.","DOI":"10.1007\/s12021-021-09538-3"},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.neuroimage.2013.06.016","article-title":"Statistical analysis of fNIRS data: A comprehensive review","volume":"85","author":"Tak","year":"2014","journal-title":"Neuroimage"},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"031402","DOI":"10.1117\/1.NPh.3.3.031402","article-title":"Multichannel continuous electroencephalography-functional near-infrared spectroscopy recording of focal seizures and interictal epileptiform discharges in human epilepsy: A review","volume":"3","author":"Peng","year":"2016","journal-title":"Neurophotonics"},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"462","DOI":"10.3389\/fnhum.2017.00462","article-title":"Enhancing Performance of a Hybrid EEG-fNIRS System Using Channel Selection and Early Temporal Features","volume":"11","author":"Li","year":"2017","journal-title":"Front. Hum. Neurosci."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1097\/NPT.0000000000000072","article-title":"Applications of Electroencephalography to characterize brain activity: Perspectives in stroke","volume":"39","author":"Borich","year":"2015","journal-title":"J. Neurol. Phys."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1146\/annurev-bioeng-062117-120853","article-title":"Electrophysiological source imaging: A noninvasive window to brain dynamics","volume":"20","author":"He","year":"2018","journal-title":"Annu. Rev. Biomed. Eng."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"561","DOI":"10.1137\/1034115","article-title":"Analysis of discrete ill-posed problems by means of the L-Curve","volume":"34","author":"Hansen","year":"1992","journal-title":"Siam. Rev."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"325","DOI":"10.3389\/fneur.2019.00325","article-title":"EEG source imaging: A practical review of the analysis steps","volume":"10","author":"Michel","year":"2019","journal-title":"Front. Neurol."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1186\/1743-0003-5-25","article-title":"Review on solving the inverse problem in EEG source analysis","volume":"5","author":"Grech","year":"2008","journal-title":"J. Neuroeng. Rehabil."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"4006","DOI":"10.1016\/j.neuroimage.2011.09.087","article-title":"Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior","volume":"59","author":"Aihara","year":"2012","journal-title":"Neuroimage"},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.neuroimage.2013.12.035","article-title":"Decoding spatial attention by using cortical currents estimated from electroencephalography with near-infrared spectroscopy prior information","volume":"90","author":"Morioka","year":"2014","journal-title":"Neuroimage"},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"1099","DOI":"10.1177\/1545968320969937","article-title":"Multimodal Neuroimaging Using Concurrent EEG\/fNIRS for Poststroke Recovery Assessment: An Exploratory Study","volume":"34","author":"Li","year":"2020","journal-title":"Neurorehab. Neural Repair"},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"373","DOI":"10.3389\/fnins.2014.00373","article-title":"Hybrid fNIRS-EEG based classification of auditory and visual perception processes","volume":"8","author":"Putze","year":"2014","journal-title":"Front. Neurosci."},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"036004","DOI":"10.1088\/1741-2560\/12\/3\/036004","article-title":"A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching","volume":"12","author":"Yin","year":"2015","journal-title":"J. Neural Eng."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"359","DOI":"10.3389\/fnhum.2017.00359","article-title":"Measuring mental workload with EEG+fNIRS","volume":"11","author":"Aghajani","year":"2017","journal-title":"Front. Hum. Neurosci."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"19889","DOI":"10.1109\/ACCESS.2017.2754325","article-title":"Stress assessment based on decision fusion of EEG and fNIRS signals","volume":"5","author":"Tang","year":"2017","journal-title":"IEEE Access"},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"3882","DOI":"10.1364\/BOE.7.003882","article-title":"Mental stress assessment using simultaneous measurement of EEG and fNIRS","volume":"7","author":"Kiguchi","year":"2016","journal-title":"Biomed. Opt. Express"},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"066003","DOI":"10.1088\/1741-2552\/aa814b","article-title":"Decoding human mental states by whole-head EEG+fNIRS during category fluency task performance","volume":"14","author":"Omurtag","year":"2017","journal-title":"J. Neural Eng."},{"key":"ref_76","doi-asserted-by":"crossref","unstructured":"Sun, Y., Ayaz, H., and Akansu, A.N. (2020). Multimodal Affective State Assessment Using fNIRS + EEG and Spontaneous Facial Expression. Brain Sci., 10.","DOI":"10.3390\/brainsci10020085"},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"218","DOI":"10.1016\/j.compbiomed.2019.05.017","article-title":"IQ estimation by means of EEG-fNIRS recordings during a logical-mathematical intelligence test","volume":"110","author":"Firooz","year":"2019","journal-title":"Comput. Biol. Med."},{"key":"ref_78","doi-asserted-by":"crossref","first-page":"108618","DOI":"10.1016\/j.jneumeth.2020.108618","article-title":"An EEG-fNIRS hybridization technique in the four-class classification of alzheimer\u2019s disease","volume":"336","author":"Cicalese","year":"2020","journal-title":"J. Neurosci. Methods"},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"1246","DOI":"10.1109\/TNSRE.2020.2987888","article-title":"Merging fNIRS-EEG brain monitoring and body motion capture to distinguish Parkinson\u2019s disease","volume":"28","author":"Abtahi","year":"2020","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"246","DOI":"10.3389\/fnhum.2018.00246","article-title":"Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces","volume":"12","author":"Hong","year":"2018","journal-title":"Front. Hum. Neurosci."},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"244","DOI":"10.3389\/fnhum.2014.00244","article-title":"Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface","volume":"8","author":"Khan","year":"2014","journal-title":"Front. Hum. Neurosci."},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"6","DOI":"10.3389\/fnbot.2017.00006","article-title":"Hybrid EEG-fNIRS-based eight-command decoding for bci: Application to quadcopter control","volume":"11","author":"Khan","year":"2017","journal-title":"Front. Neurorobotics"},{"key":"ref_83","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1016\/j.jneumeth.2014.04.016","article-title":"A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery","volume":"244","author":"Koo","year":"2015","journal-title":"J. Neurosci. Methods"},{"key":"ref_84","doi-asserted-by":"crossref","first-page":"2725","DOI":"10.1016\/j.patcog.2015.03.010","article-title":"Subject-dependent classification for robust idle state detection using multi-modal neuroimaging and data-fusion techniques in BCI","volume":"48","author":"Lee","year":"2015","journal-title":"Pattern. Recogn."},{"key":"ref_85","doi-asserted-by":"crossref","first-page":"14245","DOI":"10.1109\/ACCESS.2017.2723428","article-title":"Temporal-spatial features of intention understanding based on EEG-fNIRS bimodal measurement","volume":"5","author":"Ge","year":"2017","journal-title":"IEEE Access"},{"key":"ref_86","doi-asserted-by":"crossref","unstructured":"Kwon, J., Shin, J., and Im, C.H. (2020). Toward a compact hybrid brain-computer interface (BCI): Performance evaluation of multi-class hybrid EEG-fNIRS BCIs with limited number of channels. PLoS ONE, 15.","DOI":"10.1371\/journal.pone.0230491"},{"key":"ref_87","doi-asserted-by":"crossref","unstructured":"Padfield, N., Zabalza, J., Zhao, H., Masero, V., and Ren, J. (2019). EEG-based brain-computer interfaces using motor-imagery: Techniques and challenges. Sensors, 19.","DOI":"10.3390\/s19061423"},{"key":"ref_88","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1080\/2326263X.2019.1698928","article-title":"Development of a ternary hybrid fNIRS-EEG brain\u2013computer interface based on imagined speech","volume":"6","author":"Yousefi","year":"2019","journal-title":"Brain Comput. Interfaces"},{"key":"ref_89","doi-asserted-by":"crossref","first-page":"219","DOI":"10.3389\/fnhum.2016.00219","article-title":"Exploring Neuro-Physiological Correlates of Drivers\u2019 Mental Fatigue Caused by Sleep Deprivation Using Simultaneous EEG, ECG, and fNIRS Data","volume":"10","author":"Ahn","year":"2016","journal-title":"Front. Hum. Neurosci."},{"key":"ref_90","doi-asserted-by":"crossref","first-page":"389","DOI":"10.3389\/fnhum.2017.00389","article-title":"Multisubject \"Learning\" for Mental Workload Classification Using Concurrent EEG, fNIRS, and Physiological Measures","volume":"11","author":"Liu","year":"2017","journal-title":"Front. Hum. Neurosci."},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1080\/2326263X.2017.1304020","article-title":"Mental workload classification with concurrent electroencephalography and functional near-infrared spectroscopy","volume":"4","author":"Liu","year":"2017","journal-title":"Brain Comput. Interfaces"},{"key":"ref_92","doi-asserted-by":"crossref","first-page":"e537","DOI":"10.7717\/peerj-cs.537","article-title":"An effective classification framework for brain-computer interface system design based on combining of fNIRS and EEG signals","volume":"7","author":"Alhudhaif","year":"2021","journal-title":"PEER J. Comput. Sci."},{"key":"ref_93","doi-asserted-by":"crossref","first-page":"1838140","DOI":"10.1155\/2020\/1838140","article-title":"A Computationally Efficient Method for Hybrid EEG-fNIRS BCI Based on the Pearson Correlation","volume":"2020","author":"Hasan","year":"2020","journal-title":"Biomed. Res. Int."},{"key":"ref_94","doi-asserted-by":"crossref","first-page":"599802","DOI":"10.3389\/fnhum.2020.599802","article-title":"Hybrid EEG-fNIRS BCI Fusion Using Multi-Resolution Singular Value Decomposition (MSVD)","volume":"14","author":"Khan","year":"2020","journal-title":"Front. Hum. Neurosci."},{"key":"ref_95","doi-asserted-by":"crossref","unstructured":"Shin, J., Kim, D.W., Muller, K.R., and Hwang, H.J. (2018). Improvement of Information Transfer Rates Using a Hybrid EEG-NIRS Brain-Computer Interface with a Short Trial Length: Offline and Pseudo-Online Analyses. Sensors, 18.","DOI":"10.3390\/s18061827"},{"key":"ref_96","doi-asserted-by":"crossref","first-page":"5","DOI":"10.3389\/fninf.2018.00005","article-title":"A Ternary Hybrid EEG-NIRS Brain-Computer Interface for the Classification of Brain Activation Patterns during Mental Arithmetic, Motor Imagery, and Idle State","volume":"12","author":"Shin","year":"2018","journal-title":"Front. Neuroinform."},{"key":"ref_97","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s13755-019-0081-5","article-title":"Modeling and classification of voluntary and imagery movements for brain\u2013computer interface from fNIR and EEG signals through convolutional neural network","volume":"7","author":"Rahman","year":"2019","journal-title":"Health Inf. Sci. Syst."},{"key":"ref_98","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1117\/1.JBO.24.5.051408","article-title":"fNIRS improves seizure detection in multimodal EEG-fNIRS recordings","volume":"24","author":"Sirpal","year":"2019","journal-title":"J. Biomed. Opt."},{"key":"ref_99","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.media.2017.07.005","article-title":"A survey on deep learning in medical image analysis","volume":"42","author":"Litjens","year":"2017","journal-title":"Med. Image Anal."},{"key":"ref_100","first-page":"605","article-title":"Analysis of Human Gait using Hybrid EEG-fNIRS-based BCI System: A review","volume":"14","author":"Khan","year":"2020","journal-title":"Front. Hum. Neurosci."},{"key":"ref_101","doi-asserted-by":"crossref","first-page":"710","DOI":"10.1007\/s10548-015-0424-8","article-title":"Association of Concurrent fNIRS and EEG Signatures in Response to Auditory and Visual Stimuli","volume":"28","author":"Chen","year":"2015","journal-title":"Brain Topogr."},{"key":"ref_102","doi-asserted-by":"crossref","first-page":"560878","DOI":"10.3389\/fnins.2020.560878","article-title":"Amplitude of fNIRS Resting-State Global Signal Is Related to EEG Vigilance Measures: A Simultaneous fNIRS and EEG Study","volume":"14","author":"Chen","year":"2020","journal-title":"Front. Neurosci."},{"key":"ref_103","doi-asserted-by":"crossref","first-page":"23083","DOI":"10.1038\/srep23083","article-title":"Hemodynamic (fNIRS) and EEG (N200) correlates of emotional inter-species interactions modulated by visual and auditory stimulation","volume":"6","author":"Balconi","year":"2016","journal-title":"Sci. Rep."},{"key":"ref_104","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/j.neurobiolaging.2016.10.011","article-title":"Simultaneous EEG-fNIRS reveals how age and feedback affect motor imagery signatures","volume":"49","author":"Zich","year":"2017","journal-title":"Neurobiol. Aging"},{"key":"ref_105","doi-asserted-by":"crossref","first-page":"066036","DOI":"10.1088\/1741-2552\/ab456c","article-title":"Multimodal exploration of non-motor neural functions in ALS patients using simultaneous EEG-fNIRS recording","volume":"16","author":"Borgheai","year":"2019","journal-title":"J. Neural Eng."},{"key":"ref_106","doi-asserted-by":"crossref","unstructured":"Gentile, E., Brunetti, A., Ricci, K., Delussi, M., Bevilacqua, V., and de Tommaso, M. (2020). Mutual interaction between motor cortex activation and pain in fibromyalgia: EEG-fNIRS study. PLoS ONE, 15.","DOI":"10.1371\/journal.pone.0228158"},{"key":"ref_107","doi-asserted-by":"crossref","first-page":"1430","DOI":"10.3389\/fnins.2019.01430","article-title":"Assessing brain networks by resting-state dynamic functional connectivity: An fNIRS-EEG Study","volume":"13","author":"Zhang","year":"2019","journal-title":"Front. Neurosci."},{"key":"ref_108","doi-asserted-by":"crossref","first-page":"1950018","DOI":"10.1142\/S0129065719500187","article-title":"Exploring the brain responses to driving fatigue through simultaneous EEG and fNIRS measurements","volume":"30","author":"Lin","year":"2020","journal-title":"Int. J. Neural Syst."},{"key":"ref_109","doi-asserted-by":"crossref","first-page":"555","DOI":"10.1016\/j.braindev.2020.05.007","article-title":"Executive dysfunction in medication-naive children with ADHD: A multi-modal fNIRS and EEG study","volume":"42","author":"Kaga","year":"2020","journal-title":"Brain Dev."},{"key":"ref_110","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.neures.2017.08.011","article-title":"The relationship between the superior frontal cortex and alpha oscillation in a flanker task: Simultaneous recording of electroencephalogram (EEG) and near infrared spectroscopy (NIRS)","volume":"131","author":"Suzuki","year":"2018","journal-title":"Neurosci. Res."},{"key":"ref_111","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1016\/j.neuroimage.2016.05.058","article-title":"Hemodynamic correlates of spontaneous neural activity measured by human whole-head resting state EEG plus fNIRS","volume":"138","author":"Keles","year":"2016","journal-title":"Neuroimage"},{"key":"ref_112","doi-asserted-by":"crossref","first-page":"3977","DOI":"10.1038\/s41598-021-83420-9","article-title":"An analysis framework for the integration of broadband NIRS and EEG to assess neurovascular and neurometabolic coupling","volume":"11","author":"Pinti","year":"2021","journal-title":"Sci. Rep."},{"key":"ref_113","doi-asserted-by":"crossref","first-page":"1636","DOI":"10.1016\/j.clinph.2021.03.025","article-title":"Monitoring anesthesia using simultaneous functional Near Infrared Spectroscopy and Electroencephalography","volume":"132","author":"Kish","year":"2021","journal-title":"Clin. Neurophysiol."},{"key":"ref_114","doi-asserted-by":"crossref","first-page":"2583","DOI":"10.1364\/BOE.8.002583","article-title":"Assessment of mental stress effects on prefrontal cortical activities using canonical correlation analysis: An fNIRS-EEG study","volume":"8","author":"Tang","year":"2017","journal-title":"Biomed. Opt. Express"},{"key":"ref_115","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.jneumeth.2015.11.025","article-title":"A novel technique for quantitative bedside monitoring of neurovascular coupling","volume":"259","author":"Govindan","year":"2016","journal-title":"J. Neurosci. Methods"},{"key":"ref_116","doi-asserted-by":"crossref","first-page":"45958","DOI":"10.1038\/srep45958","article-title":"Novel Wavelet Real Time Analysis of Neurovascular Coupling in Neonatal Encephalopathy","volume":"7","author":"Chalak","year":"2017","journal-title":"Sci. Rep."},{"key":"ref_117","doi-asserted-by":"crossref","unstructured":"Chiarelli, A.M., Perpetuini, D., Croce, P., Filippini, C., Cardone, D., Rotunno, L., Anzoletti, N., Zito, M., Zappasodi, F., and Merla, A. (2021). Evidence of Neurovascular Un-Coupling in Mild Alzheimer\u2019s Disease through Multimodal EEG-fNIRS and Multivariate Analysis of Resting-State Data. Biomedicines, 9.","DOI":"10.3390\/biomedicines9040337"},{"key":"ref_118","doi-asserted-by":"crossref","unstructured":"Perpetuini, D., Chiarelli, A.M., Filippini, C., Cardone, D., Croce, P., Rotunno, L., Anzoletti, N., Zito, M., Zappasodi, F., and Merla, A. (2020). Working Memory Decline in Alzheimer\u2019s Disease Is Detected by Complexity Analysis of Multimodal EEG-fNIRS. Entropy, 22.","DOI":"10.3390\/e22121380"},{"key":"ref_119","doi-asserted-by":"crossref","first-page":"025010","DOI":"10.1117\/1.NPh.6.2.025010","article-title":"Abnormal dynamic functional connectivity and brain states in Alzheimer\u2019s diseases: Functional near-infrared spectroscopy study","volume":"6","author":"Niu","year":"2019","journal-title":"Neurophotonics"},{"key":"ref_120","doi-asserted-by":"crossref","first-page":"118263","DOI":"10.1016\/j.neuroimage.2021.118263","article-title":"Dynamic inter-brain synchrony in real-life inter-personal cooperation: A functional near-infrared spectroscopy hyperscanning study","volume":"238","author":"Li","year":"2021","journal-title":"Neuroimage"},{"key":"ref_121","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/ncomms9414","article-title":"Controllability of structural brain networks","volume":"6","author":"Gu","year":"2015","journal-title":"Nat. Commun."},{"key":"ref_122","doi-asserted-by":"crossref","first-page":"847","DOI":"10.1016\/j.jad.2021.07.106","article-title":"Brain controllability distinctiveness between depression and cognitive impairment","volume":"294","author":"Fang","year":"2021","journal-title":"J. Affect. Disord."},{"key":"ref_123","doi-asserted-by":"crossref","first-page":"e2006436118","DOI":"10.1073\/pnas.2006436118","article-title":"Time-evolving controllability of effective connectivity networks during seizure progression","volume":"118","author":"Scheid","year":"2021","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_124","doi-asserted-by":"crossref","first-page":"30","DOI":"10.3389\/fnhum.2020.00030","article-title":"Using the General Linear Model to Improve Performance in fNIRS Single Trial Analysis and Classification: A Perspective","volume":"14","author":"Boas","year":"2020","journal-title":"Front. Hum. Neurosci."},{"key":"ref_125","first-page":"025003","article-title":"Multivariate Kalman filter regression of confounding physiological signals for real-time classification of fNIRS data","volume":"9","author":"Farzam","year":"2022","journal-title":"Neurophotonics"},{"key":"ref_126","doi-asserted-by":"crossref","first-page":"2430","DOI":"10.1016\/j.neuroimage.2011.09.003","article-title":"NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation","volume":"59","author":"Cui","year":"2012","journal-title":"Neuroimage"},{"key":"ref_127","doi-asserted-by":"crossref","first-page":"074710","DOI":"10.1117\/1.JBO.27.7.074710","article-title":"Kernel Flow: A high channel count scalable time-domain functional near-infrared spectroscopy system","volume":"27","author":"Ban","year":"2022","journal-title":"J Biomed. Opt."},{"key":"ref_128","doi-asserted-by":"crossref","first-page":"1199","DOI":"10.1109\/TBME.2016.2594127","article-title":"M3BA: A Mobile, Modular, Multimodal Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring","volume":"64","author":"Wabnitz","year":"2017","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"ref_129","doi-asserted-by":"crossref","first-page":"2518","DOI":"10.1016\/j.neuroimage.2011.08.095","article-title":"Short separation channel location impacts the performance of short channel regression in NIRS","volume":"59","author":"Gagnon","year":"2012","journal-title":"Neuroimage"},{"key":"ref_130","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/j.neuroimage.2016.08.058","article-title":"Modelling confounding effects from extracerebral contamination and systemic factors on functional near-infrared spectroscopy","volume":"143","author":"Caldwell","year":"2016","journal-title":"Neuroimage"},{"key":"ref_131","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.neuroimage.2019.06.021","article-title":"A new blind source separation framework for signal analysis and artifact rejection in functional Near-Infrared Spectroscopy","volume":"200","author":"Boukouvalas","year":"2019","journal-title":"Neuroimage"}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/22\/15\/5865\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,3]],"date-time":"2024-08-03T12:02:36Z","timestamp":1722686556000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/22\/15\/5865"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,8,5]]},"references-count":131,"journal-issue":{"issue":"15","published-online":{"date-parts":[[2022,8]]}},"alternative-id":["s22155865"],"URL":"https:\/\/doi.org\/10.3390\/s22155865","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2022,8,5]]}}}