{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T14:51:36Z","timestamp":1740149496864,"version":"3.37.3"},"reference-count":117,"publisher":"MDPI AG","issue":"15","license":[{"start":{"date-parts":[[2022,7,27]],"date-time":"2022-07-27T00:00:00Z","timestamp":1658880000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"ANR","award":["ANR-20-THIA-0001","ANR-20-CE33-0005"]},{"name":"European Regional Development Fund (ERDF)"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Shape memory materials are smart materials that stand out because of several remarkable properties, including their shape memory effect. Shape memory alloys (SMAs) are largely used members of this family and have been innovatively employed in various fields, such as sensors, actuators, robotics, aerospace, civil engineering, and medicine. Many conventional, unconventional, experimental, and numerical methods have been used to study the properties of SMAs, their models, and their different applications. These materials exhibit nonlinear behavior. This fact complicates the use of traditional methods, such as the finite element method, and increases the computing time necessary to adequately model their different possible shapes and usages. Therefore, a promising solution is to develop new methodological approaches based on artificial intelligence (AI) that aims at efficient computation time and accurate results. AI has recently demonstrated some success in efficiently modeling SMA features with machine- and deep-learning methods. Notably, artificial neural networks (ANNs), a subsection of deep learning, have been applied to characterize SMAs. The present review highlights the importance of AI in SMA modeling and introduces the deep connection between ANNs and SMAs in the medical, robotic, engineering, and automation fields. After summarizing the general characteristics of ANNs and SMAs, we analyze various ANN types used for modeling the properties of SMAs according to their shapes, e.g., a wire as an actuator, a wire with a spring bias, wire systems, magnetic and porous materials, bars and rings, and reinforced concrete beams. The description focuses on the techniques used for NN architectures and learning.<\/jats:p>","DOI":"10.3390\/s22155610","type":"journal-article","created":{"date-parts":[[2022,7,28]],"date-time":"2022-07-28T07:21:16Z","timestamp":1658992876000},"page":"5610","source":"Crossref","is-referenced-by-count":23,"title":["Review of Neural Network Modeling of Shape Memory Alloys"],"prefix":"10.3390","volume":"22","author":[{"given":"Rodayna","family":"Hmede","sequence":"first","affiliation":[{"name":"Universit\u00e9 Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France"}]},{"given":"Fr\u00e9d\u00e9ric","family":"Chapelle","sequence":"additional","affiliation":[{"name":"Universit\u00e9 Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France"}]},{"given":"Yuri","family":"Lapusta","sequence":"additional","affiliation":[{"name":"Universit\u00e9 Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France"}]}],"member":"1968","published-online":{"date-parts":[[2022,7,27]]},"reference":[{"key":"ref_1","first-page":"58","article-title":"Recent Progress in the Growth and Applications of Graphene as a Smart Material: A Review","volume":"2","author":"Memon","year":"2015","journal-title":"Front. Mater."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"8330","DOI":"10.1073\/pnas.96.15.8330","article-title":"Smart materials and structures","volume":"96","author":"Cao","year":"1999","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Chaudhari, R., Vora, J.J., Patel, V., L\u00f3pez de Lacalle, L.N., and Parikh, D.M. (2020). Surface Analysis of Wire-Electrical-Discharge-Machining-Processed Shape-Memory Alloys. Materials, 13.","DOI":"10.3390\/ma13030530"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1089\/soro.2016.0034","article-title":"Bioinspired Robotic Fingers Based on Pneumatic Actuator and 3D Printing of Smart Material","volume":"4","author":"Yang","year":"2017","journal-title":"Soft Robot."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1007\/s40830-016-0059-y","article-title":"Manufacturing, Structure Control, and Functional Testing of Ti\u2013Nb-Based SMA for Medical Application","volume":"2","author":"Prokoshkin","year":"2016","journal-title":"Shape Mem. Superelast."},{"key":"ref_6","first-page":"601","article-title":"Experimental study of damping in civil engineering structures using smart materials (NiTi-SMA). Application to stayed cables for bridges","volume":"4","author":"Isalgue","year":"2010","journal-title":"Int. Rev. Mech. Eng."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"367","DOI":"10.1080\/15376490490451552","article-title":"Smart Materials, Precision Sensors\/Actuators, Smart Structures, and Structronic Systems","volume":"11","author":"Tzou","year":"2004","journal-title":"Mech. Adv. Mater. Struct."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"777","DOI":"10.1088\/0964-1726\/13\/4\/015","article-title":"Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks","volume":"13","author":"Ma","year":"2004","journal-title":"Smart Mater. Struct."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"12958","DOI":"10.3390\/s131012958","article-title":"Electrical Resistivity-Based Study of Self-Sensing Properties for Shape Memory Alloy-Actuated Artificial Muscle","volume":"13","author":"Zhang","year":"2013","journal-title":"Sensors"},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"G\u00f3mez-Espinosa, A., Castro Sundin, R., Loidi Eguren, I., Cuan-Urquizo, E., and Trevi\u00f1o-Quintanilla, C.D. (2019). Neural Network Direct Control with Online Learning for Shape Memory Alloy Manipulators. Sensors, 19.","DOI":"10.3390\/s19112576"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"3819","DOI":"10.1021\/ja01349a004","article-title":"An Electrochemical Investigation of Solid Caduim-Gold Alloys","volume":"54","year":"1932","journal-title":"J. Am. Chem. Soc."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1016\/j.msea.2007.02.147","article-title":"Superelasticity decay of porous NiTi shape memory alloys under cyclic strain-controlled fatigue conditions","volume":"481\u2013482","author":"Zhang","year":"2008","journal-title":"Mater. Sci. Eng. A"},{"key":"ref_13","first-page":"755","article-title":"A review of smart materials: Researches and applications","volume":"6","author":"Qader","year":"2019","journal-title":"El-Cezeri J. Sci. Eng."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"720","DOI":"10.1016\/j.jmrt.2022.02.112","article-title":"Investigation and TGRA based optimization of laser beam drilling process during machining of Nickel Inconel 718 alloy","volume":"18","author":"Alsoruji","year":"2022","journal-title":"J. Mater. Res. Technol."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"1078","DOI":"10.1016\/j.matdes.2013.11.084","article-title":"A review of shape memory alloy research, applications and opportunities","volume":"56","author":"Jani","year":"2014","journal-title":"Mater. Des."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"2216","DOI":"10.1016\/j.tet.2007.12.021","article-title":"Exploration of quantitative structure\u2013property relationships (QSPR) for the design of new guanidinium ionic liquids","volume":"64","author":"Carrera","year":"2008","journal-title":"Tetrahedron"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1016\/S0168-874X(02)00225-1","article-title":"Finite element analysis and design of actively controlled piezoelectric smart structures","volume":"40","author":"Xu","year":"2004","journal-title":"Finite Elem. Anal. Des."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/S1003-6326(14)63022-3","article-title":"Review on non-conventional machining of shape memory alloys","volume":"24","author":"Manjaiah","year":"2014","journal-title":"Trans. Nonferrous Met. Soc. China"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"2045","DOI":"10.1007\/s00170-018-2818-8","article-title":"A review on machining of NiTi shape memory alloys: The process and post process perspective","volume":"100","author":"Kaya","year":"2019","journal-title":"Int. J. Adv. Manuf. Technol."},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Chaudhari, R., Vora, J.J., Mani Prabu, S.S., Palani, I.A., Patel, V.K., Parikh, D.M., and de Lacalle, L.N.L. (2019). Multi-Response Optimization of WEDM Process Parameters for Machining of Superelastic Nitinol Shape-Memory Alloy Using a Heat-Transfer Search Algorithm. Mater. Basel Switz., 12.","DOI":"10.3390\/ma12081277"},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Dick, S. (2019). Artificial Intelligence. Harv. Data Sci. Rev.","DOI":"10.1162\/99608f92.92fe150c"},{"key":"ref_22","first-page":"159","article-title":"Materials discovery and design using machine learning","volume":"3","author":"Liu","year":"2017","journal-title":"J. Mater."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"101569","DOI":"10.1016\/j.media.2019.101569","article-title":"Simulation of hyperelastic materials in real-time using deep learning","volume":"59","author":"Mendizabal","year":"2020","journal-title":"Med. Image Anal."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1108\/AA-10-2013-094","article-title":"Smart materials: A review of capabilities and applications","volume":"34","author":"Bogue","year":"2014","journal-title":"Assem. Autom."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1108\/01445151211198674","article-title":"Smart materials: A review of recent developments","volume":"32","author":"Bogue","year":"2012","journal-title":"Assem. Autom."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"36623","DOI":"10.1039\/C6RA04079A","article-title":"Inspired smart materials with external stimuli responsive wettability: A review","volume":"6","author":"Guo","year":"2016","journal-title":"RSC Adv."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"3829","DOI":"10.1007\/s00521-021-06643-x","article-title":"Artificial neural network models to predict the response of 55NiTi shape memory alloy under stress and thermal cycles","volume":"34","author":"Bseiso","year":"2022","journal-title":"Neural Comput. Appl."},{"key":"ref_28","first-page":"1","article-title":"Neural Network Methods for Natural Language Processing","volume":"10","author":"Goldberg","year":"2017","journal-title":"Synth. Lect. Hum. Lang. Technol."},{"key":"ref_29","doi-asserted-by":"crossref","unstructured":"Das, S., Pegu, H., Sahu, K.K., Nayak, A.K., Ramakrishna, S., Datta, D., and Swayamjyoti, S. (2020). Machine learning in materials modeling\u2014Fundamentals and the opportunities in 2D materials. Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures, Elsevier.","DOI":"10.1016\/B978-0-12-818475-2.00019-2"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"547","DOI":"10.1038\/s41586-018-0337-2","article-title":"Machine learning for molecular and materials science","volume":"559","author":"Butler","year":"2018","journal-title":"Nature"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"8552","DOI":"10.1039\/c3sm51449h","article-title":"Discovering crystals using shape matching and machine learning","volume":"9","author":"Phillips","year":"2013","journal-title":"Soft Matter"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"1879","DOI":"10.1016\/j.commatsci.2011.01.035","article-title":"Predicting lattice constant of complex cubic perovskites using computational intelligence","volume":"50","author":"Majid","year":"2011","journal-title":"Comput. Mater. Sci."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"342","DOI":"10.1016\/j.eswa.2016.11.037","article-title":"A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning","volume":"71","author":"Lorente","year":"2017","journal-title":"Expert Syst. Appl."},{"key":"ref_34","unstructured":"Zakerzadeh, M.R., and Salehi, H. (2009, January 20\u201322). Comparative Analysis of Some one-Dimensional SMA Constitutive Models for a Ni-Ti Wire for Shape Control Applications with Experimental Data. In Proceeding of the 20th International Conference on Adaptive Structures and Technologies, Hong Kong, China."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"012007","DOI":"10.1088\/1742-6596\/1142\/1\/012007","article-title":"Machine learning approach for flexural characterization of smart material","volume":"1142","author":"Prajna","year":"2018","journal-title":"J. Phys. Conf. Ser."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"761","DOI":"10.1016\/j.matpr.2020.01.563","article-title":"A review of NiTi shape memory alloy as a smart material produced by additive manufacturing","volume":"30","author":"Farber","year":"2020","journal-title":"Mater. Today Proc."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.msea.2003.10.326","article-title":"Medical shape memory alloy applications\u2014The market and its products","volume":"378","author":"Morgan","year":"2004","journal-title":"Mater. Sci. Eng. A"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1108\/01439910710749609","article-title":"Critical review of current trends in shape memory alloy actuators for intelligent robots","volume":"34","author":"Sreekumar","year":"2007","journal-title":"Ind. Robot Int. J."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1089\/soro.2016.0008","article-title":"An Overview of Shape Memory Alloy-Coupled Actuators and Robots","volume":"4","author":"Rodrigue","year":"2017","journal-title":"Soft Robot."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"1266","DOI":"10.1016\/j.engstruct.2005.12.010","article-title":"Applications of shape memory alloys in civil structures","volume":"28","author":"Song","year":"2006","journal-title":"Eng. Struct."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1016\/j.conbuildmat.2014.04.032","article-title":"Iron-based shape memory alloys for civil engineering structures: An overview","volume":"63","author":"Cladera","year":"2014","journal-title":"Constr. Build. Mater."},{"key":"ref_42","first-page":"535","article-title":"Aerospace applications of shape memory alloys","volume":"221","author":"Hartl","year":"2007","journal-title":"J. Sagepub"},{"key":"ref_43","doi-asserted-by":"crossref","unstructured":"Exarchos, D.A., Dalla, P.T., Tragazikis, I.K., Dassios, K.G., Zafeiropoulos, N.E., Karabela, M.M., De Crescenzo, C., Karatza, D., Musmarra, D., and Chianese, S. (2018). Development and Characterization of High Performance Shape Memory Alloy Coatings for Structural Aerospace Applications. Materials, 11.","DOI":"10.3390\/ma11050832"},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"248","DOI":"10.4028\/www.scientific.net\/AMM.663.248","article-title":"Shape Memory Alloys in Automotive Applications","volume":"663","author":"Jani","year":"2014","journal-title":"Appl. Mech. Mater."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"2644","DOI":"10.1109\/TIE.2009.2019773","article-title":"Mechatronic Design of a Shape Memory Alloy Actuator for Automotive Tumble Flaps: A Case Study","volume":"56","author":"Bellini","year":"2009","journal-title":"IEEE Trans. Ind. Electron."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1016\/j.engstruct.2019.01.049","article-title":"Superelastic NiTi SMA cables: Thermal-mechanical behavior, hysteretic modelling and seismic application","volume":"183","author":"Fang","year":"2019","journal-title":"Eng. Struct."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1016\/j.mechmat.2011.04.003","article-title":"Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation","volume":"43","author":"Chemisky","year":"2011","journal-title":"Mech. Mater."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1016\/S0079-6425(99)00004-3","article-title":"Shape memory in Cu-based alloys: Phenomenological behavior at the mesoscale level and interaction of martensitic transformation with structural defects in Cu-Zn-Al","volume":"44","author":"Lovey","year":"1999","journal-title":"Prog. Mater. Sci."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1016\/j.mechmat.2007.07.005","article-title":"Equivalent transformation strain and its relation with martensite volume fraction for isotropic and anisotropic shape memory alloys","volume":"40","author":"Taillard","year":"2008","journal-title":"Mech. Mater."},{"key":"ref_50","unstructured":"(2021, April 08). Shape Memory Effect\u2014An Overview|ScienceDirect Topics. Available online: https:\/\/www.sciencedirect.com\/topics\/chemistry\/shape-memory-effect."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"1155","DOI":"10.1016\/S0749-6419(00)00005-X","article-title":"The two way shape memory effect of shape memory alloys: An experimental study and a phenomenological model","volume":"16","author":"Lexcellent","year":"2000","journal-title":"Int. J. Plast."},{"key":"ref_52","unstructured":"Barnes, C. (2021, April 21). Innovations: Shape Memory and Superelastic Alloys. Available online: https:\/\/www.copper.org\/publications\/newsletters\/innovations\/1999\/07\/shape.html."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"1142","DOI":"10.1016\/j.compositesa.2005.01.001","article-title":"Stress transfer for a SMA fiber pulled out from an elastic matrix and related bridging effect","volume":"36","author":"Wang","year":"2005","journal-title":"Compos. Part Appl. Sci. Manuf."},{"key":"ref_54","first-page":"408","article-title":"Advanced Shape Memory Alloy Material Models for ANSYS","volume":"94085","author":"Divringi","year":"2016","journal-title":"Ozen Eng. Inc."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"227","DOI":"10.2514\/1.36217","article-title":"Reinforcement Learning for Characterizing Hysteresis Behavior of Shape Memory Alloys","volume":"6","author":"Kirkpatrick","year":"2009","journal-title":"J. Aerosp. Comput. Inf. Commun."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"1184","DOI":"10.1088\/0964-1726\/14\/6\/011","article-title":"Real-time control of a shape memory alloy adaptive tuned vibration absorber","volume":"14","author":"Rustighi","year":"2005","journal-title":"Smart Mater. Struct."},{"key":"ref_57","doi-asserted-by":"crossref","unstructured":"Wang, S.-C. (2003). Artificial Neural Network. Interdisciplinary Computing in Java Programming, The Springer International Series in Engineering and Computer Science.","DOI":"10.1007\/978-1-4615-0377-4_5"},{"key":"ref_58","doi-asserted-by":"crossref","unstructured":"Abraham, A. (2005). Artificial Neural Networks. Handbook of Measuring System Design, American Cancer Society.","DOI":"10.1002\/0471497398.mm421"},{"key":"ref_59","first-page":"745","article-title":"Basics of artificial neural network","volume":"3","author":"Kohli","year":"2014","journal-title":"Int. J. Comput. Sci. Mob. Comput."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1142\/S0218339094000179","article-title":"A neural network primer","volume":"02","author":"Abdi","year":"1994","journal-title":"J. Biol. Syst."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"993","DOI":"10.1109\/34.58871","article-title":"Neural network ensembles","volume":"12","author":"Hansen","year":"1990","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.neunet.2009.08.007","article-title":"Clustering: A neural network approach","volume":"23","author":"Du","year":"2010","journal-title":"Neural Netw."},{"key":"ref_63","doi-asserted-by":"crossref","unstructured":"Ghahari, S., Queiroz, C., Labi, S., and McNeil, S. (2021). Cluster Forecasting of Corruption Using Nonlinear Autoregressive Models with Exogenous Variables (NARX)\u2014An Artificial Neural Network Analysis. Sustainability, 13.","DOI":"10.20944\/preprints202108.0247.v1"},{"key":"ref_64","first-page":"447","article-title":"Neural Networks for Time Series Processing","volume":"6","author":"Dorffner","year":"1996","journal-title":"Neural Netw. World"},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"352","DOI":"10.2136\/sssaj2002.3520","article-title":"The Neuro-m Method for Fitting Neural Network Parametric Pedotransfer Functions-Minasny","volume":"66","author":"Minasny","year":"2002","journal-title":"Soil Sci. Soc. Am. J."},{"key":"ref_66","unstructured":"Haykin, S. (2008). Neural Networks and Learning Machines, Pearson. [3rd ed.]."},{"key":"ref_67","doi-asserted-by":"crossref","unstructured":"Albawi, S., Mohammed, T.A., and Al-Zawi, S. (2017, January 21\u201323). Understanding of a convolutional neural network. Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey.","DOI":"10.1109\/ICEngTechnol.2017.8308186"},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1109\/37.1868","article-title":"A multilayered neural network controller","volume":"8","author":"Psaltis","year":"1988","journal-title":"IEEE Control Syst. Mag."},{"key":"ref_69","first-page":"1790","article-title":"Deep Convolutional Neural Network for Image Deconvolution","volume":"1","author":"Xu","year":"2014","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1023\/A:1008920117364","article-title":"Real-time Collision-free Path Planning of Robot Manipulators using Neural Network Approaches","volume":"9","author":"Yang","year":"2000","journal-title":"Auton. Robot."},{"key":"ref_71","unstructured":"Cont, A., and Henry, C. (2004). Real-Time Gesture Mapping in pd Environment Using Neural Networks. NIME, Hamamatsu. Available online: https:\/\/www.researchgate.net\/profile\/Arshia_Cont\/publication\/228795048_Real-time_gesture_mapping_in_pd_environment_using_neural_networks\/links\/5406c5140cf2bba34c1e582b.pdf."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"1803","DOI":"10.1109\/TNNLS.2014.2345734","article-title":"Missile Guidance Law Based on Robust Model Predictive Control Using Neural-Network Optimization","volume":"26","author":"Li","year":"2015","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"ref_73","unstructured":"Yu, L., Wang, N., and Meng, X. (2005, January 23\u201326). Real-time forest fire detection with wireless sensor networks. Proceedings of the 2005 International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China."},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"2555","DOI":"10.1007\/s11012-018-0844-0","article-title":"A compliant mechanism with variable stiffness achieved by rotary actuators and shape-memory alloy","volume":"53","author":"Mekaouche","year":"2018","journal-title":"Meccanica"},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"055005","DOI":"10.1088\/1361-665X\/aab56f","article-title":"Concept for a 3D-printed soft rotary actuator driven by a shape-memory alloy","volume":"27","author":"Yuan","year":"2018","journal-title":"Smart Mater. Struct."},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"1863","DOI":"10.1177\/1045389X16682848","article-title":"A review of rotary actuators based on shape memory alloys","volume":"28","author":"Yuan","year":"2017","journal-title":"J. Intell. Mater. Syst. Struct."},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"035010","DOI":"10.1088\/0964-1726\/21\/3\/035010","article-title":"Characterization and design of antagonistic shape memory alloy actuators-IOPscience","volume":"21","author":"Geaorges","year":"2012","journal-title":"Smart Mater. Struct."},{"key":"ref_78","first-page":"1699","article-title":"Designing shape memory alloy linear actuators: A review-Jaronie Mohd Jani, Martin Leary, Aleksandar Subic, 2017","volume":"28","author":"Leary","year":"2016","journal-title":"J. Intell. Mater. Syst. Struct."},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"1007","DOI":"10.1007\/s11012-020-01155-9","article-title":"Finite element analysis of a prestressed mechanism with multi-antagonistic and hysteretic SMA actuation","volume":"55","author":"Boufayed","year":"2020","journal-title":"Meccanica"},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"796","DOI":"10.1016\/j.engappai.2007.07.003","article-title":"Neural network-based micropositioning control of smart shape memory alloy actuators","volume":"21","author":"Asua","year":"2008","journal-title":"Eng. Appl. Artif. Intell."},{"key":"ref_81","unstructured":"(2020, November 16). MATLAB Tutorial, Levenberg-Marquardt (Trainlm): Backpropagation (Deep Learning Toolbox). Available online: https:\/\/fr.mathworks.com\/help\/deeplearning\/ref\/trainlm.html."},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"1707","DOI":"10.1177\/1077546313481000","article-title":"Use of load generated by a shape memory alloy for its position control with a neural network estimator","volume":"20","author":"Senthilkumar","year":"2014","journal-title":"J. Vib. Control"},{"key":"ref_83","doi-asserted-by":"crossref","first-page":"665","DOI":"10.1016\/j.asoc.2018.06.026","article-title":"Application of GRNN and multivariate hybrid approach to predict and optimize WEDM responses for Ni-Ti shape memory alloy","volume":"70","author":"Majumder","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"ref_84","doi-asserted-by":"crossref","first-page":"143","DOI":"10.5802\/crmeca.108","article-title":"Modeling the butterfly behavior of SMA actuators using neural networks","volume":"350","author":"Hmede","year":"2022","journal-title":"Comptes Rendus M\u00e9canique"},{"key":"ref_85","doi-asserted-by":"crossref","first-page":"817","DOI":"10.1088\/0964-1726\/9\/6\/311","article-title":"Evaluation of the characteristics of a shape memory alloy spring actuator","volume":"9","author":"Lee","year":"2000","journal-title":"Smart Mater. Struct."},{"key":"ref_86","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/j.neucom.2013.09.050","article-title":"Innovative NARX recurrent neural network model for ultra-thin shape memory alloy wire","volume":"134","author":"Wang","year":"2014","journal-title":"Neurocomputing"},{"key":"ref_87","doi-asserted-by":"crossref","first-page":"371","DOI":"10.1177\/1045389X03034628","article-title":"A Neural Network Inverse Model for a Shape Memory Alloy Wire Actuator","volume":"14","author":"Song","year":"2003","journal-title":"J. Intell. Mater. Syst. Struct."},{"key":"ref_88","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1088\/0964-1726\/12\/2\/310","article-title":"Precision tracking control of shape memory alloy actuators using neural networks and a sliding-mode based robust controller","volume":"12","author":"Song","year":"2003","journal-title":"Smart Mater. Struct."},{"key":"ref_89","doi-asserted-by":"crossref","first-page":"766","DOI":"10.1016\/j.jprocont.2012.02.007","article-title":"A hysteresis functional link artificial neural network for identification and model predictive control of SMA actuator","volume":"22","author":"Tai","year":"2012","journal-title":"J. Process Control"},{"key":"ref_90","doi-asserted-by":"crossref","first-page":"1314","DOI":"10.1007\/s40815-020-00826-9","article-title":"Takagi\u2013Sugeno Fuzzy Neural Network Hysteresis Modeling for Magnetic Shape Memory Alloy Actuator Based on Modified Bacteria Foraging Algorithm","volume":"22","author":"Zhang","year":"2020","journal-title":"Int. J. Fuzzy Syst."},{"key":"ref_91","first-page":"1","article-title":"Hysteresis Model of Magnetically Controlled Shape Memory Alloy Based on a PID Neural Network","volume":"51","author":"Zhou","year":"2015","journal-title":"IEEE Trans. Magn."},{"key":"ref_92","doi-asserted-by":"crossref","first-page":"1394","DOI":"10.1109\/TIE.2013.2258292","article-title":"Using Neural Network Model Predictive Control for Controlling Shape Memory Alloy-Based Manipulator","volume":"61","author":"Nikdel","year":"2014","journal-title":"IEEE Trans. Ind. Electron."},{"key":"ref_93","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1016\/j.istruc.2020.05.031","article-title":"Computational parameter identification of strongest influence on the shear resistance of reinforced concrete beams by fiber reinforcement polymer","volume":"27","author":"Cao","year":"2020","journal-title":"Structures"},{"key":"ref_94","doi-asserted-by":"crossref","first-page":"085015","DOI":"10.1088\/0964-1726\/21\/8\/085015","article-title":"Indirect intelligent sliding mode control of a shape memory alloy actuated flexible beam using hysteretic recurrent neural networks","volume":"21","author":"Hannen","year":"2012","journal-title":"Smart Mater. Struct."},{"key":"ref_95","doi-asserted-by":"crossref","first-page":"842","DOI":"10.1139\/L10-038","article-title":"Artificial neural network model for deflection analysis of superelastic shape memory alloy reinforced concrete beams","volume":"37","author":"Elbahy","year":"2010","journal-title":"Can. J. Civ. Eng."},{"key":"ref_96","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.msea.2009.02.055","article-title":"Characteristics and compressive properties of porous NiTi alloy synthesized by SHS technique","volume":"515","author":"Wisutmethangoon","year":"2009","journal-title":"Mater. Sci. Eng. A"},{"key":"ref_97","first-page":"58","article-title":"Biomaterials Science: An Introduction to Materials in Medicine","volume":"31","author":"Ratner","year":"2004","journal-title":"San Diego Calif."},{"key":"ref_98","doi-asserted-by":"crossref","first-page":"8382","DOI":"10.1016\/j.matpr.2017.11.532","article-title":"Artificial neural network prediction of wire electrical discharge machining properties on sintered porous NiTi shape memory alloy","volume":"5","author":"Velmurugan","year":"2018","journal-title":"Mater. Today Proc."},{"key":"ref_99","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/j.msea.2005.12.027","article-title":"BP neural network prediction of the mechanical properties of porous NiTi shape memory alloy prepared by thermal explosion reaction","volume":"419","author":"Li","year":"2006","journal-title":"Mater. Sci. Eng. A"},{"key":"ref_100","doi-asserted-by":"crossref","first-page":"085005","DOI":"10.1088\/1361-665X\/ab2519","article-title":"Self-centering and damping devices using SMA dual rings","volume":"28","author":"Choi","year":"2019","journal-title":"Smart Mater. Struct."},{"key":"ref_101","doi-asserted-by":"crossref","first-page":"035009","DOI":"10.1088\/1361-665X\/ab6883","article-title":"Behavior and application of self-centering dampers equipped with buckling-restrained SMA bars","volume":"29","author":"Qiu","year":"2020","journal-title":"Smart Mater. Struct."},{"key":"ref_102","doi-asserted-by":"crossref","first-page":"738","DOI":"10.1007\/s11665-009-9442-6","article-title":"Damping in Civil Engineering Using SMA. The Fatigue Behavior and Stability of CuAlBe and NiTi Alloys","volume":"18","author":"Torra","year":"2009","journal-title":"J. Mater. Eng. Perform."},{"key":"ref_103","doi-asserted-by":"crossref","first-page":"539","DOI":"10.4028\/www.scientific.net\/AMM.82.539","article-title":"SMA in Mitigation of Extreme Loads in Civil Engineering: Damping Actions in Stayed Cables","volume":"82","author":"Torra","year":"2011","journal-title":"Appl. Mech. Mater."},{"key":"ref_104","doi-asserted-by":"crossref","first-page":"075001","DOI":"10.1088\/0964-1726\/25\/7\/075001","article-title":"Large size superelastic SMA bars: Heat treatment strategy, mechanical property and seismic application","volume":"25","author":"Wang","year":"2016","journal-title":"Smart Mater. Struct."},{"key":"ref_105","doi-asserted-by":"crossref","first-page":"238","DOI":"10.1016\/j.engstruct.2009.09.010","article-title":"Evaluation of the performance of a sliding-type base isolation system with a NiTi shape memory alloy device considering temperature effects","volume":"32","author":"Ozbulut","year":"2010","journal-title":"Eng. Struct."},{"key":"ref_106","doi-asserted-by":"crossref","first-page":"109286","DOI":"10.1016\/j.tws.2022.109286","article-title":"A dynamic stiffness improvement method for thin plate structures with laminated\/embedded shape memory alloy actuators","volume":"175","author":"Lu","year":"2022","journal-title":"Thin-Walled Struct."},{"key":"ref_107","doi-asserted-by":"crossref","first-page":"1951","DOI":"10.1177\/1045389X13486715","article-title":"Stress, strain, and resistance behavior of two opposing shape memory alloy actuator wires for resistance-based self-sensing applications","volume":"24","author":"Furst","year":"2013","journal-title":"J. Intell. Mater. Syst. Struct."},{"key":"ref_108","doi-asserted-by":"crossref","first-page":"1885","DOI":"10.1177\/1045389X15596626","article-title":"Control of a shape memory alloy\u2013actuated rotary manipulator using an artificial neural network\u2013based self-sensing technique","volume":"27","author":"Narayanan","year":"2016","journal-title":"J. Intell. Mater. Syst. Struct."},{"key":"ref_109","doi-asserted-by":"crossref","first-page":"220","DOI":"10.1016\/j.autcon.2017.10.006","article-title":"An innovative building envelope (kinetic fa\u00e7ade) with Shape Memory Alloys used as actuators and sensors","volume":"85","author":"Formentini","year":"2018","journal-title":"Autom. Constr."},{"key":"ref_110","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/j.sna.2008.03.024","article-title":"Laser-machined shape memory alloy sensors for position feedback in active catheters","volume":"147","author":"Tung","year":"2008","journal-title":"Sens. Actuators Phys."},{"key":"ref_111","doi-asserted-by":"crossref","first-page":"629","DOI":"10.1016\/j.proeng.2016.05.054","article-title":"Self-sensing SMA Actuator Using Extended Kalman Filter and Artificial Neural Network","volume":"144","author":"Gurung","year":"2016","journal-title":"Procedia Eng."},{"key":"ref_112","doi-asserted-by":"crossref","first-page":"3254","DOI":"10.1109\/JSEN.2022.3141190","article-title":"Deep Neural Network-Based Physics-Inspired Model of Self-Sensing Displacement Estimation for Antagonistic Shape Memory Alloy Actuator","volume":"22","author":"Bhargaw","year":"2022","journal-title":"IEEE Sens. J."},{"key":"ref_113","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1007\/s40194-021-01197-x","article-title":"Modeling ultrasonic welding of polymers using an optimized artificial intelligence model using a gradient-based optimizer","volume":"66","author":"Elsheikh","year":"2022","journal-title":"Weld. World"},{"key":"ref_114","unstructured":"(2021, May 11). Feedforward Neural Networks 1. What Is a Feedforward Neural Network?. Available online: https:\/\/www.fon.hum.uva.nl\/praat\/manual\/Feedforward_neural_networks_1__What_is_a_feedforward_ne.html."},{"key":"ref_115","unstructured":"(2021, May 11). Generalized Regression Neural Networks-MATLAB & Simulink. Available online: https:\/\/www.mathworks.com\/help\/deeplearning\/ug\/generalized-regression-neural-networks.html."},{"key":"ref_116","unstructured":"Wang, D., Quek, C., and Ng, G.S. (2004, January 25\u201329). MS-TSKfnn: Novel Takagi-Sugeno-Kang fuzzy neural network using ART like clustering. Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), Budapest, Hungary."},{"key":"ref_117","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/j.neucom.2015.11.051","article-title":"A self adaptive harmony search based functional link higher order ANN for non-linear data classification","volume":"179","author":"Naik","year":"2015","journal-title":"Neurocomputing"}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/22\/15\/5610\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,17]],"date-time":"2025-01-17T20:33:51Z","timestamp":1737146031000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/22\/15\/5610"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7,27]]},"references-count":117,"journal-issue":{"issue":"15","published-online":{"date-parts":[[2022,8]]}},"alternative-id":["s22155610"],"URL":"https:\/\/doi.org\/10.3390\/s22155610","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2022,7,27]]}}}