{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T14:50:56Z","timestamp":1740149456406,"version":"3.37.3"},"reference-count":38,"publisher":"MDPI AG","issue":"4","license":[{"start":{"date-parts":[[2022,2,17]],"date-time":"2022-02-17T00:00:00Z","timestamp":1645056000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100003052","name":"Ministry of Trade, Industry and Energy","doi-asserted-by":"publisher","award":["20011402"],"id":[{"id":"10.13039\/501100003052","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003621","name":"Ministry of Science ICT and Future Planning","doi-asserted-by":"publisher","award":["NRF-2020M3C1B8A01111568"],"id":[{"id":"10.13039\/501100003621","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"This paper presents an error-tolerant and power-efficient impedance measurement scheme for bioimpedance acquisition. The proposed architecture measures the magnitude and the real part of the target complex impedance, unlike other impedance measurement architectures measuring either the real\/imaginary components or the magnitude and phase. The phase information of the target impedance is obtained by using the ratio between the magnitude and the real components. This can allow for avoiding direct phase measurements, which require fast, power-hungry circuit blocks. A reference resistor is connected in series with the target impedance to compensate for the errors caused by the delay in the sinusoidal signal generator and the amplifier at the front. Moreover, an additional magnitude measurement path is connected to the reference resistor to cancel out the nonlinearity of the proposed system and enhance the settling speed of the low-pass filter by a ratio-based detection. Thanks to this ratio-based detection, the accuracy is enhanced by 30%, and the settling time is improved by 87.7% compared to the conventional single-path detection. The proposed integrated circuit consumes only 513 \u03bcW for a wide frequency range of 10 Hz to 1 MHz, with the maximum magnitude and phase errors of 0.3% and 2.1\u00b0, respectively.<\/jats:p>","DOI":"10.3390\/s22041563","type":"journal-article","created":{"date-parts":[[2022,2,18]],"date-time":"2022-02-18T01:26:41Z","timestamp":1645147601000},"page":"1563","source":"Crossref","is-referenced-by-count":9,"title":["An Impedance Readout IC with Ratio-Based Measurement Techniques for Electrical Impedance Spectroscopy"],"prefix":"10.3390","volume":"22","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-8126-4387","authenticated-orcid":false,"given":"Song-I","family":"Cheon","sequence":"first","affiliation":[{"name":"School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2580-8543","authenticated-orcid":false,"given":"Soon-Jae","family":"Kweon","sequence":"additional","affiliation":[{"name":"Division of Engineering, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates"}]},{"given":"Youngin","family":"Kim","sequence":"additional","affiliation":[{"name":"School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea"}]},{"given":"Jimin","family":"Koo","sequence":"additional","affiliation":[{"name":"School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3589-086X","authenticated-orcid":false,"given":"Sohmyung","family":"Ha","sequence":"additional","affiliation":[{"name":"Division of Engineering, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates"},{"name":"Tandon School of Engineering, New York University, New York, NY 10003, USA"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4580-2771","authenticated-orcid":false,"given":"Minkyu","family":"Je","sequence":"additional","affiliation":[{"name":"School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea"}]}],"member":"1968","published-online":{"date-parts":[[2022,2,17]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"391","DOI":"10.1016\/S0956-5663(03)00204-5","article-title":"Minimally invasive silicon probe for electrical impedance measurements in small animals","volume":"19","author":"Ivorra","year":"2003","journal-title":"Biosens. Bioelectron."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"2620","DOI":"10.1109\/TCSI.2005.857542","article-title":"A tissue impedance measurement chip for myocardial ischemia detection","volume":"52","author":"Yufera","year":"2005","journal-title":"IEEE Trans. Circuits Syst. I Reg. Pap."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"1511","DOI":"10.1109\/TBME.2010.2054090","article-title":"Detection of (Reversible) Myocardial Ischemic Injury by Means of Electrical Bioimpedance","volume":"58","author":"Mellert","year":"2011","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"ref_4","doi-asserted-by":"crossref","unstructured":"Shokrekhodaei, M., and Quinones, S. (2020). Review of Non-Invasive Glucose Sensing Techniques: Optical, Electrical and Breath Acetone. Sensors, 20.","DOI":"10.3390\/s20051251"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"938","DOI":"10.1109\/TBCAS.2019.2927132","article-title":"A 13-Channel 1.53-mW 11.28-mm2 Electrical Impedance Tomography SoC Based on Frequency Division Multiplexing for Lung Physiological Imaging","volume":"13","author":"Liu","year":"2019","journal-title":"IEEE Trans. Biomed. Circuits Syst."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"2829","DOI":"10.1109\/JSSC.2017.2753234","article-title":"A 1.4-m \u03a9-Sensitivity 94-dB Dynamic-Range Electrical Impedance Tomography SoC and 48-Channel Hub-SoC for 3-D Lung Ventilation Monitoring System","volume":"52","author":"Kim","year":"2017","journal-title":"IEEE J. Solid-State Circuits"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"468","DOI":"10.1109\/TBCAS.2012.2226334","article-title":"16-channel CMOS impedance spectroscopy DNA analyzer with dual-slope multiplying ADCs","volume":"6","author":"Soleymani","year":"2012","journal-title":"IEEE Trans. Biomed. Circuits Syst."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"1368","DOI":"10.1109\/JSEN.2009.2039476","article-title":"Development of a DNA Microelectrochemical Biosensor for CEACAM5 Detection","volume":"10","author":"Rebollo","year":"2010","journal-title":"IEEE Sens. J."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"5865","DOI":"10.1021\/ac101110q","article-title":"Electrochemical Immunosensors for Antibodies to Peanut Allergen Ara h2 Using Gold Nanoparticle\u2014Peptide Films","volume":"82","author":"Liu","year":"2010","journal-title":"Anal. Chem."},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Chiriac\u00f2, M.S., Parlangeli, I., Sirsi, F., Poltronieri, P., and Primiceri, E. (2018). Impedance Sensing Platform for Detection of the Food Pathogen Listeria monocytogenes. Electronics, 7.","DOI":"10.20944\/preprints201810.0612.v1"},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Olarte, J., Mart\u00ednez de Ilarduya, J., Zulueta, E., Ferret, R., Fern\u00e1ndez-G\u00e1miz, U., and Lopez-Guede, J.M. (2021). A Battery Management System with EIS Monitoring of Life Expectancy for Lead\u2014Acid Batteries. Electronics, 10.","DOI":"10.3390\/electronics10111228"},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Zhang, T., Jeong, Y., Park, D., and Oh, T. (2021). Performance Evaluation of Multiple Electrodes Based Electrical Impedance Spectroscopic Probe for Screening of Cervical Intraepithelial Neoplasia. Electronics, 10.","DOI":"10.3390\/electronics10161933"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"1321","DOI":"10.1109\/TBME.2007.897331","article-title":"Electrical Impedance Spectroscopy of the Human Prostate","volume":"54","author":"Halter","year":"2007","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"063102","DOI":"10.1118\/1.4803498","article-title":"Transrectal electrical impedance tomography of the prostate: Spatially coregistered pathological findings for prostate cancer detection","volume":"40","author":"Wan","year":"2013","journal-title":"Med. Phys."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"2097","DOI":"10.1109\/TBME.2004.836523","article-title":"Skin cancer identification using multifrequency electrical impedance-a potential screening tool","volume":"51","author":"Aberg","year":"2004","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"1278","DOI":"10.1088\/1361-6579\/aa68ce","article-title":"Detecting colorectal cancer using electrical impedance spectroscopy: Anex vivofeasibility study","volume":"38","author":"Pathiraja","year":"2017","journal-title":"Phys. Meas."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1109\/JSSC.2014.2355835","article-title":"A 4.9 m\u03a9-Sensitivity Mobile Electrical Impedance Tomography IC for Early Breast-Cancer Detection System","volume":"50","author":"Hong","year":"2015","journal-title":"IEEE J. Solid-State Circuits"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/S1350-4533(02)00194-7","article-title":"A review of electrical impedance techniques for breast cancer detection","volume":"25","author":"Zou","year":"2003","journal-title":"Med. Eng. Phys."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"710","DOI":"10.1109\/TBCAS.2019.2923719","article-title":"A Harmonic Error Cancellation Method for Accurate Clock-Based Electrochemical Impedance Spectroscopy","volume":"13","author":"Subhan","year":"2019","journal-title":"IEEE Trans. Biomed. Circuits Syst."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"887","DOI":"10.1109\/JSSC.2020.3032723","article-title":"A 9.6-mW\/Ch 10-MHz Wide-Bandwidth Electrical Impedance Tomography IC With Accurate Phase Compensation for Early Breast Cancer Detection","volume":"56","author":"Lee","year":"2021","journal-title":"IEEE J. Solid-State Circuits"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"10895","DOI":"10.3390\/s140610895","article-title":"The Theory and Fundamentals of Bioimpedance Analysis in Clinical Status Monitoring and Diagnosis of Diseases","volume":"14","author":"Khalil","year":"2014","journal-title":"Sensors"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1109\/JSSC.2010.2074350","article-title":"A 3.9 mW 25-Electrode Reconfigured Sensor for Wearable Cardiac Monitoring System","volume":"46","author":"Yan","year":"2011","journal-title":"IEEE J. Solid-State Circuits"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"1025","DOI":"10.1109\/JSSC.2014.2384037","article-title":"An Impedance and Multi-Wavelength Near-Infrared Spectroscopy IC for Non-Invasive Blood Glucose Estimation","volume":"50","author":"Song","year":"2015","journal-title":"IEEE J. Solid-State Circuits"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"2229","DOI":"10.1109\/JSEN.2013.2251628","article-title":"A CMOS Magnitude\/Phase Measurement Chip for Impedance Spectroscopy","volume":"13","author":"Kassanos","year":"2013","journal-title":"IEEE Sensors J."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"2792","DOI":"10.1109\/JSEN.2014.2315963","article-title":"An Integrated Analog Readout for Multi-Frequency Bioimpedance Measurements","volume":"14","author":"Kassanos","year":"2014","journal-title":"IEEE Sensors J."},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Triantis, I.F., Demosthenous, A., Rahal, M., Hong, H., and Bayford, R. (2011, January 12\u201316). A multi-frequency bioimpedance measurement ASIC for electrical impedance tomography. Proceedings of the 2011 ESSCIRC (ESSCIRC), Helsinki, Finland.","DOI":"10.1109\/ESSCIRC.2011.6044974"},{"key":"ref_27","unstructured":"Analog Devices, Norwood, MA, USA (2021, December 31). Datasheet, AD5933, 1 MSPS, 12-Bit Impedance Converter, Network Analyzer. Available online: http:\/\/www.analog.com\/media\/en\/technical-documentation\/data-sheets\/AD5933.pdf."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"2943","DOI":"10.1109\/JSSC.2012.2217832","article-title":"A Blocker-Tolerant, Noise-Cancelling Receiver Suitable for Wideband Wireless Applications","volume":"47","author":"Murphy","year":"2012","journal-title":"IEEE J. Solid-State Circuits"},{"key":"ref_29","first-page":"1","article-title":"An FPGA-Based Multifrequency EIT System With Reference Signal Measurement","volume":"70","author":"Xu","year":"2021","journal-title":"IEEE Trans. Instr. Meas."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"1626","DOI":"10.1109\/TMTT.2012.2189227","article-title":"A Full 360\u2218 Vector-Sum Phase Shifter with Very Low RMS Phase Error Over a Wide Bandwidth","volume":"60","author":"Asoodeh","year":"2012","journal-title":"IEEE Trans. Microwave Theory Tech."},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Ibrahim, B., Hall, D.A., and Jafari, R. (2017, January 19\u201321). Bio-impedance spectroscopy (BIS) measurement system for wearable devices. Proceedings of the 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), Turin, Italy.","DOI":"10.1109\/BIOCAS.2017.8325138"},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Kweon, S.J., Shin, S., Park, J.H., Suh, J.H., and Yoo, H.J. (2016, January 17\u201319). A CMOS Low-Power Polar Demodulator for Electrical Bioimpedance Spectroscopy Using Adaptive Self-Sampling Schemes. Proceedings of the 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS), Shanghai, China.","DOI":"10.1109\/BioCAS.2016.7833787"},{"key":"ref_33","doi-asserted-by":"crossref","unstructured":"Kweon, S., Park, J., Shin, S., and Yoo, H. (2015, January 2\u20135). A low-power polar demodulator for impedance spectroscopy based on a novel sampling scheme. Proceedings of the 2015 International SoC Design Conference (ISOCC), Gyeongju, Korea.","DOI":"10.1109\/ISOCC.2015.7401722"},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Huang, H., and Palermo, S. (2013, January 4\u20137). A TDC-Based Front-End for Rapid Impedance Spectroscopy. Proceedings of the 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS), Columbus, OH, USA.","DOI":"10.1109\/MWSCAS.2013.6674612"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"997","DOI":"10.1109\/TBCAS.2020.3012057","article-title":"Time Stamp\u2013A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications","volume":"14","author":"Wu","year":"2020","journal-title":"IEEE Trans. Biomed. Circuits Syst."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Shin, S., Jung, Y., Kweon, S.J., Lee, E., Park, J.H., Kim, J., Yoo, H.J., and Je, M. (2020). Design of Reconfigurable Time-to-Digital Converter Based on Cascaded Time Interpolators for Electrical Impedance Spectroscopy. Sensors, 20.","DOI":"10.3390\/s20071889"},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Kweon, S.J., Park, J.H., Shin, S., Yoo, S.S., and Yoo, H.J. (2017, January 6\u20139). A reconfigurable time-to-digital converter based on time stretcher and chain-delay-line for electrical bioimpedance spectroscopy. Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA.","DOI":"10.1109\/MWSCAS.2017.8053104"},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Cheon, S.I., Kweon, S.J., Kim, Y., Koo, J., Ha, S., and Je, M. (2021). A Polar-demodulation-based Impedance-measurement IC Using Frequency-shift Technique with Low Power Consumption and Wide Frequency Range. IEEE Trans. Biomed. Circuits Syst.","DOI":"10.1109\/ISCAS51556.2021.9401374"}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/22\/4\/1563\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,26]],"date-time":"2024-07-26T06:33:15Z","timestamp":1721975595000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/22\/4\/1563"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,2,17]]},"references-count":38,"journal-issue":{"issue":"4","published-online":{"date-parts":[[2022,2]]}},"alternative-id":["s22041563"],"URL":"https:\/\/doi.org\/10.3390\/s22041563","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2022,2,17]]}}}