{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,4]],"date-time":"2024-08-04T22:40:34Z","timestamp":1722811234407},"reference-count":67,"publisher":"MDPI AG","issue":"1","license":[{"start":{"date-parts":[[2021,12,25]],"date-time":"2021-12-25T00:00:00Z","timestamp":1640390400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Until now, clinicians are not able to evaluate the Psychogenic Non-Epileptic Seizures (PNES) from the rest-electroencephalography (EEG) readout. No EEG marker can help differentiate PNES cases from healthy subjects. In this paper, we have investigated the power spectrum density (PSD), in resting-state EEGs, to evaluate the abnormalities in PNES affected brains. Additionally, we have used functional connectivity tools, such as phase lag index (PLI), and graph-derived metrics to better observe the integration of distributed information of regular and synchronized multi-scale communication within and across inter-regional brain areas. We proved the utility of our method after enrolling a cohort study of 20 age- and gender-matched PNES and 19 healthy control (HC) subjects. In this work, three classification models, namely support vector machine (SVM), linear discriminant analysis (LDA), and Multilayer perceptron (MLP), have been employed to model the relationship between the functional connectivity features (rest-HC versus rest-PNES). The best performance for the discrimination of participants was obtained using the MLP classifier, reporting a precision of 85.73%, a recall of 86.57%, an F1-score of 78.98%, and, finally, an accuracy of 91.02%. In conclusion, our results hypothesized two main aspects. The first is an intrinsic organization of functional brain networks that reflects a dysfunctional level of integration across brain regions, which can provide new insights into the pathophysiological mechanisms of PNES. The second is that functional connectivity features and MLP could be a promising method to classify rest-EEG data of PNES form healthy controls subjects.<\/jats:p>","DOI":"10.3390\/s22010129","type":"journal-article","created":{"date-parts":[[2021,12,27]],"date-time":"2021-12-27T06:06:54Z","timestamp":1640585214000},"page":"129","source":"Crossref","is-referenced-by-count":27,"title":["A Machine Learning Approach Involving Functional Connectivity Features to Classify Rest-EEG Psychogenic Non-Epileptic Seizures from Healthy Controls"],"prefix":"10.3390","volume":"22","author":[{"given":"Giuseppe","family":"Varone","sequence":"first","affiliation":[{"name":"Department of Neuroscience and Imaging, University G. d\u2019Annunzio Chieti e Pescara, 66100 Chieti, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2133-0757","authenticated-orcid":false,"given":"Wadii","family":"Boulila","sequence":"additional","affiliation":[{"name":"Robotics and Internet-of-Things Laboratory, Prince Sultan University, Riyadh 12435, Saudi Arabia"},{"name":"RIADI Laboratory, University of Manouba, Manouba 2010, Tunisia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2660-0405","authenticated-orcid":false,"given":"Michele","family":"Lo Giudice","sequence":"additional","affiliation":[{"name":"Department of Science Medical and Surgery, University of Catanzaro, 88100 Catanzaro, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3057-4924","authenticated-orcid":false,"given":"Bilel","family":"Benjdira","sequence":"additional","affiliation":[{"name":"Robotics and Internet-of-Things Laboratory, Prince Sultan University, Riyadh 12435, Saudi Arabia"},{"name":"SE & ICT Lab, LR18ES44, ENICarthage, University of Carthage, Tunis 2035, Tunisia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4962-3500","authenticated-orcid":false,"given":"Nadia","family":"Mammone","sequence":"additional","affiliation":[{"name":"DICEAM Department, University \u201cMediterranea\u201d of Reggio Calabria, 89100 Reggio Calabria, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7890-2897","authenticated-orcid":false,"given":"Cosimo","family":"Ieracitano","sequence":"additional","affiliation":[{"name":"DICEAM Department, University \u201cMediterranea\u201d of Reggio Calabria, 89100 Reggio Calabria, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9651-6487","authenticated-orcid":false,"given":"Kia","family":"Dashtipour","sequence":"additional","affiliation":[{"name":"School of Computing, Edinburgh Napier University, Edinburgh EH11 4BN, UK"}]},{"given":"Sabrina","family":"Neri","sequence":"additional","affiliation":[{"name":"Department of Science Medical and Surgery, University of Catanzaro, 88100 Catanzaro, Italy"}]},{"given":"Sara","family":"Gasparini","sequence":"additional","affiliation":[{"name":"Department of Science Medical and Surgery, University of Catanzaro, 88100 Catanzaro, Italy"},{"name":"Regional Epilepsy Center, Great Metropolitan Hospital \u201cBianchi-Melacrino-Morelli\u201d of Reggio Calabria, 89124 Reggio Calabria, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0734-9136","authenticated-orcid":false,"given":"Francesco Carlo","family":"Morabito","sequence":"additional","affiliation":[{"name":"DICEAM Department, University \u201cMediterranea\u201d of Reggio Calabria, 89100 Reggio Calabria, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8080-082X","authenticated-orcid":false,"given":"Amir","family":"Hussain","sequence":"additional","affiliation":[{"name":"School of Computing, Edinburgh Napier University, Edinburgh EH11 4BN, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4574-2951","authenticated-orcid":false,"given":"Umberto","family":"Aguglia","sequence":"additional","affiliation":[{"name":"Department of Science Medical and Surgery, University of Catanzaro, 88100 Catanzaro, Italy"},{"name":"Regional Epilepsy Center, Great Metropolitan Hospital \u201cBianchi-Melacrino-Morelli\u201d of Reggio Calabria, 89124 Reggio Calabria, Italy"}]}],"member":"1968","published-online":{"date-parts":[[2021,12,25]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"926","DOI":"10.1176\/ajp.139.7.926","article-title":"Are hysterical seizures more than hysteria? a research diagnostic criteria, DSM-III, and psychometric analysis","volume":"139","author":"Stewart","year":"1982","journal-title":"Am. J. Psychiatry"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"664","DOI":"10.1212\/WNL.36.5.664","article-title":"Personality of patients with pseudoseizures","volume":"36","author":"Vanderzant","year":"1986","journal-title":"Neurology"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/j.yebeh.2012.10.011","article-title":"Psychogenic non-epileptic seizures at a tertiary care center in Brazil","volume":"26","author":"Alessi","year":"2013","journal-title":"Epilepsy Behav."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"230","DOI":"10.1017\/S1092852915000929","article-title":"Comorbidity between neurological illness and psychiatric disorders","volume":"21","author":"Hesdorffer","year":"2016","journal-title":"CNS Spectrums"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"308","DOI":"10.1016\/j.yebeh.2010.10.022","article-title":"Newly presenting psychogenic nonepileptic seizures: Incidence, population characteristics, and early outcome from a prospective audit of a first seizure clinic","volume":"20","author":"Duncan","year":"2011","journal-title":"Epilepsy Behav."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"280","DOI":"10.1053\/seiz.2000.0409","article-title":"An estimate of the prevalence of psychogenic non-epileptic seizures","volume":"9","author":"Benbadis","year":"2000","journal-title":"Seizure"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"2005","DOI":"10.1111\/epi.12356","article-title":"Minimum requirements for the diagnosis of psychogenic nonepileptic seizures: A staged approach: A report from the International League Against Epilepsy Nonepileptic Seizures Task Force","volume":"54","author":"LaFrance","year":"2013","journal-title":"Epilepsia"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1007\/s11910-012-0278-3","article-title":"Recent developments in our understanding of the semiology and treatment of psychogenic nonepileptic seizures","volume":"12","author":"Goldstein","year":"2012","journal-title":"Curr. Neurol. Neurosci. Rep."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"837","DOI":"10.1098\/rstb.2005.1623","article-title":"The cortical column: A structure without a function","volume":"360","author":"Horton","year":"2005","journal-title":"Philos. Trans. R. Soc. B Biol. Sci."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"335","DOI":"10.3389\/fnhum.2012.00335","article-title":"Properties of functional brain networks correlate with frequency of psychogenic non-epileptic seizures","volume":"6","author":"Barzegaran","year":"2012","journal-title":"Front. Hum. Neurosci."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1682","DOI":"10.1177\/0300060513496170","article-title":"Altered brain connectivity in patients with psychogenic non-epileptic seizures: A scalp electroencephalography study","volume":"41","author":"Xue","year":"2013","journal-title":"J. Int. Med. Res."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"11635","DOI":"10.1038\/srep11635","article-title":"Altered regional activity and inter-regional functional connectivity in psychogenic non-epileptic seizures","volume":"5","author":"Li","year":"2015","journal-title":"Sci. Rep."},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Varone, G., Gasparini, S., Ferlazzo, E., Ascoli, M., Tripodi, G.G., Zucco, C., Calabrese, B., Cannataro, M., and Aguglia, U. (2020). A Comprehensive Machine-Learning-Based Software Pipeline to Classify EEG Signals: A Case Study on PNES vs. Control Subjects. Sensors, 20.","DOI":"10.3390\/s20041235"},{"key":"ref_14","unstructured":"Zucco, C., Calabrese, B., Sturniolo, M., Gambardella, A., and Cannataro, M. (2021, January 9). A Software Pipeline for Pre-Processing and Mining EEG Signals: Application in Neurology. Proceedings of the SEBD 2021: The 29th Italian Symposium on Advanced Database Systems, Pizzo Calabro, Italy."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"505","DOI":"10.1136\/jnnp.2010.224873","article-title":"Psychogenic seizures and frontal disconnection: EEG synchronisation study","volume":"82","author":"Knyazeva","year":"2011","journal-title":"J. Neurol. Neurosurg. Psychiatry"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"332","DOI":"10.1136\/jnnp-2014-309483","article-title":"Weakened functional connectivity in patients with psychogenic non-epileptic seizures (PNES) converges on basal ganglia","volume":"87","author":"Barzegaran","year":"2016","journal-title":"J. Neurol. Neurosurg. Psychiatry"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.psychres.2016.11.003","article-title":"Aberrant gamma band cortical sources and functional connectivity in adolescents with psychogenic non-epileptic seizures: A preliminary report","volume":"247","author":"Umesh","year":"2017","journal-title":"Psychiatry Res."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1136\/jnnp-2011-300776","article-title":"Functional connectivity of dissociation in patients with psychogenic non-epileptic seizures","volume":"83","author":"Bodde","year":"2012","journal-title":"J. Neurol. Neurosurg. Psychiatry"},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Ding, J.R., An, D., Liao, W., Li, J., Wu, G.R., Xu, Q., Long, Z., Gong, Q., Zhou, D., and Sporns, O. (2013). Altered functional and structural connectivity networks in psychogenic non-epileptic seizures. PLoS ONE, 8.","DOI":"10.1371\/journal.pone.0063850"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.jpsychires.2014.03.010","article-title":"Resting-state networks and dissociation in psychogenic non-epileptic seizures","volume":"54","author":"Jagannathan","year":"2014","journal-title":"J. Psychiatr. Res."},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Van Wijk, B.C., Stam, C.J., and Daffertshofer, A. (2010). Comparing brain networks of different size and connectivity density using graph theory. PLoS ONE, 5.","DOI":"10.1371\/journal.pone.0013701"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/S1059-1311(97)80072-6","article-title":"The diagnosis of psychogenic non-epileptic seizures: A review","volume":"6","author":"Kuyk","year":"1997","journal-title":"Seizure"},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Lanius, U.F. (2014). Dissociation and endogenous opioids: A foundational role. Neurobiology and Treatment of Traumatic Dissociation: Towards an Embodied Self, Springer.","DOI":"10.1891\/9780826106322"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"211","DOI":"10.5698\/1535-7597.18.4.211","article-title":"Psychogenic Nonepileptic Seizures (PNES) as a Network Disorder\u2013Evidence from Neuroimaging of Functional (Psychogenic) Neurological Disorders","volume":"18","author":"Szaflarski","year":"2018","journal-title":"Epilepsy Curr."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1177\/1359104517732118","article-title":"Psychogenic non-epileptic seizures in children and adolescents: Part I\u2013Diagnostic formulations","volume":"23","author":"Kozlowska","year":"2018","journal-title":"Clin. Child Psychol. Psychiatry"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"190","DOI":"10.1136\/jnnp-2016-314080","article-title":"Spectral power changes prior to psychogenic non-epileptic seizures: A pilot study","volume":"88","author":"Meppelink","year":"2017","journal-title":"J. Neurol. Neurosurg. Psychiatry"},{"key":"ref_27","first-page":"175","article-title":"Quantitative EEG findings in patients with psychogenic nonepileptic seizures","volume":"52","author":"Metin","year":"2020","journal-title":"Clin. EEG Neurosci."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"107565","DOI":"10.1016\/j.yebeh.2020.107565","article-title":"Brain functional connectivity in individuals with psychogenic nonepileptic seizures (PNES): An application of graph theory","volume":"114","author":"Amiri","year":"2021","journal-title":"Epilepsy Behav."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"796","DOI":"10.1046\/j.1528-1157.2001.10401.x","article-title":"A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: Report of the ILAE Task Force on Classification and Terminology","volume":"42","author":"Engel","year":"2001","journal-title":"Epilepsia"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/0028-3932(71)90067-4","article-title":"The assessment and analysis of handedness: The Edinburgh inventory","volume":"9","author":"Oldfield","year":"1971","journal-title":"Neuropsychologia"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1149","DOI":"10.3758\/BRM.41.4.1149","article-title":"Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses","volume":"41","author":"Faul","year":"2009","journal-title":"Behav. Res. Methods"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1016\/j.jocs.2017.10.006","article-title":"Sensitivity analysis approach to model epistemic and aleatory imperfection: Application to Land Cover Change prediction model","volume":"23","author":"Boulila","year":"2017","journal-title":"J. Comput. Sci."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.jneumeth.2003.10.009","article-title":"EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis","volume":"134","author":"Delorme","year":"2004","journal-title":"J. Neurosci. Methods"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"104101","DOI":"10.1016\/j.dib.2019.104101","article-title":"The ICLabel dataset of electroencephalographic (EEG) independent component (IC) features","volume":"25","author":"Makeig","year":"2019","journal-title":"Data Brief"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1109\/TAU.1967.1161901","article-title":"The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms","volume":"15","author":"Welch","year":"1967","journal-title":"IEEE Trans. Audio Electroacoust."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1016\/S0165-0173(98)00056-3","article-title":"EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis","volume":"29","author":"Klimesch","year":"1999","journal-title":"Brain Res. Rev."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1089\/brain.2012.0073","article-title":"Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks","volume":"2","year":"2012","journal-title":"Brain Connect."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"1178","DOI":"10.1002\/hbm.20346","article-title":"Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources","volume":"28","author":"Stam","year":"2007","journal-title":"Hum. Brain Mapp."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"964","DOI":"10.3389\/fnins.2019.00964","article-title":"Brain functional connectivity through phase coupling of neuronal oscillations: A perspective from magnetoencephalography","volume":"13","author":"Marzetti","year":"2019","journal-title":"Front. Neurosci."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"19219","DOI":"10.1073\/pnas.0609523103","article-title":"Small worlds inside big brains","volume":"103","author":"Sporns","year":"2006","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"198701","DOI":"10.1103\/PhysRevLett.87.198701","article-title":"Efficient behavior of small-world networks","volume":"87","author":"Latora","year":"2001","journal-title":"Phys. Rev. Lett."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"440","DOI":"10.1038\/30918","article-title":"Collective dynamics of \u2018small-world\u2019networks","volume":"393","author":"Watts","year":"1998","journal-title":"Nature"},{"key":"ref_43","unstructured":"Fornito, A., Zalesky, A., and Bullmore, E. (2016). Fundamentals of Brain Network Analysis, Academic Press."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"5033","DOI":"10.1073\/pnas.91.11.5033","article-title":"A measure for brain complexity: Relating functional segregation and integration in the nervous system","volume":"91","author":"Tononi","year":"1994","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"35","DOI":"10.2307\/3033543","article-title":"A set of measures of centrality based on betweenness","volume":"40","author":"Freeman","year":"1977","journal-title":"Sociometry"},{"key":"ref_46","doi-asserted-by":"crossref","unstructured":"Gogate, M., Dashtipour, K., and Hussain, A. (2020). Visual Speech in Real Noisy Environments (VISION): A Novel Benchmark Dataset and Deep Learning-Based Baseline System. Interspeech, 4521\u20134525.","DOI":"10.21437\/Interspeech.2020-2935"},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1016\/j.inffus.2020.04.001","article-title":"CochleaNet: A robust language-independent audio-visual model for real-time speech enhancement","volume":"63","author":"Gogate","year":"2020","journal-title":"Inf. Fusion"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"1273","DOI":"10.1080\/01621459.1993.10476408","article-title":"Alternatives to the median absolute deviation","volume":"88","author":"Rousseeuw","year":"1993","journal-title":"J. Am. Stat. Assoc."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"988","DOI":"10.1109\/72.788640","article-title":"An overview of statistical learning theory","volume":"10","author":"Vapnik","year":"1999","journal-title":"IEEE Trans. Neural Netw."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"428","DOI":"10.1002\/spe.2785","article-title":"Standalone noise and anomaly detection in wireless sensor networks: A novel time-series and adaptive Bayesian-network-based approach","volume":"50","author":"Safaei","year":"2020","journal-title":"Softw. Pract. Exp."},{"key":"ref_51","unstructured":"Steinwart, I., and Christmann, A. (2008). Support Vector Machines, Springer Science & Business Media."},{"key":"ref_52","doi-asserted-by":"crossref","unstructured":"Izenman, A.J. (2013). Linear discriminant analysis. Modern Multivariate Statistical Techniques, Springer.","DOI":"10.1007\/978-0-387-78189-1_8"},{"key":"ref_53","unstructured":"Yegnanarayana, B. (2009). Artificial Neural Networks, PHI Learning Pvt. Ltd."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1007\/s12145-018-00376-7","article-title":"A top-down approach for semantic segmentation of big remote sensing images","volume":"12","author":"Boulila","year":"2019","journal-title":"Earth Sci. Inform."},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Achard, S., and Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Comput. Biol., 3.","DOI":"10.1371\/journal.pcbi.0030017"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"474","DOI":"10.1016\/j.tics.2005.08.011","article-title":"A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence","volume":"9","author":"Fries","year":"2005","journal-title":"Trends Cogn. Sci."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"R658","DOI":"10.1016\/j.cub.2012.06.061","article-title":"The functional importance of rhythmic activity in the brain","volume":"22","author":"Thut","year":"2012","journal-title":"Curr. Biol."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"1490","DOI":"10.1016\/j.clinph.2004.01.001","article-title":"EEG dynamics in patients with Alzheimer\u2019s disease","volume":"115","author":"Jeong","year":"2004","journal-title":"Clin. Neurophysiol."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"1238","DOI":"10.1136\/jnnp-2011-301944","article-title":"Large scale brain models of epilepsy: Dynamics meets connectomics","volume":"83","author":"Richardson","year":"2012","journal-title":"J. Neurol. Neurosurg. Psychiatry"},{"key":"ref_60","doi-asserted-by":"crossref","unstructured":"Halgren, M., Ulbert, I., Bastuji, H., Fab\u00f3, D., Eross, L., Rey, M., Devinsky, O., Doyle, W.K., Mak-McCully, R., and Halgren, E. (2018). The generation and propagation of the human alpha rhythm. bioRxiv, 202564.","DOI":"10.1101\/202564"},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1038\/nrneurol.2011.24","article-title":"Differentiating between nonepileptic and epileptic seizures","volume":"7","author":"Devinsky","year":"2011","journal-title":"Nat. Rev. Neurol."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1016\/S1525-5050(02)00004-5","article-title":"Evidence of brain abnormality in patients with psychogenic nonepileptic seizures","volume":"3","author":"Reuber","year":"2002","journal-title":"Epilepsy Behav."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"700","DOI":"10.1038\/nrn2201","article-title":"Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging","volume":"8","author":"Fox","year":"2007","journal-title":"Nat. Rev. Neurosci."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.yebeh.2015.02.022","article-title":"Uncinate fasciculus connectivity in patients with psychogenic nonepileptic seizures: A preliminary diffusion tensor tractography study","volume":"45","author":"Hernando","year":"2015","journal-title":"Epilepsy Behav."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"367","DOI":"10.1176\/jnp.13.3.367","article-title":"Nondominant hemisphere lesions and conversion nonepileptic seizures","volume":"13","author":"Devinsky","year":"2001","journal-title":"J. Neuropsychiatry Clin. Neurosci."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"43","DOI":"10.3389\/fninf.2017.00043","article-title":"Automated detection of epileptic biomarkers in resting-state interictal MEG data","volume":"11","author":"Soriano","year":"2017","journal-title":"Front. Neuroinform."},{"key":"ref_67","doi-asserted-by":"crossref","unstructured":"Varone, G., Hussain, Z., Sheikh, Z., Howard, A., Boulila, W., Mahmud, M., Howard, N., Morabito, F.C., and Hussain, A. (2021). Real-Time Artifacts Reduction during TMS-EEG Co-Registration: A Comprehensive Review on Technologies and Procedures. Sensors, 21.","DOI":"10.3390\/s21020637"}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/22\/1\/129\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,23]],"date-time":"2024-07-23T17:24:55Z","timestamp":1721755495000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/22\/1\/129"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12,25]]},"references-count":67,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2022,1]]}},"alternative-id":["s22010129"],"URL":"https:\/\/doi.org\/10.3390\/s22010129","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,12,25]]}}}