{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T12:54:56Z","timestamp":1743080096010,"version":"3.37.3"},"reference-count":163,"publisher":"MDPI AG","issue":"23","license":[{"start":{"date-parts":[[2021,11,27]],"date-time":"2021-11-27T00:00:00Z","timestamp":1637971200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100000181","name":"U.S. Air Force Office of Scientific Research","doi-asserted-by":"crossref","award":["FA9550-19-1-0355"],"id":[{"id":"10.13039\/100000181","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/100000183","name":"Army Research Office","doi-asserted-by":"publisher","award":["No. W911NF-17-S-0002"],"id":[{"id":"10.13039\/100000183","id-type":"DOI","asserted-by":"publisher"}]},{"name":"JSPS KAKENHI","award":["Nos. 16H06361, 20K20349, and 21H04546"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Ever increasing demands of data traffic makes the transition to 6G communications in the 300 GHz band inevitable. Short-channel field-effect transistors (FETs) have demonstrated excellent potential for detection and generation of terahertz (THz) and sub-THz radiation. Such transistors (often referred to as TeraFETs) include short-channel silicon complementary metal oxide (CMOS). The ballistic and quasi-ballistic electron transport in the TeraFET channels determine the TeraFET response at the sub-THz and THz frequencies. TeraFET arrays could form plasmonic crystals with nanoscale unit cells smaller or comparable to the electron mean free path but with the overall dimensions comparable with the radiation wavelength. Such plasmonic crystals have a potential of supporting the transition to 6G communications. The oscillations of the electron density (plasma waves) in the FET channels determine the phase relations between the unit cells of a FET plasmonic crystal. Excited by the impinging radiation and rectified by the device nonlinearities, the plasma waves could detect both the radiation intensity and the phase enabling the line-of-sight terahertz (THz) detection, spectrometry, amplification, and generation for 6G communication.<\/jats:p>","DOI":"10.3390\/s21237907","type":"journal-article","created":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T06:45:02Z","timestamp":1638341102000},"page":"7907","source":"Crossref","is-referenced-by-count":31,"title":["Plasmonic Field-Effect Transistors (TeraFETs) for 6G Communications"],"prefix":"10.3390","volume":"21","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-0976-6232","authenticated-orcid":false,"given":"Michael","family":"Shur","sequence":"first","affiliation":[{"name":"Rensselaer Polytechnic Institute, Troy, NY 12180, USA"},{"name":"Electronics of the Future, Inc., Vienna, VA 22181, USA"}]},{"given":"Gregory","family":"Aizin","sequence":"additional","affiliation":[{"name":"Kingsborough College, The City University of New York, Brooklyn, NY 11235, USA"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0887-0479","authenticated-orcid":false,"given":"Taiichi","family":"Otsuji","sequence":"additional","affiliation":[{"name":"Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan"}]},{"given":"Victor","family":"Ryzhii","sequence":"additional","affiliation":[{"name":"Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan"},{"name":"Institute of Ultra High Frequency Semiconductor Electronics of RAS, 117105 Moscow, Russia"}]}],"member":"1968","published-online":{"date-parts":[[2021,11,27]]},"reference":[{"key":"ref_1","unstructured":"Labovitz, C. (2020, March 20). Early Effects of COVID-19 Lockdowns on Service Provider Networks: The Networks Soldier on!. Available online: https:\/\/www.nokia.com\/blog\/early-effects-covid-19-lockdowns-service-provider-networks-networks-soldier\/."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"043001","DOI":"10.1088\/1361-6463\/50\/4\/043001","article-title":"The 2017 terahertz science and technology roadmap","volume":"50","author":"Dhillon","year":"2017","journal-title":"J. Phys. D Appl. Phys."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"957","DOI":"10.1109\/OJCOMS.2020.3010270","article-title":"6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions","volume":"1","author":"Chowdhury","year":"2020","journal-title":"IEEE Open J. Commun. Soc."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1016\/j.dcan.2020.05.003","article-title":"Service-aware 6G: An intelligent and open network based on the convergence of communication, computing and caching","volume":"6","author":"Zhou","year":"2020","journal-title":"Digit. Commun. Netw."},{"key":"ref_5","unstructured":"O\u2019Dea, S. (2021, November 22). Connection Density of 4G, 5G and 6G Technology, 19 November 2020. Available online: https:\/\/www.statista.com\/statistics\/1183690\/mobile-broadband-connection-density\/."},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Pala, N., and Shur, M. (2019, January 13). THz Photonic and Plasmonic Devices for Sensing, Imaging and Communication Applications, SPIE Defense + Commercial Sensing. Proceedings of the Micro- and Nanotechnology Sensors, Systems and Applications XI, Baltimore, MD, USA.","DOI":"10.1117\/12.2519561"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"3577","DOI":"10.1109\/JSSC.2019.2944855","article-title":"An 80-Gb\/s 300-GHz-Band Single-Chip CMOS Transceiver","volume":"54","author":"Lee","year":"2019","journal-title":"IEEE J. Solid-State Circuits"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"20212002","DOI":"10.1587\/elex.18.20212002","article-title":"Overview of sub-terahertz communication and 300GHz CMOS transceivers","volume":"18","author":"Fujishima","year":"2021","journal-title":"IEICE Electron. Express"},{"key":"ref_9","unstructured":"K\u00fcrner, T., Kallfass, I., Ajito, K., Kasamatsu, A., Britz, D., and Priebe, S. (2021, November 22). \u201cWhat\u2019s Next? Wireless Communication beyond 60 GHz,\u201d Tutorial of IEEE 802.15 IG THz, IEEE 802 Plenary. Available online: https:\/\/mentor.ieee.org\/802.15\/dcn\/12\/15-12-0320-02-0thz-what-s-next-wireless-communication-beyond-60-ghz-tu-torial-ig-thz.pdf."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"43134","DOI":"10.1109\/ACCESS.2021.3054833","article-title":"6G Ecosystem: Current Status and Future Perspective","volume":"26","author":"Bhat","year":"2021","journal-title":"IEEE Access"},{"key":"ref_11","unstructured":"NTT DOCOMO, Inc. (2021, November 22). White Paper 5G Evolution and 6G. Available online: www.nttdocomo.co.jp\/english\/binary\/pdf\/corporate\/technology\/."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1007\/s41666-020-00084-2","article-title":"Pandemic Equation for Describing and Predicting COVID-19 Evolution","volume":"5","author":"Shur","year":"2021","journal-title":"J. Health Inform. Res."},{"key":"ref_13","unstructured":"IEEE (2017). IEEE Standard for High Data Rate Wireless Multi-Media Networks\u2014Amendment 2:100 Gb\/s Wireless Switched Point-to-Point Physical Layer, IEEE. IEEE Standard 802.15.3d-2017."},{"key":"ref_14","unstructured":"Shur, M., and Gaska, R. (2009). Device and Method for Managing Radiation. (7638817), U.S. Patent."},{"key":"ref_15","unstructured":"Shur, M., Ryzhii, V., and Gaska, R. (2009). Method of Radiation Generation and Manipulation. (7,619,263), U.S. Patent."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"045405","DOI":"10.1103\/PhysRevB.95.045405","article-title":"Amplified-reflection plasmon instabilities in grating-gate plasmonic crystals","volume":"95","author":"Petrov","year":"2017","journal-title":"Phys. Rev. B"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"671","DOI":"10.1002\/pssb.201552609","article-title":"Plasmonic properties of asymmetric dual grating gate plasmonic crystals","volume":"253","author":"Karabiyik","year":"2016","journal-title":"Phys. Status Solidi B"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"251910","DOI":"10.1063\/1.2749869","article-title":"Strong terahertz absorption bands in a scaled plasmonic crystal","volume":"90","author":"Teperik","year":"2007","journal-title":"Appl. Phys. Lett."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"232108","DOI":"10.1063\/1.4726273","article-title":"Current-induced terahertz oscillations in plasmonic crystal","volume":"100","author":"Kachorovskii","year":"2012","journal-title":"Appl. Phys. Lett."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"195315","DOI":"10.1103\/PhysRevB.93.195315","article-title":"Current driven \u201cplasmonic\u201d instability in gated periodic ballistic nanostructures","volume":"93","author":"Aizin","year":"2016","journal-title":"Phys. Rev. B"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"812","DOI":"10.1016\/j.sse.2007.03.001","article-title":"Granular semiconductor\/pyroelectric media as a tunable plasmonic crystal","volume":"51","author":"Dmitriev","year":"2007","journal-title":"Solid-State Electron."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"014001","DOI":"10.1117\/1.AP.2.1.014001","article-title":"Terahertz surface plasmonic waves: A review","volume":"2","author":"Zhang","year":"2020","journal-title":"Adv. Photonics"},{"key":"ref_23","unstructured":"Karabiyik, M. (2021, November 22). Terahertz Plasmonic Devices. ProQuest ETD Collection for FIU. AAI10744516. Available online: https:\/\/digitalcommons.fiu.edu\/dissertations\/AAI10744516."},{"key":"ref_24","unstructured":"Aizin, G., Mikalopas, J., and Shur, M.S. (2019). Giant Inverse Faraday Effect in Plasmonic Crystal Ring. arXiv, Available online: http:\/\/arxiv.org\/abs\/2109.14051."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"2479","DOI":"10.1021\/nl500158y","article-title":"Far-Infrared Graphene Plasmonic Crystals for Plasmonic Band Engineering","volume":"14","author":"Yeung","year":"2014","journal-title":"Nano Lett."},{"key":"ref_26","unstructured":"Daniel, M. (2021, November 22). Mittleman, Frontiers in Terahertz Sources and Plasmonics Nature Photonics, Volume 7, September 2013. Available online: www.nature.com\/naturephotonics."},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Sugaya, T., and Kawano, Y. (2021). Frequency-Tunable Terahertz Plasmonic Structure Based on the Solid Immersed Method for Sensing. Sensors, 21.","DOI":"10.3390\/s21041419"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"6504","DOI":"10.1021\/acs.nanolett.6b03086","article-title":"Plasmonic Crystals for Strong Light\u2013Matter Coupling in Carbon Nanotubes","volume":"16","author":"Zakharko","year":"2016","journal-title":"Nano Lett."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"126803","DOI":"10.1103\/PhysRevLett.109.126803","article-title":"Inducing an Incipient Terahertz Finite Plasmonic Crystal in Coupled Two Dimensional Plasmonic Cavities","volume":"109","author":"Dyer","year":"2012","journal-title":"Phys. Rev. Lett."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"925","DOI":"10.1038\/nphoton.2013.252","article-title":"Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals","volume":"7","author":"Dyer","year":"2013","journal-title":"Nat. Photonics"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"235316","DOI":"10.1103\/PhysRevB.86.235316","article-title":"Transmission line theory of collective plasma excitations in periodic two-dimensional electron systems: Finite plasmonic crystals and Tamm states","volume":"86","author":"Aizin","year":"2012","journal-title":"Phys. Rev. B"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"3498","DOI":"10.1038\/s41598-019-39015-6","article-title":"Continuously Frequency-Tuneable Plasmonic Structures for Terahertz Bio-sensing and Spectroscopy","volume":"9","author":"Deng","year":"2019","journal-title":"Sci. Rep."},{"key":"ref_33","doi-asserted-by":"crossref","unstructured":"Schaafsma, M.C., and Rivas, J.G. (2013, January 1). Semiconductor plasmonic crystals: Active control of THz extinction. Proceedings of the 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Mainz, Germany.","DOI":"10.1109\/IRMMW-THz.2013.6665571"},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Liu, X., Ytterdal, T., and Shur, M. (September, January 29). Line of sight THz detector using Si TeraFETs. Proceedings of the 46th IRMMW-THz 2021 Conference, Chengdu, China.","DOI":"10.1109\/IRMMW-THz50926.2021.9567228"},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Liu, X., Ytterdal, T., and Shur, M. (September, January 29). Travelling Wave THz Spectrometer using Si TeraFETs. Proceedings of the 46th IRMMW-THz 2021 Conference, Chengdu, China.","DOI":"10.1109\/IRMMW-THz50926.2021.9567354"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"121105","DOI":"10.1063\/1.5004132","article-title":"Homodyne phase sensitive terahertz spectrometer","volume":"111","author":"Rumyantsev","year":"2017","journal-title":"Appl. Phys. Lett."},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Veksler, D., Muravjov, A., Stillman, W., Pala, N., and Shur, M. (2007, January 28\u201331). Detection and Homodyne Mixing of Terahertz Gas Laser Radiation by Submicron GaAs\/AlGaAs FETs. Proceedings of the 2017 IEEE Sensors Conference, Atlanta, GA, USA.","DOI":"10.1109\/ICSENS.2007.4388431"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"012029","DOI":"10.1088\/1742-6596\/1236\/1\/012029","article-title":"Plasmonic polarization-sensitive detector of terahertz radiation","volume":"1236","author":"Gorbenko","year":"2019","journal-title":"J. Phys. Conf. Ser."},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Ikamas, K., But, D.B., and Lisauskas, A. (2021). Homodyne Spectroscopy with Broadband Terahertz Power Detector Based on 90-nm Silicon CMOS Transistor. Appl. Sci., 11.","DOI":"10.3390\/app11010412"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"1036","DOI":"10.1049\/el:20080737","article-title":"Field effect transistor as heterodyne terahertz detector","volume":"44","author":"Gershgorin","year":"2008","journal-title":"Electron. Lett."},{"key":"ref_41","doi-asserted-by":"crossref","unstructured":"Shur, M.S., Liu, X., Rumyantsev, S., and Kachorovskii, V. (2007, January 28\u201331). Heterodyne Phase Sensitive Terahertz Spectrometer. Proceedings of the 2017 IEEE Sensors Conference, Atlanta, GA, USA.","DOI":"10.1109\/ICSENS.2017.8234083"},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Wang, N., Javadi, H., and Jarrahi, M. (2016, January 22\u201327). Heterodyne terahertz detection with plasmonic photomixers. Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA.","DOI":"10.1109\/MWSYM.2016.7540337"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"977","DOI":"10.1038\/s41550-019-0828-6","article-title":"Room-temperature heterodyne terahertz detection with quantum-level sensitivity","volume":"3","author":"Wang","year":"2019","journal-title":"Nat. Astron."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"082017","DOI":"10.1117\/1.OE.60.8.082017","article-title":"Frequency to digital conversion using Si TeraFETs","volume":"60","author":"Liu","year":"2021","journal-title":"Opt. Eng."},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Liu, X., Ytterdal, T., and Shur, M. (2020, January 24\u201326). TeraFET amplifier detector. Proceedings of the 2020 International Topical Meeting on Microwave Photonics (MWP), Matsue, Japan.","DOI":"10.23919\/MWP48676.2020.9314503"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1103\/PhysRev.33.195","article-title":"Oscillations in Ionized Gases","volume":"33","author":"Tonks","year":"1929","journal-title":"Phys. Rev."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"338","DOI":"10.1103\/PhysRev.85.338","article-title":"A Collective Description of Electron Interactions: II. Collective vs Individual Particle Aspects of the Interactions","volume":"85","author":"Pines","year":"1952","journal-title":"Phys. Rev."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1103\/PhysRev.120.130","article-title":"Surface Plasma Oscillations of a Degenerate Electron Gas","volume":"120","author":"Stern","year":"1960","journal-title":"Phys. Rev."},{"key":"ref_49","first-page":"395","article-title":"Possible crystallization of charge carriers in low-density inversion layers","volume":"35","author":"Chaplik","year":"1972","journal-title":"Sov. Phys. JETP"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"2465","DOI":"10.1103\/PhysRevLett.71.2465","article-title":"Shallow water analogy for a ballistic field effect transistor. New mechanism of plasma wave generation by DC current","volume":"71","author":"Dyakonov","year":"1993","journal-title":"Phys. Rev. Lett."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"1640","DOI":"10.1109\/16.536809","article-title":"Plasma wave electronics: Novel terahertz devices using two dimensional electron fluid","volume":"43","author":"Dyakonov","year":"1996","journal-title":"IEEE Trans. Electron. Devices"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"1012","DOI":"10.1093\/ietele\/e89-c.7.1012","article-title":"Plasma Instability and Terahertz Generation in HEMTs Due to Electron Transit-Time Effect","volume":"E89-C","author":"Ryzhii","year":"2006","journal-title":"IEICE Trans. Electron."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"2331","DOI":"10.1063\/1.1689401","article-title":"Emission of terahertz radiation by plasma waves in 60 nm AlInAs\/InGaAs high electron mobility transistors","volume":"84","author":"Knap","year":"2004","journal-title":"Appl. Phys. Lett."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"064307","DOI":"10.1063\/1.1861140","article-title":"Voltage tunable terahertz emission from a ballistic nanometer InGaAs-InAlAs transistor","volume":"97","author":"Lusakowski","year":"2005","journal-title":"J. Appl. Phys."},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Watanabe, T., Satou, A., Suemitsu, T., Knap, W., Popov, V.V., and Otsuji, T. (2013, January 8\u201313). Plasmonic terahertz monochromatic coherent emission from an asymmetric chirped dual-grating-gate InP-HEMT with photonic vertical cavities. Proceedings of the CLEO, Conference Lasers Electrooptics Digit, San Jose, CA, USA.","DOI":"10.1364\/CLEO_SI.2013.CW3K.7"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"141906","DOI":"10.1063\/1.2191421","article-title":"Room-temperature terahertz emission from nanometer field-effect transistors","volume":"88","author":"Dyakonova","year":"2006","journal-title":"Appl. Phys. Lett."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"022002","DOI":"10.1088\/1674-4926\/34\/2\/022002","article-title":"Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor","volume":"34","author":"Zhou","year":"2013","journal-title":"J. Semicond."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"201108","DOI":"10.1063\/1.2919097","article-title":"Room temperature terahertz emission from grating coupled two-dimensional plasmons","volume":"92","author":"Meziani","year":"2008","journal-title":"Appl. Phys. Lett."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"092117","DOI":"10.1063\/1.3486473","article-title":"High power terahertz emission from a single gate AlGaN\/GaN field effect transistor with periodic ohmic contacts for plasmon coupling","volume":"97","author":"Onishi","year":"2010","journal-title":"Appl. Phys. Lett."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"3791","DOI":"10.1002\/mop.32525","article-title":"Strong and narrowband terahertz radiation from GaAs based pHEMT and terahertz imaging","volume":"62","author":"Kim","year":"2020","journal-title":"Microw. Opt. Technol. Lett."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"212101","DOI":"10.1063\/1.2936077","article-title":"Current driven resonant plasma wave detection of terahertz radiation: Toward the Dyakonov\u2013Shur instability","volume":"92","author":"Teppe","year":"2008","journal-title":"Appl. Phys. Lett."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"5392","DOI":"10.1038\/s41467-018-07848-w","article-title":"Resonant terahertz detection using graphene plasmons","volume":"9","author":"Bandurin","year":"2018","journal-title":"Nat. Commun."},{"key":"ref_63","doi-asserted-by":"crossref","unstructured":"Shur, M. (2018, January 8). Plasmonic heterodimensional resonance for subwavelength imaging. Proceedings of the SPIE 10639, Micro- and Nanotechnology Sensors, Systems, and Applications X, Orlando, FL, USA.","DOI":"10.1117\/12.2301349"},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"5598","DOI":"10.1021\/nl302656d","article-title":"Electrical Control of Optical Plasmon Resonance with Graphene","volume":"12","author":"Kim","year":"2012","journal-title":"Nano Lett."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"1573","DOI":"10.1021\/nl404824w","article-title":"Graphene Plasmon Enhanced Vibrational Sensing of Surface-Adsorbed Layers","volume":"14","author":"Li","year":"2014","journal-title":"Nano Lett."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"3433","DOI":"10.1063\/1.1473685","article-title":"Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor","volume":"80","author":"Knap","year":"2002","journal-title":"Appl. Phys. Lett."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"1627","DOI":"10.1063\/1.1497433","article-title":"Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors","volume":"81","author":"Peralta","year":"2002","journal-title":"Appl. Phys. Lett."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"9346","DOI":"10.1063\/1.1468257","article-title":"Nonresonant detection of terahertz radiation in field effect transistors","volume":"91","author":"Knap","year":"2002","journal-title":"J. Appl. Phys."},{"key":"ref_69","first-page":"1063929","article-title":"Plasmonic detectors and sources for THz communication and sensing","volume":"10639","author":"Shur","year":"2018","journal-title":"Micro- Nanotechnol. Sens. Syst. Appl. X"},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1142\/S0129156411006374","article-title":"Silicon FIN FETs as detectors of terahertz and sub-terahertz radiation","volume":"20","author":"Stillman","year":"2011","journal-title":"Int. J. High Speed Electron. Syst."},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1007\/s10762-013-0047-7","article-title":"Exploration of Terahertz Imaging with Silicon MOSFETs","volume":"35","author":"Lisauskas","year":"2014","journal-title":"J. Infrared Millim. Terahertz Waves"},{"key":"ref_72","doi-asserted-by":"crossref","unstructured":"Kenneth, K.O., Chang, M.-C.F., Shur, M., and Knap, W. (2009, January 7\u201312). Sub-millimeter wave signal generation and detection in CMOS. Proceedings of the 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA.","DOI":"10.1109\/MWSYM.2009.5165663"},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"1968","DOI":"10.1109\/JSSC.2009.2021911","article-title":"A 0.65 THz Focal-Plane Array in a Quarter-Micron CMOS Process Technology","volume":"44","author":"Ojefors","year":"2009","journal-title":"IEEE J. Solid-State Circuits"},{"key":"ref_74","doi-asserted-by":"crossref","unstructured":"Stillman, W., Guarin, F., Kachorovskii, V.Y., Pala, N., Rumyantsev, S., Shur, M., and Veksler, D. (2007, January 28\u201331). Nanometer scale complementary silicon MOSFETs as detectors of terahertz and sub-terahertz radiation. Proceedings of the 2017 IEEE Sensors Conference, Atlanta, GA, USA.","DOI":"10.1109\/ICSENS.2007.4388556"},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"1325","DOI":"10.1049\/el:20089418","article-title":"Sub-terahertz testing of silicon MOSFET","volume":"44","author":"Stillman","year":"2008","journal-title":"Electron. Lett."},{"key":"ref_76","doi-asserted-by":"crossref","unstructured":"But, D., Diakonova, N., Drexler, C., Drachenko, O., Romanov, K., Golenkov, O.G., Sizov, F.F., Gutin, A., Shur, M., and Ganichev, S.D. (2013, January 24). The dynamic range of THz broadband FET detectors. Proceedings of the SPIE 8846, Terahertz Emitters, Receivers, and Applications IV, San Francisco, CA, USA.","DOI":"10.1117\/12.2024226"},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"153504","DOI":"10.1063\/1.3573825","article-title":"High-responsivity terahertz detection by on-chip InGaAs\/GaAs field-effect-transistor array","volume":"98","author":"Popov","year":"2011","journal-title":"Appl. Phys. Lett."},{"key":"ref_78","doi-asserted-by":"crossref","first-page":"163508","DOI":"10.1063\/1.4873540","article-title":"Detection of terahertz radiation by tightly concatenated InGaAs field-effect transistors integrated on a single chip","volume":"104","author":"Popov","year":"2014","journal-title":"Appl. Phys. Lett."},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"4858","DOI":"10.1109\/TED.2020.3027530","article-title":"p-Diamond, Si, GaN, and InGaAs TeraFETs","volume":"67","author":"Zhang","year":"2020","journal-title":"IEEE Trans. Electron. Devices"},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"232","DOI":"10.1134\/S1063782607020224","article-title":"Electron transport and detection of terahertz radiation in a GaN\/AlGaN submicrometer field-effect transistor","volume":"41","author":"Gavrilenko","year":"2007","journal-title":"Semiconductors"},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"1342","DOI":"10.1049\/el:20062452","article-title":"Terahertz detection by GaN\/AlGaN transistors","volume":"42","author":"Tombet","year":"2006","journal-title":"Electron. Lett."},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"430","DOI":"10.1109\/TTHZ.2019.2917782","article-title":"A High-Sensitivity AlGaN\/GaN HEMT Terahertz Detector with Integrated Broadband Bow-Tie Antenna","volume":"9","author":"Bauer","year":"2019","journal-title":"IEEE Trans. Terahertz Sci. Technol."},{"key":"ref_83","doi-asserted-by":"crossref","first-page":"193507","DOI":"10.1063\/1.2128057","article-title":"Single-quantum-well grating-gated terahertz plasmon detectors","volume":"87","author":"Shaner","year":"2005","journal-title":"Appl. Phys. Lett."},{"key":"ref_84","doi-asserted-by":"crossref","first-page":"193507","DOI":"10.1063\/1.3513339","article-title":"A terahertz plasmon cavity detector","volume":"97","author":"Dyer","year":"2010","journal-title":"Appl. Phys. Lett."},{"key":"ref_85","doi-asserted-by":"crossref","unstructured":"Mitin, V., Ryzhii, V., and Otsuji, T. (2020). Graphene-Based Terahertz Electronics and Plasmonics: Detector and Emitter Concepts, CRC Press.","DOI":"10.1201\/9780429328398"},{"key":"ref_86","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1021\/ph400147y","article-title":"Graphene Plasmonics: Challenges and Opportunities","volume":"1","year":"2014","journal-title":"ACS Photonics"},{"key":"ref_87","doi-asserted-by":"crossref","first-page":"749","DOI":"10.1038\/nphoton.2012.262","article-title":"Graphene plasmonics","volume":"6","author":"Grigorenko","year":"2012","journal-title":"Nat. Photonics"},{"key":"ref_88","doi-asserted-by":"crossref","first-page":"3370","DOI":"10.1021\/nl201771h","article-title":"Graphene Plasmonics: A Platform for Strong Light\u2013Matter Interactions","volume":"11","author":"Koppens","year":"2011","journal-title":"Nano Lett."},{"key":"ref_89","doi-asserted-by":"crossref","first-page":"630","DOI":"10.1038\/nnano.2011.146","article-title":"Graphene plasmonics for tunable terahertz metamaterials","volume":"6","author":"Ju","year":"2011","journal-title":"Nat. Nanotechnol."},{"key":"ref_90","first-page":"031004","article-title":"Room-Temperature Amplification of Terahertz Radiation by Grating-Gate Graphene Structures","volume":"10","author":"Knap","year":"2020","journal-title":"Phys. Rev. X"},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"220401","DOI":"10.1063\/5.0056296","article-title":"Plasmonics: Enabling functionalities with novel materials","volume":"129","author":"Losurdo","year":"2021","journal-title":"J. Appl. Phys."},{"key":"ref_92","doi-asserted-by":"crossref","first-page":"245404","DOI":"10.1103\/PhysRevB.101.245404","article-title":"Plasmonic instabilities in two-dimensional electron channels of variable width","volume":"101","author":"Aizin","year":"2020","journal-title":"Phys. Rev. B"},{"key":"ref_93","doi-asserted-by":"crossref","unstructured":"Shur, M., Mikalopas, J., and Aizin, G.R. (2020, January 26\u201329). Compact Design Models of Cryo and Room Temperature Si MOS, GaN, InGaAs, and p-diamond HEMT TeraFETs. Proceedings of the 2020 IEEE Radio and Wireless Symposium (RWS), San Antonio, TX, USA.","DOI":"10.1109\/RWS45077.2020.9050137"},{"key":"ref_94","doi-asserted-by":"crossref","first-page":"977","DOI":"10.1073\/pnas.1422649112","article-title":"Plasmonic photonic crystals realized through DNA-programmable assembly","volume":"112","author":"Park","year":"2015","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_95","doi-asserted-by":"crossref","first-page":"5350","DOI":"10.1109\/TED.2018.2875345","article-title":"Compact Terahertz SPICE Model: Effects of Drude Inductance and Leakage","volume":"65","author":"Liu","year":"2018","journal-title":"IEEE Trans. Electron. Devices"},{"key":"ref_96","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1109\/TSM.2006.884603","article-title":"Metrology Challenges for 45-nm Strained-Si Device Technology","volume":"19","author":"Vartanian","year":"2006","journal-title":"IEEE Trans. Semicond. Manuf."},{"key":"ref_97","doi-asserted-by":"crossref","first-page":"292","DOI":"10.1063\/1.1631754","article-title":"Quantum mechanical analysis of channel access geometry and series resistance in nanoscale transistors","volume":"95","author":"Venugopal","year":"2004","journal-title":"J. Appl. Phys."},{"key":"ref_98","doi-asserted-by":"crossref","first-page":"242105","DOI":"10.1063\/1.2945286","article-title":"Oblique modes effect on terahertz plasma wave resonant detection in InGaAs\/InAlAs multichannel transistors","volume":"92","author":"Shchepetov","year":"2008","journal-title":"Appl. Phys. Lett."},{"key":"ref_99","doi-asserted-by":"crossref","unstructured":"Rupper, G., Rudin, S., and Crowne, F.J. (2011, January 7\u20139). Effects of oblique wave propagation on the nonlinear plasma resonance in the two-dimensional channel of the Dyakonov-Shur detector. Proceedings of the 2011 International Semiconductor Device Research Symposium (ISDRS), College Park, MD, USA.","DOI":"10.1109\/ISDRS.2011.6135189"},{"key":"ref_100","doi-asserted-by":"crossref","unstructured":"Hosotani, T., Watanabe, T., Satou, A., and Otsuji, T. (2019, January 1\u20136). Terahertz Emission from an Asymmetric Dual-Grating-Gate InGaAs High-Electron-Mobility Transistor Stimulated by Plasmonic Boom. Proceedings of the 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France.","DOI":"10.1109\/IRMMW-THz.2019.8874584"},{"key":"ref_101","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1109\/MMM.2014.2355712","article-title":"Terahertz Plasmonics: Good Results and Great Expectations","volume":"15","author":"Otsuji","year":"2014","journal-title":"IEEE Microw. Mag."},{"key":"ref_102","doi-asserted-by":"crossref","unstructured":"Clochiatti, S., Mutlu, E., Preuss, C., Kress, R., Prost, W., and Weimann, N. (2021). Broadband THz Detection Using InP Triple-Barrier Resonant Tunneling Diode With Integrated Antenna. 2021 Fourth International Workshop on Mobile Terahertz Systems (IWMTS), IEEE.","DOI":"10.1109\/IWMTS51331.2021.9486794"},{"key":"ref_103","doi-asserted-by":"crossref","unstructured":"Takida, Y., Suzuki, S., Asada, M., and Minamide, H. (2020, January 8\u201313). Sensitive Continuous-Wave Terahertz Detection by Resonant-Tunneling-Diode Oscillators. Proceedings of the 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Buffalo, NY, USA.","DOI":"10.1109\/IRMMW-THz46771.2020.9370758"},{"key":"ref_104","first-page":"4","article-title":"TeraFETs for Terahertz Communications","volume":"33","author":"Shur","year":"2019","journal-title":"Photonics Newsl."},{"key":"ref_105","doi-asserted-by":"crossref","unstructured":"Ikamas, K., But, D.B., Cesiul, A., Ko\u0142aci\u0144ski, C., Lisauskas, T., Knap, W., and Lisauskas, A. (2021). All-Electronic Emitter-Detector Pairs for 250 GHz in Silicon. Sensors, 21.","DOI":"10.3390\/s21175795"},{"key":"ref_106","first-page":"2278","article-title":"A 300 GHz CMOS Transmitter Front-End for Ultrahigh-Speed Wireless Communications","volume":"7","author":"Vu","year":"2017","journal-title":"Int. J. Electr. Comput. Eng."},{"key":"ref_107","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1109\/TMTT.2009.2037872","article-title":"Enhanced Plasma Wave Detection of Terahertz Radiation Using Multiple High Electron-Mobility Transistors Connected in Series","volume":"58","author":"Elkhatib","year":"2010","journal-title":"IEEE Trans. Microw. Theory Tech."},{"key":"ref_108","unstructured":"Shur, M.S. (1996). Introduction to Electronic Devices, John Wiley and Sons."},{"key":"ref_109","doi-asserted-by":"crossref","first-page":"484","DOI":"10.1109\/55.244738","article-title":"Observation of velocity overshoot in silicon inversion layers","volume":"14","author":"Assaderaghi","year":"1993","journal-title":"IEEE Electron. Device Lett."},{"key":"ref_110","doi-asserted-by":"crossref","unstructured":"Shur, M., Rupper, G., and Rudin, S. (2017, January 18). Ultimate limits for highest modulation frequency and shortest response time of field effect transistor. Proceedings of the SPIE 10194, Micro- and Nanotechnology Sensors, Systems and Applications IX, Orlando, FL, USA.","DOI":"10.1117\/12.2261105"},{"key":"ref_111","unstructured":"Lu, J.-Q., Shur, M., Hesler, J., Sun, L., and Weikle, R. (1998, January 6\u20139). A Resonant Terahertz Detector Utilizing a High Electron Mobility Transistor. Proceedings of the IEDM Technical Digest, San Francisco, CA, USA."},{"key":"ref_112","doi-asserted-by":"crossref","first-page":"064025","DOI":"10.1103\/PhysRevApplied.10.064025","article-title":"Plasmonic HEMT Terahertz Transmitter based on the Dyakonov-Shur Instability: Performance Analysis and Impact of Nonideal Boundaries","volume":"10","author":"Nafari","year":"2018","journal-title":"Phys. Rev. Appl."},{"key":"ref_113","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1109\/TED.2018.2854869","article-title":"Plasmons in Ballistic Nanostructures with Stubs: Transmission Line Approach","volume":"66","author":"Aizin","year":"2018","journal-title":"IEEE Trans. Electron. Devices"},{"key":"ref_114","doi-asserted-by":"crossref","first-page":"042105","DOI":"10.1063\/1.3292019","article-title":"Temperature dependence of plasmonic terahertz absorption in grating-gate GaN HEMT structures","volume":"96","author":"Muravjov","year":"2010","journal-title":"Appl. Phys. Lett."},{"key":"ref_115","doi-asserted-by":"crossref","unstructured":"Otsuji, A., Dubinov, V., Ya Aleshkin, D., Svintsov, M., Ryzhii, S., Boubanga Tombet, D., Yadav, A., Satou, V., Mitin, M.S., and Shur, V. (2016, January 29). Graphene-based van der Waals heterostructures for emission and detection of terahertz radiation. Proceedings of the SPIE 9856, Terahertz Physics, Devices, and Systems X: Advanced Applications in Industry and Defense, Baltimore, MD, USA.","DOI":"10.1117\/12.2225257"},{"key":"ref_116","doi-asserted-by":"crossref","unstructured":"Rodr\u00edguez-V\u00e1zquez, P., Grzyb, J., Sarmah, N., Heinemann, B., and Pfeiffer, U.R. (2018, January 15\u201318). A 65 Gbps QPSK one meter wireless link operating at a 225\u2013255 GHz tunable carrier in a SiGe HBT technology. Proceedings of the IEEE Radio Wireless Symposium, Anaheim, CA, USA.","DOI":"10.1109\/RWS.2018.8304970"},{"key":"ref_117","doi-asserted-by":"crossref","first-page":"329","DOI":"10.1109\/TTHZ.2018.2823202","article-title":"Fully integrated single-chip 305\u2013375-GHz transceiver with on-chip antennas in SiGe BiCMOS","volume":"8","author":"Knapp","year":"2018","journal-title":"IEEE Trans. Terahertz Sci. Technol."},{"key":"ref_118","doi-asserted-by":"crossref","first-page":"151614","DOI":"10.1063\/1.5083838","article-title":"Terahertz emission from biased AlGaN\/GaN high-electron-mobility transistors","volume":"125","author":"Lisauskas","year":"2019","journal-title":"J. Appl. Phys."},{"key":"ref_119","doi-asserted-by":"crossref","first-page":"564","DOI":"10.1109\/JSSC.2013.2297415","article-title":"A CMOS 210-GHz Fundamental Transceiver with OOK Modulation","volume":"49","author":"Wang","year":"2014","journal-title":"IEEE J. Solid-State Circuits"},{"key":"ref_120","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1109\/TTHZ.2013.2293119","article-title":"0.34-THz Wireless Link Based on High-Order Modulation for Future Wireless Local Area Network Applications","volume":"4","author":"Wang","year":"2014","journal-title":"IEEE Trans. Terahertz Sci. Technol."},{"key":"ref_121","doi-asserted-by":"crossref","unstructured":"Sengupta, K., and Hajimiri, A. (2011, January 20\u201324). Distributed active radiation for THz signal generation. Proceedings of the 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA.","DOI":"10.1109\/ISSCC.2011.5746322"},{"key":"ref_122","doi-asserted-by":"crossref","unstructured":"Sengupta, K., and Hajimiri, A. (2012, January 19\u201323). A 0.28 THz 4 x 4 power generation and beam-steering array. Proceedings of the 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA.","DOI":"10.1109\/ISSCC.2012.6176999"},{"key":"ref_123","unstructured":"(2021, October 19). Available online: https:\/\/vadiodes.com\/en\/frequency-multipliers."},{"key":"ref_124","doi-asserted-by":"crossref","first-page":"114502","DOI":"10.1063\/1.4868705","article-title":"Terahertz oscillations in an In0.53Ga0.47As submicron planar Gunn diode","volume":"115","author":"Khalid","year":"2014","journal-title":"J. Appl. Phys."},{"key":"ref_125","unstructured":"(2021, October 19). Available online: https:\/\/terasense.com\/products\/."},{"key":"ref_126","doi-asserted-by":"crossref","unstructured":"Asada, M., and Suzuki, S. (2021). Terahertz Emitter Using Resonant-Tunneling Diode and Applications. Sensors, 21.","DOI":"10.3390\/s21041384"},{"key":"ref_127","doi-asserted-by":"crossref","first-page":"741","DOI":"10.1515\/nanoph-2017-0106","article-title":"Terahertz light-emitting graphene-channel transistor toward single-mode lasing","volume":"7","author":"Yadav","year":"2018","journal-title":"Nanophotonics"},{"key":"ref_128","doi-asserted-by":"crossref","first-page":"726806","DOI":"10.3389\/fphy.2021.726806","article-title":"Paving the Way for Tunable Graphene Plasmonic THz Amplifiers","volume":"9","author":"Satou","year":"2021","journal-title":"Front. Phys."},{"key":"ref_129","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.nima.2007.01.023","article-title":"Status of the Novosibirsk high-power terahertz FEL","volume":"575","author":"Gavrilov","year":"2007","journal-title":"Nucl. Instrum. Methods Phys. Res."},{"key":"ref_130","doi-asserted-by":"crossref","first-page":"133501","DOI":"10.1063\/1.4932099","article-title":"Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam","volume":"107","author":"He","year":"2015","journal-title":"Appl. Phys. Lett."},{"key":"ref_131","unstructured":"(2021, October 19). Development of MW & THz Klinotrons. Available online: http:\/\/ire.kharkov.ua\/Mysite\/HTML\/p0019.htm."},{"key":"ref_132","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10762-019-00631-y","article-title":"State-of-the-Art of High-Power Gyro-Devices and Free Electron Masers","volume":"41","author":"Thumm","year":"2020","journal-title":"J. Infrared Millim. Terahertz Waves"},{"key":"ref_133","doi-asserted-by":"crossref","unstructured":"de Maagt, P., Bolivar, P.H., and Mann, C. (2005). Terahertz Science, Engineering and Systems\u2014From Space to Earth Applications. Encycl. RF Microw. Eng.","DOI":"10.1002\/0471654507.eme518"},{"key":"ref_134","doi-asserted-by":"crossref","unstructured":"Siegel, P.H. (2010, January 27). THz for space: The golden age. Proceedings of the 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA.","DOI":"10.1109\/MWSYM.2010.5515761"},{"key":"ref_135","doi-asserted-by":"crossref","first-page":"1398","DOI":"10.1049\/el.2013.2407","article-title":"Terahertz FSS for space borne passive remote sensing application","volume":"49","author":"Xia","year":"2013","journal-title":"Electron. Lett."},{"key":"ref_136","doi-asserted-by":"crossref","first-page":"1679","DOI":"10.1109\/5.175249","article-title":"Submillimeter-wavelength heterodyne spectroscopy and remote sensing of the upper atmosphere","volume":"80","author":"Waters","year":"1992","journal-title":"Proc. IEEE"},{"key":"ref_137","doi-asserted-by":"crossref","first-page":"12752","DOI":"10.1109\/JSEN.2020.3022809","article-title":"Terahertz Plasmonic Technology","volume":"21","author":"Shur","year":"2021","journal-title":"IEEE Sens. J."},{"key":"ref_138","unstructured":"Pavlidis, D. (2021). Chapter 8: THz Plasma Field Effect Transistor Detectors, in Fundamentals of Terahertz Devices and Applications, Wiley."},{"key":"ref_139","first-page":"1048808","article-title":"Terahertz gas sensing based on time-domain-spectroscopy using a hollow-optical fiber gas cell","volume":"10488","author":"Matsuura","year":"2018","journal-title":"Opt. Fibers Sens. Med. Diagn. Treat. Appl. XVIII"},{"key":"ref_140","doi-asserted-by":"crossref","unstructured":"Kiwa, T., Kamiya, T., Morimoto, T., Fujiwara, K., Maeno, Y., Akiwa, Y., Iida, M., Kuroda, T., Sakai, K., and Nose, H. (2019). Imaging of Chemical Reactions Using a Terahertz Chemical Microscope. Photonics, 6.","DOI":"10.3390\/photonics6010010"},{"key":"ref_141","doi-asserted-by":"crossref","first-page":"410","DOI":"10.1515\/revac-2017-0021","article-title":"Toxic chemical compound detection by terahertz spectroscopy: A review","volume":"37","author":"Yang","year":"2018","journal-title":"Rev. Anal. Chem."},{"key":"ref_142","unstructured":"Roger, A., and David, A.W. (2005). THz Diffuse Reflectance Spectra of Selected Explosives and Related Compounds, Passive Millimeter-Wave Imaging Technology VIII, International Society for Optics and Photonics."},{"key":"ref_143","doi-asserted-by":"crossref","first-page":"S266","DOI":"10.1088\/0268-1242\/20\/7\/018","article-title":"THz imaging and sensing for security applications- explosives, weapons, and drugs","volume":"20","author":"Federici","year":"2005","journal-title":"Semicond. Sci. Technol."},{"key":"ref_144","unstructured":"Zhong, H., Karpowicz, N., Xu, J., Deng, Y., Ussery, W., Shur, M., and Zhang, X.-C. (2004, January 27). Inspection of space shuttle insulation foam defects using a 0.2 THz Gunn diode oscillator, Infrared and Millimeter Waves. Proceedings of the 12th International Conference on Terahertz Electronics, Karlsruhe, Germany."},{"key":"ref_145","first-page":"59","article-title":"Terahertz Non-destructive Testing Technology for Industrial Applications","volume":"33","author":"Lee","year":"2018","journal-title":"Electron. Telecommun. Trends"},{"key":"ref_146","doi-asserted-by":"crossref","unstructured":"Ruengwaree, A., Ghose, A., Weide, J., and Kampa, G. (2006, January 13\u201315). Ultra-fast pulse transmitter for UWB microwave radar. Proceedings of the European Radar Conference, Manchester, UK.","DOI":"10.1109\/EURAD.2006.280348"},{"key":"ref_147","doi-asserted-by":"crossref","unstructured":"Nguyen, C., and Han, J. (2014). Time-Domain Ultra-Wideband Radar, Sensor and Components: Theory, Analysis and Design, Springer Science & Business Media.","DOI":"10.1007\/978-1-4614-9578-9"},{"key":"ref_148","doi-asserted-by":"crossref","first-page":"345","DOI":"10.21037\/qims.2017.06.02","article-title":"Recent advances in terahertz technology for biomedical applications","volume":"7","author":"Sun","year":"2017","journal-title":"Quant. Imaging Med. Surg."},{"key":"ref_149","doi-asserted-by":"crossref","unstructured":"Heilweil, E., and Plusquellic, D. (2007). Terahertz Spectroscopy of Biomolecules, CRC Press.","DOI":"10.1201\/9781420007701.sec3"},{"key":"ref_150","first-page":"1053108","article-title":"Subterahertz and terahertz sensing of biological objects and chemical agents","volume":"10531","author":"Shur","year":"2018","journal-title":"Terahertz RF Millim. Submillim.-Wave Technol. Appl. XI"},{"key":"ref_151","doi-asserted-by":"crossref","first-page":"2438","DOI":"10.1109\/TMTT.2004.835916","article-title":"Terahertz Technology in Biology and Medicine","volume":"52","author":"Siegel","year":"2004","journal-title":"IEEE Trans. Microw. Theory Tech."},{"key":"ref_152","doi-asserted-by":"crossref","unstructured":"Hintzsche, H., Jastrow, C., Kleine-Ostmann, T., K\u00e4rst, U., Schrader, T., and Stopper, H. (2012). Terahertz Electromagnetic Fields (0.106 THz) Do Not Induce Manifest Genomic Damage In Vitro. PLoS ONE, 7.","DOI":"10.1371\/journal.pone.0046397"},{"key":"ref_153","first-page":"33","article-title":"The potential of terahertz imaging for cancer diagnosis: A review of investigations to date","volume":"2","author":"Yu","year":"2012","journal-title":"Quant. Imaging Med. Surg."},{"key":"ref_154","unstructured":"Farooq, M., and Shur, M. (2019). Inspection System and Method for Detecting Defects at a Materials Interface. (10,215,695 Bl), U.S. Patent."},{"key":"ref_155","unstructured":"Rupper, G., Suarez, J., Rudin, S., Reed, M., and Shur, M. (2021). Terahertz Plasmonics for Testing Very Large-Scale Integrated Circuits under Bias. (10,890,618 B2), U.S. Patent."},{"key":"ref_156","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.sse.2019.03.007","article-title":"Sub-terahertz testing of millimeter wave Monolithic and very large scale integrated circuits","volume":"155","author":"Shur","year":"2019","journal-title":"Solid-State Electron."},{"key":"ref_157","doi-asserted-by":"crossref","unstructured":"Akter, N., Karabiyik, M., Shur, M., Suarez, J., and Pala, N. (2020, January 18\u201320). AI Powered THz VLSI Testing Technology. Proceedings of the 2020 IEEE 29th North Atlantic Test Workshop (NATW), Albany, NY, USA.","DOI":"10.1109\/NATW49237.2020.9153077"},{"key":"ref_158","doi-asserted-by":"crossref","first-page":"64499","DOI":"10.1109\/ACCESS.2021.3075429","article-title":"AI-Powered Terahertz VLSI Testing Technology for Ensuring Hardware Security and Reliability","volume":"9","author":"Akter","year":"2021","journal-title":"IEEE Access"},{"key":"ref_159","doi-asserted-by":"crossref","unstructured":"Shur, M.S., and Suarez, J. (2018, January 7\u20139). Nanoscale silicon MOSFET response to THz radiation for testing VLSI. Proceedings of the 2018 IEEE 27th North Atlantic Test Workshop (NATW), Essex, VT, USA.","DOI":"10.1109\/NATW.2018.8388865"},{"key":"ref_160","doi-asserted-by":"crossref","first-page":"1559","DOI":"10.1016\/S0038-1101(03)00074-1","article-title":"Electron mobility and terahertz detection using silicon MOSFETs","volume":"47","author":"Deng","year":"2003","journal-title":"Solid-State Electron."},{"key":"ref_161","unstructured":"(2011, November 11). Available online: https:\/\/terasense.com\/products\/sub-thz-imaging-cameras\/."},{"key":"ref_162","first-page":"012025","article-title":"AlGaN\/GaN plasmonic terahertz electronic devices","volume":"486","author":"Shur","year":"2014","journal-title":"J. Phys."},{"key":"ref_163","first-page":"090901","article-title":"Review of GaN-based devices for terahertz operation","volume":"59","author":"Ahi","year":"2017","journal-title":"Opt. Eng."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/21\/23\/7907\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,7]],"date-time":"2025-01-07T13:17:43Z","timestamp":1736255863000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/21\/23\/7907"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,11,27]]},"references-count":163,"journal-issue":{"issue":"23","published-online":{"date-parts":[[2021,12]]}},"alternative-id":["s21237907"],"URL":"https:\/\/doi.org\/10.3390\/s21237907","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2021,11,27]]}}}