{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,7]],"date-time":"2024-09-07T17:28:06Z","timestamp":1725730086690},"reference-count":53,"publisher":"MDPI AG","issue":"22","license":[{"start":{"date-parts":[[2021,11,12]],"date-time":"2021-11-12T00:00:00Z","timestamp":1636675200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"The detection of cracks is an important monitoring task in civil engineering infrastructure devoted to ensuring durability, structural safety, and integrity. It has been traditionally performed by visual inspection, and the measurement of crack width has been manually obtained with a crack-width comparator gauge (CWCG). Unfortunately, this technique is time-consuming, suffers from subjective judgement, and is error-prone due to the difficulty of ensuring a correct spatial measurement as the CWCG may not be correctly positioned in accordance with the crack orientation. Although algorithms for automatic crack detection have been developed, most of them have specifically focused on solving the segmentation problem through Deep Learning techniques failing to address the underlying problem: crack width evaluation, which is critical for the assessment of civil structures. This paper proposes a novel automated method for surface cracking width measurement based on digital image processing techniques. Our proposal consists of three stages: anisotropic smoothing, segmentation, and stabilized central points by k-means adjustment and allows the characterization of both crack width and curvature-related orientation. The method is validated by assessing the surface cracking of fiber-reinforced earthen construction materials. The preliminary results show that the proposal is robust, efficient, and highly accurate at estimating crack width in digital images. The method effectively discards false cracks and detects real ones as small as 0.15 mm width regardless of the lighting conditions.<\/jats:p>","DOI":"10.3390\/s21227534","type":"journal-article","created":{"date-parts":[[2021,11,15]],"date-time":"2021-11-15T01:51:53Z","timestamp":1636941113000},"page":"7534","source":"Crossref","is-referenced-by-count":16,"title":["Image-Based Automated Width Measurement of Surface Cracking"],"prefix":"10.3390","volume":"21","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5389-7590","authenticated-orcid":false,"given":"Miguel","family":"Carrasco","sequence":"first","affiliation":[{"name":"Facultad de Ingenier\u00eda y Ciencias, Universidad Adolfo Ib\u00e1\u00f1ez, Av. Diagonal las Torres 2640, Santiago 7941169, Chile"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4252-1341","authenticated-orcid":false,"given":"Gerardo","family":"Araya-Letelier","sequence":"additional","affiliation":[{"name":"Escuela de Construcci\u00f3n Civil, Pontificia Universidad Cat\u00f3lica de Chile, Av. Vicu\u00f1a Mackenna 4860, Macul, Santiago 7820436, Chile"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9966-9131","authenticated-orcid":false,"given":"Ramiro","family":"Vel\u00e1zquez","sequence":"additional","affiliation":[{"name":"Facultad de Ingenier\u00eda, Universidad Panamericana, Av. Josemar\u00eda Escriv\u00e1 de Balaguer 101, Aguascalientes 20296, Mexico"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4058-4042","authenticated-orcid":false,"given":"Paolo","family":"Visconti","sequence":"additional","affiliation":[{"name":"Facultad de Ingenier\u00eda, Universidad Panamericana, Av. Josemar\u00eda Escriv\u00e1 de Balaguer 101, Aguascalientes 20296, Mexico"},{"name":"Department of Innovation Engineering, University of Salento, Via per Monteroni, 73100 Lecce, Italy"}]}],"member":"1968","published-online":{"date-parts":[[2021,11,12]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.conbuildmat.2018.05.239","article-title":"Using digital image correlation to evaluate plastic shrinkage cracking in cement-based materials","volume":"182","author":"Zhao","year":"2018","journal-title":"Constr. Build. Mater."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"105761","DOI":"10.1016\/j.cemconres.2019.05.006","article-title":"Quantification of plastic shrinkage cracking in mortars using digital image correlation","volume":"123","author":"Bertelsen","year":"2019","journal-title":"Cem. Concr. Res."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"04018024","DOI":"10.1061\/(ASCE)CP.1943-5487.0000766","article-title":"structural load estimation using machine vision and surface crack patterns for shear-critical RC beams and slabs","volume":"32","author":"Davoudi","year":"2018","journal-title":"J. Comput. Civ. Eng."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"7913952","DOI":"10.1155\/2018\/7913952","article-title":"Image processing-based recognition of wall defects using machine learning approaches and steerable filters","volume":"2018","author":"Hoang","year":"2018","journal-title":"Comput. Intel. Neurosci."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"9205509","DOI":"10.1155\/2021\/9205509","article-title":"An advanced Otsu method integrated with edge detection and decision tree for crack detection in highway transportation infrastructure","volume":"2021","author":"Han","year":"2021","journal-title":"Adv. Mater. Sci. Eng."},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Araya-Letelier, G., Maturana, P., Carrasco, M., Antico, F.C., and G\u00f3mez, M.S. (2019). Mechanical-damage behavior of mortars reinforced with recycled polypropylene fibers. Sustainability, 11.","DOI":"10.3390\/su11082200"},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Reddy, B.V.V., Mani, M., and Walker, P. (2019). Influence of jute fibers to improve flexural toughness, impact resistance and drying shrinkage cracking in adobe mixes. Earthen Dwellings and Structures, Springer.","DOI":"10.1007\/978-981-13-5883-8"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"122806","DOI":"10.1016\/j.jclepro.2020.122806","article-title":"Waste-based natural fiber reinforcement of adobe mixtures: Physical, mechanical, damage and durability performance assessment","volume":"273","author":"Kunze","year":"2020","journal-title":"J. Clean. Prod."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1016\/j.conbuildmat.2018.11.268","article-title":"Quantitative analysis of the influence of synthetic fibres on plastic shrinkage cracking using digital image correlation","volume":"199","author":"Bertelsen","year":"2019","journal-title":"Constr. Build. Mater."},{"key":"ref_10","unstructured":"L\u00f6fgren, I. (2007, January 15). Calculation of crack width and crack spacing. Proceedings of the Nordic Mini-Seminar: \u201cFibre Reinforced Concrete\u201d, Trondheim, Norway."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1061\/(ASCE)CP.1943-5487.0000073","article-title":"Characterization of laser scanners and algorithms for detecting flatness defects on concrete surfaces","volume":"25","author":"Tang","year":"2011","journal-title":"J. Comput. Civ. Eng."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"04018009","DOI":"10.1061\/(ASCE)CF.1943-5509.0001151","article-title":"Deterioration assessment of infrastructure using fuzzy logic and image processing algorithm","volume":"32","author":"Pragalath","year":"2018","journal-title":"J. Perform. Constr. Facil."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1111\/j.1467-8667.2011.00716.x","article-title":"Concrete crack detection by multiple sequential image filtering: Concrete crack detection by image processing","volume":"27","author":"Nishikawa","year":"2012","journal-title":"Comput. Aided Civil Infrastruct. Eng."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"04020038","DOI":"10.1061\/(ASCE)CP.1943-5487.0000918","article-title":"Machine learning for crack detection: Review and model performance comparison","volume":"34","author":"Hsieh","year":"2020","journal-title":"J. Comput. Civ. Eng."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1088\/0957-0233\/20\/7\/077001","article-title":"High precision measurement of surface cracks using an optical system","volume":"20","author":"Christen","year":"2009","journal-title":"Meas. Sci. Technol."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1002\/tee.20244","article-title":"Image-based crack detection for real concrete surfaces","volume":"3","author":"Yamaguchi","year":"2008","journal-title":"IEEJ Trans. Electron. Eng."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"453","DOI":"10.1111\/0031-868X.00198","article-title":"An operational application of automatic feature extraction: The measurement of cracks in concrete structures","volume":"17","author":"Dare","year":"2002","journal-title":"Photogramm. Rec."},{"key":"ref_18","doi-asserted-by":"crossref","unstructured":"Hartley, R., and Zisserman, A. (2003). Multiple View Geometry in Computer Vision, Cambridge University Press.","DOI":"10.1017\/CBO9780511811685"},{"key":"ref_19","unstructured":"Detchev, I., Habib, A., El-Badry, M., and Bahreh, V.M. (2013, January 24\u201328). Detection of cracks in a concrete beam-column joint using target gridding. Proceedings of the American Society of Photogrammetry and Remote Sensing Annual Conference, Baltimore, MD, USA."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1111\/j.1467-8667.2005.00376.x","article-title":"Monitoring crack changes in concrete structures","volume":"20","author":"Sohn","year":"2005","journal-title":"Comput. Aided Civil Eng."},{"key":"ref_21","unstructured":"Habib, A., Lichti, D., El-Badry, M., and Detchev, I. (2014, January 15\u201318). Optical remote sensing systems for structural deflection measurement and crack characterization. Proceedings of the 9th International Conference on Short and Medium Span Bridges, Calgary, AB, Canada."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"797","DOI":"10.1007\/s00138-009-0189-8","article-title":"Fast crack detection method for large-size concrete surface images using percolation-based image processing","volume":"21","author":"Yamaguchi","year":"2010","journal-title":"Mach. Vis. Appl."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1061\/(ASCE)0733-9453(2006)132:2(77)","article-title":"measuring system for cracks in concrete using multitemporal images","volume":"132","author":"Chen","year":"2006","journal-title":"J. Surv. Eng."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/j.cemconres.2016.09.016","article-title":"Characterisation of bending cracks in R\/FRC using image analysis","volume":"90","author":"Berrocal","year":"2016","journal-title":"Cem. Concr. Res."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"3924120","DOI":"10.1155\/2018\/3924120","article-title":"Detection of surface crack in building structures using image processing technique with an improved otsu method for image thresholding","volume":"2018","author":"Hoang","year":"2018","journal-title":"Adv. Civil Eng."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"60100","DOI":"10.1109\/ACCESS.2018.2875889","article-title":"Image-based crack detection using crack width transform (CWT) algorithm","volume":"6","author":"Cho","year":"2018","journal-title":"IEEE Access"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"101303","DOI":"10.1016\/j.aei.2021.101303","article-title":"Pavement crack detection using hessian structure propagation","volume":"49","author":"Chen","year":"2021","journal-title":"Adv. Eng. Inf."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"110157","DOI":"10.1016\/j.engstruct.2019.110157","article-title":"Increasing the robustness of material-specific deep learning models for crack detection across different materials","volume":"206","author":"Alipour","year":"2020","journal-title":"Eng. Struct."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"103291","DOI":"10.1016\/j.autcon.2020.103291","article-title":"Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning","volume":"118","author":"Kang","year":"2020","journal-title":"Autom. Constr."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"2124","DOI":"10.1177\/1475921720965445","article-title":"Vision-Based Automated Crack Detection Using Convolutional Neural Networks for Condition Assessment of Infrastructure","volume":"20","author":"Rao","year":"2021","journal-title":"Struct. Health Monit."},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Munawar, H.S., Hammad, A.W.A., Haddad, A., Soares, C.A.P., and Waller, S.T. (2021). Image-based crack detection methods: A review. Infrastructures, 6.","DOI":"10.3390\/infrastructures6080115"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"493","DOI":"10.3151\/jact.18.493","article-title":"Crack detection from a concrete surface image based on semantic segmentation using deep learning","volume":"18","author":"Yamane","year":"2020","journal-title":"ACT"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"119096","DOI":"10.1016\/j.conbuildmat.2020.119096","article-title":"Concrete crack detection and quantification using deep learning and structured light","volume":"252","author":"Park","year":"2020","journal-title":"Constr. Build. Mater."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"1291","DOI":"10.1111\/mice.12622","article-title":"Automated pavement crack detection and segmentation based on two-step convolutional neural network","volume":"35","author":"Liu","year":"2020","journal-title":"Comput. Aided Civil Infrastr. Eng."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"103492","DOI":"10.1016\/j.autcon.2020.103492","article-title":"Combining block-based and pixel-based approaches to improve crack detection and localisation","volume":"122","author":"Abdellatif","year":"2021","journal-title":"Autom. Constr."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"787","DOI":"10.1016\/j.aej.2017.01.020","article-title":"Crack detection using image processing: A critical review and analysis","volume":"57","author":"Mohan","year":"2018","journal-title":"Alex. Eng. J."},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Alexander, M.G., Bentur, A., and Mindess, S. (2017). Durability of Concrete: Design and Construction, CRC Press.","DOI":"10.1201\/9781315118413"},{"key":"ref_38","unstructured":"ACI Committee 224 American Concrete Institute (2001). Control of Cracking in Concrete Structures ACI 224 R-01, American Concrete Institute."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1006\/cviu.1995.1017","article-title":"A survey of automated visual inspection","volume":"61","author":"Newman","year":"1995","journal-title":"Comput. Vis. Image Underst."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"641","DOI":"10.1109\/LSP.2004.830116","article-title":"Contrast-based color image segmentation","volume":"11","author":"Chen","year":"2004","journal-title":"IEEE Signal Process. Lett."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"629","DOI":"10.1109\/34.56205","article-title":"Scale-space and edge detection using anisotropic diffusion","volume":"12","author":"Perona","year":"1990","journal-title":"IEEE Trans. Pattern Anal. Mach. Intel."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"673","DOI":"10.1016\/j.procs.2015.08.087","article-title":"Image denoising using variations of perona-malik model with different edge stopping functions","volume":"58","author":"Kamalaveni","year":"2015","journal-title":"Procedia Comput. Sci."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"404","DOI":"10.1186\/s40064-016-1999-6","article-title":"Hybrid regularizers-based adaptive anisotropic diffusion for image denoising","volume":"5","author":"Liu","year":"2016","journal-title":"SpringerPlus"},{"key":"ref_44","unstructured":"Weickert, J. (1998). Anisotropic Diffusion in Image Processing, B.G. Teubner."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"522","DOI":"10.1016\/j.procs.2014.08.133","article-title":"Robust anisotropic diffusion scheme for image noise removal","volume":"35","author":"Barbu","year":"2014","journal-title":"Procedia Comput. Sci."},{"key":"ref_46","unstructured":"Telea, A., and van Wijk, J.J. (2002, January 27\u201329). An Augmented Fast Marching Method for Computing Skeletons and Centerlines. Proceedings of the IEEE TCVG Symposium on Visualization, Barcelona, Spain."},{"key":"ref_47","unstructured":"Gonzalez, R., and Woods, R.E. (1992). Digital Image Processing, Addision Wesley."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"764","DOI":"10.1016\/j.procs.2015.06.090","article-title":"Image Segmentation using K-means clustering algorithm and subtractive clustering algorithm","volume":"54","author":"Dhanachandra","year":"2015","journal-title":"Procedia Comput. Sci."},{"key":"ref_49","doi-asserted-by":"crossref","unstructured":"Fitzgibbon, A.W., Pilu, M., and Fisher, R.B. (1996, January 25\u201329). Direct least squares fitting of ellipses. Proceedings of the 13th International Conference on Pattern Recognition, Vienna, Austria.","DOI":"10.1109\/ICPR.1996.546029"},{"key":"ref_50","doi-asserted-by":"crossref","unstructured":"Reddy, B.V.V., Mani, M., and Walker, P. (2019). Effectiveness of polypropylene fibers on impact and shrinkage cracking behavior of adobe mixes. Earthen Dwellings and Structures Effectiveness, Springer.","DOI":"10.1007\/978-981-13-5883-8"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"645","DOI":"10.1016\/j.conbuildmat.2018.04.151","article-title":"Influence of natural fiber dosage and length on adobe mixes damage-mechanical behavior","volume":"174","author":"Antico","year":"2018","journal-title":"Constr. Build. Mater."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"122127","DOI":"10.1016\/j.conbuildmat.2020.122127","article-title":"Experimental evaluation of adobe mixtures reinforced with jute fibers","volume":"276","author":"Antico","year":"2021","journal-title":"Constr. Build. Mater."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"688","DOI":"10.1093\/beheco\/ark016","article-title":"The unequal variance T-test is an underused alternative to student\u2019s t-test and the Mann\u2013Whitney U test","volume":"17","author":"Ruxton","year":"2006","journal-title":"Behav. Ecol."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/21\/22\/7534\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,21]],"date-time":"2024-07-21T12:06:00Z","timestamp":1721563560000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/21\/22\/7534"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,11,12]]},"references-count":53,"journal-issue":{"issue":"22","published-online":{"date-parts":[[2021,11]]}},"alternative-id":["s21227534"],"URL":"https:\/\/doi.org\/10.3390\/s21227534","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,11,12]]}}}