{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,1,18]],"date-time":"2025-01-18T05:20:37Z","timestamp":1737177637239,"version":"3.33.0"},"reference-count":45,"publisher":"MDPI AG","issue":"16","license":[{"start":{"date-parts":[[2021,8,13]],"date-time":"2021-08-13T00:00:00Z","timestamp":1628812800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Ministerio de Econom\u00eda y Competitividad (MINECO) and European Social Funds (ESF)","award":["BES-2016-077296"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"This paper describes the use of microwave technology to identify anti-counterfeiting markers on banknotes. The proposed method is based on a robust near-field scanning microwave microscope specially developed to measure permittivity maps of heterogeneous paper specimens at the micrometer scale. The equipment has a built-in vector network analyzer to measure the reflection response of a near-field coaxial probe, which makes it a standalone and portable device. A new approach employing the information of a displacement laser and the cavity perturbation technique was used to determine the relationship between the dielectric properties of the specimens and the resonance response of the probe, avoiding the use of distance-following techniques. The accuracy of the dielectric measurements was evaluated through a comparative study with other well-established cavity methods, revealing uncertainties lower than 5%, very similar to the accuracy reported by other more sophisticated setups. The device was employed to determine the dielectric map of a watermark on a 20 EUR banknote. In addition, the penetration capabilities of microwave energy allowed for the detection of the watermark when concealed behind dielectric or metallic layers. This work demonstrates the benefits of this microwave technique as a novel method for identifying anti-counterfeiting features, which opens new perspectives with which to develop optically opaque markers only traceable through this microwave technique.<\/jats:p>","DOI":"10.3390\/s21165463","type":"journal-article","created":{"date-parts":[[2021,8,13]],"date-time":"2021-08-13T13:22:38Z","timestamp":1628860958000},"page":"5463","source":"Crossref","is-referenced-by-count":4,"title":["Detection of Anti-Counterfeiting Markers through Permittivity Maps Using a Micrometer Scale near Field Scanning Microwave Microscope"],"prefix":"10.3390","volume":"21","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-8586-3689","authenticated-orcid":false,"given":"Jos\u00e9 D.","family":"Guti\u00e9rrez-Cano","sequence":"first","affiliation":[{"name":"Institute of Information and Communication Technologies (ITACA), Universitat Polit\u00e8cnica de Val\u00e8ncia, Camino de Vera s\/n, 46022 Valencia, Spain"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0617-1762","authenticated-orcid":false,"given":"Jos\u00e9 M.","family":"Catal\u00e1-Civera","sequence":"additional","affiliation":[{"name":"Institute of Information and Communication Technologies (ITACA), Universitat Polit\u00e8cnica de Val\u00e8ncia, Camino de Vera s\/n, 46022 Valencia, Spain"}]},{"given":"Pedro J.","family":"Plaza-Gonz\u00e1lez","sequence":"additional","affiliation":[{"name":"Institute of Information and Communication Technologies (ITACA), Universitat Polit\u00e8cnica de Val\u00e8ncia, Camino de Vera s\/n, 46022 Valencia, Spain"}]},{"given":"Felipe L.","family":"Pe\u00f1aranda-Foix","sequence":"additional","affiliation":[{"name":"Institute of Information and Communication Technologies (ITACA), Universitat Polit\u00e8cnica de Val\u00e8ncia, Camino de Vera s\/n, 46022 Valencia, Spain"}]}],"member":"1968","published-online":{"date-parts":[[2021,8,13]]},"reference":[{"unstructured":"(2021, May 20). Interpol Counterfeit Currency and Security Documents. Available online: https:\/\/www.interpol.int\/en\/Crimes\/Counterfeit-currency-and-security-documents.","key":"ref_1"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"25455","DOI":"10.1021\/acsami.7b06835","article-title":"Luminescent, Fire-Resistant, and Water-Proof Ultralong Hydroxyapatite Nanowire-Based Paper for Multimode Anticounterfeiting Applications","volume":"9","author":"Yang","year":"2017","journal-title":"ACS Appl. Mater. Interfaces"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"5476","DOI":"10.1039\/D0TC00937G","article-title":"Photoswitchable fluorescent polymer nanoparticles as high-security anticounterfeiting materials for authentication and optical patterning","volume":"8","author":"Abdollahi","year":"2020","journal-title":"J. Mater. Chem. C"},{"doi-asserted-by":"crossref","unstructured":"Herrojo, C., Paredes, F., Mata-Contreras, J., and Mart\u00edn, F. (2019). Chipless-RFID: A review and recent developments. Sensors, 19.","key":"ref_4","DOI":"10.3390\/s19153385"},{"unstructured":"(2021, May 20). European Central Bank Banknotes Denominations. Available online: https:\/\/www.ecb.europa.eu\/euro\/banknotes\/denominations\/html\/index.en.html#es2-020.","key":"ref_5"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"2515","DOI":"10.3390\/s130202515","article-title":"Forgery detection and value identification of Euro banknotes","volume":"13","author":"Bruna","year":"2013","journal-title":"Sensors"},{"doi-asserted-by":"crossref","unstructured":"Lee, J.W., Hong, H.G., Kim, K.W., and Park, K.R. (2017). A survey on banknote recognition methods by various sensors. Sensors, 17.","key":"ref_7","DOI":"10.3390\/s17020313"},{"unstructured":"(2021, May 20). European Central Bank Real or Fake?. Available online: https:\/\/www.ecb.europa.eu\/euro\/changeover\/lithuania\/shared\/files\/Real_or_Fake_EN.pdf.","key":"ref_8"},{"unstructured":"Pozar, M.D. (1998). Microwave Engineering, John Wiley & Sons, Inc.. [2nd ed.].","key":"ref_9"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"R55","DOI":"10.1088\/0957-0233\/17\/6\/R01","article-title":"Frequency domain complex permittivity measurements at microwave frequencies","volume":"17","author":"Krupka","year":"2006","journal-title":"Meas. Sci. Technol."},{"unstructured":"Sebastian, M.T. (2008). Dielectric Materials for Wireless Communication, Elsevier.","key":"ref_11"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"1186","DOI":"10.1088\/0957-0233\/16\/5\/019","article-title":"Design rules for the optimization of the sensitivity of open-ended coaxial microwave sensors for monitoring changes in dielectric materials","volume":"16","year":"2005","journal-title":"Meas. Sci. Technol."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jfoodeng.2017.01.021","article-title":"Dynamic measurement of dielectric properties of food snack pellets during microwave expansion","volume":"202","author":"Bows","year":"2017","journal-title":"J. Food Eng."},{"doi-asserted-by":"crossref","unstructured":"Chavanne, X., and Frangi, J.P. (2017). Autonomous sensors for measuring continuously the moisture and salinity of a porous medium. Sensors, 17.","key":"ref_14","DOI":"10.3390\/s17051094"},{"doi-asserted-by":"crossref","unstructured":"P\u00e9rez-Campos, R., Fayos-Fern\u00e1ndez, J., Lozano-Guerrero, A.J., Mart\u00ednez-Gonz\u00e1lez, A., Monz\u00f3-Cabrera, J., Mediavilla, I., Pe\u00f1a-Carro, D., and Esteban-Pascual, L.S. (2020). Permittivity measurements for cypress and rockrose biomass versus temperature, density, and moisture content. Sensors, 20.","key":"ref_15","DOI":"10.3390\/s20174684"},{"doi-asserted-by":"crossref","unstructured":"Vergnano, A., Godio, A., Raffa, C.M., Chiampo, F., Tobon Vasquez, J.A., and Vipiana, F. (2020). Open-ended coaxial probe measurements of complex dielectric permittivity in diesel-contaminated soil during bioremediation. Sensors, 20.","key":"ref_16","DOI":"10.3390\/s20226677"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"1518","DOI":"10.1109\/JSEN.2006.884506","article-title":"Enhancement of sensitivity of microwave planar sensors with EBG structures","volume":"6","author":"Griol","year":"2006","journal-title":"IEEE Sens. J."},{"doi-asserted-by":"crossref","unstructured":"Al-Behadili, A.A., Mocanu, I.A., Codreanu, N., and Pantazica, M. (2020). Modified split ring resonators sensor for accurate complex permittivity measurements of solid dielectrics. Sensors, 20.","key":"ref_18","DOI":"10.3390\/s20236855"},{"doi-asserted-by":"crossref","unstructured":"Kent, G. (1996). Nondestructive permittivity measurement of substrates. IEEE Trans. Instrum. Meas., 45.","key":"ref_19","DOI":"10.1109\/19.481319"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"2014","DOI":"10.1109\/22.795077","article-title":"Full-wave analysis of a split-cylinder resonator for nondestructive permittivity measurements","volume":"47","author":"Janezic","year":"1999","journal-title":"IEEE Trans. Microw. Theory Tech."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"1191","DOI":"10.1109\/TMTT.2016.2637932","article-title":"Enhanced Full-Wave Circuit Analysis for Modeling of a Split Cylinder Resonator","volume":"65","year":"2017","journal-title":"IEEE Trans. Microw. Theory Tech."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"2673","DOI":"10.1016\/S0955-2219(01)00343-0","article-title":"Uncertainty of complex permittivity measurements by split-post dielectric resonator technique","volume":"21","author":"Krupka","year":"2001","journal-title":"J. Eur. Ceram. Soc."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1109\/TIM.2016.2619958","article-title":"Wideband Nondestructive Measurement of Complex Permittivity and Permeability Using Coupled Coaxial Probes","volume":"66","author":"Hosseini","year":"2017","journal-title":"IEEE Trans. Instrum. Meas."},{"doi-asserted-by":"crossref","unstructured":"Kalinin, S., and Gruverman, A. (2007). Principles of Near-Field Microwave Microscopy. Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, Springer.","key":"ref_24","DOI":"10.1007\/978-0-387-28668-6"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TMTT.2005.862668","article-title":"Sensitivity and Resolution of Evanescent Microwave Microscope","volume":"54","author":"Kleismit","year":"2006","journal-title":"IEEE Trans. Microw. Theory Tech."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1109\/MMM.2013.2288711","article-title":"Near-Field Scanning Microwave Microscopy: An Emerging Research Tool for Nanoscale Metrology","volume":"15","author":"Imtiaz","year":"2014","journal-title":"IEEE Microw. Mag."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"3846","DOI":"10.1063\/1.1149189","article-title":"Quantitative microwave near-field microscopy of dielectric properties","volume":"69","author":"Gao","year":"1998","journal-title":"Rev. Sci. Instrum."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"1126","DOI":"10.1109\/TIM.2002.807798","article-title":"Self-oscillating evanescent microwave probes for nondestructive evaluations of materials","volume":"51","author":"Zhang","year":"2002","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-017-13937-5","article-title":"Full-wave modeling of broadband near field scanning microwave microscopy","volume":"7","author":"Wu","year":"2017","journal-title":"Sci. Rep."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-019-48780-3","article-title":"Near-Field Scanning Microwave Microscopy in the Single Photon Regime","volume":"9","author":"Geaney","year":"2019","journal-title":"Sci. Rep."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1063\/1.3514243","article-title":"Atomic resolution imaging at 2.5 GHz using near-field microwave microscopy","volume":"97","author":"Lee","year":"2010","journal-title":"Appl. Phys. Lett."},{"unstructured":"(2021, March 05). Analog Devices RF\/IF Gain and Phase Detector AD8302. Available online: https:\/\/www.analog.com\/media\/cn\/technical-documentation\/evaluation-documentation\/AD8302.pdf.","key":"ref_32"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"3595","DOI":"10.1109\/TIM.2019.2941038","article-title":"A New Stand-Alone Microwave Instrument for Measuring the Complex Permittivity of Materials at Microwave Frequencies","volume":"69","author":"Canos","year":"2020","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/j.ultramic.2015.11.015","article-title":"Measurement of the permittivity and loss of high-loss materials using a Near-Field Scanning Microwave Microscope","volume":"161","author":"Gregory","year":"2016","journal-title":"Ultramicroscopy"},{"unstructured":"Kajfez, D. (1994). Q-Factor, Vector Fields.","key":"ref_35"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"1149","DOI":"10.1109\/22.299749","article-title":"Linear Fractional Curve Fitting for Measurement of High Q Factors","volume":"42","author":"Kajfez","year":"1994","journal-title":"IEEE Trans. Microw. Theory Tech."},{"unstructured":"Bethe, H.A., and Schwinger, J. (1943). Perturbation Theory for Cavities, NDRC, Cornell University. Rpt. D1\u2013117.","key":"ref_37"},{"unstructured":"Sucher, M., and Fox, J. (1963). Dielectric constant. Handbook of Microwave Measurements, Polytech. Inst. Brooklyn Press.","key":"ref_38"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"2205","DOI":"10.1103\/PhysRevB.10.2205","article-title":"Microwave properties of high-purity tetrathiofulvalene-tetracyanoquinodimethan (TTF-TCNQ)","volume":"10","author":"Khanna","year":"1974","journal-title":"Phys. Rev. B"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"2905","DOI":"10.1109\/TMTT.2015.2453263","article-title":"Dynamic Measurement of Dielectric Properties of Materials at High Temperature during Microwave Heating in a Dual Mode Cylindrical Cavity","volume":"63","year":"2015","journal-title":"IEEE Trans. Microw. Theory Tech."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"542","DOI":"10.1088\/0957-0233\/12\/4\/321","article-title":"Microwave broadband permittivity measurement with a multimode helical resonator for studying catalysts","volume":"12","author":"Roussy","year":"2001","journal-title":"Meas. Sci. Technol."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"2730","DOI":"10.1109\/TMTT.2012.2206048","article-title":"Full-wave analysis of dielectric-loaded cylindrical waveguides and cavities using a new four-port ring network","volume":"60","author":"Janezic","year":"2012","journal-title":"IEEE Trans. Microw. Theory Tech."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1016\/S0254-0584(02)00257-2","article-title":"Precise measurements of the complex permittivity of dielectric materials at microwave frequencies","volume":"79","author":"Krupka","year":"2003","journal-title":"Mater. Chem. Phys."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1080\/00222739.1974.11688904","article-title":"A Comparison of the Dielectric Properties of Paper and Board At Microwave and Radio Frequencies","volume":"9","author":"Metaxas","year":"1974","journal-title":"J. Microw. Power"},{"doi-asserted-by":"crossref","unstructured":"Torgovnikov, G.I. (1993). Dielectric Properties of Wood-Based Materials. Dielectric Properties of Wood and Wood-Based Materials, Springer.","key":"ref_45","DOI":"10.1007\/978-3-642-77453-9"}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/21\/16\/5463\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,17]],"date-time":"2025-01-17T18:07:32Z","timestamp":1737137252000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/21\/16\/5463"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,8,13]]},"references-count":45,"journal-issue":{"issue":"16","published-online":{"date-parts":[[2021,8]]}},"alternative-id":["s21165463"],"URL":"https:\/\/doi.org\/10.3390\/s21165463","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2021,8,13]]}}}