{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,10]],"date-time":"2024-08-10T15:18:13Z","timestamp":1723303093495},"reference-count":48,"publisher":"MDPI AG","issue":"13","license":[{"start":{"date-parts":[[2021,7,2]],"date-time":"2021-07-02T00:00:00Z","timestamp":1625184000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Romanian Ministry of Research, Innovation and Digitization, CNCS\/CCCDI\u2013UEFISCDI","award":["PN-III-P4-ID-PCE-2020-2600"]},{"DOI":"10.13039\/501100000781","name":"European Research Council","doi-asserted-by":"publisher","award":["249889"],"id":[{"id":"10.13039\/501100000781","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000268","name":"Biotechnology and Biological Sciences Research Council","doi-asserted-by":"publisher","award":["BB\/S0166431\/1"],"id":[{"id":"10.13039\/501100000268","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000266","name":"Engineering and Physical Sciences Research Council","doi-asserted-by":"publisher","award":["Rebot EP\/N019229\/1"],"id":[{"id":"10.13039\/501100000266","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"The most common imaging technique for dental diagnoses and treatment monitoring is X-ray imaging, which evolved from the first intraoral radiographs to high-quality three-dimensional (3D) Cone Beam Computed Tomography (CBCT). Other imaging techniques have shown potential, such as Optical Coherence Tomography (OCT). We have recently reported on the boundaries of these two types of techniques, regarding. the dental fields where each one is more appropriate or where they should be both used. The aim of the present study is to explore the unique capabilities of the OCT technique to optimize X-ray units imaging (i.e., in terms of image resolution, radiation dose, or contrast). Two types of commercially available and widely used X-ray units are considered. To adjust their parameters, a protocol is developed to employ OCT images of dental conditions that are documented on high (i.e., less than 10 \u03bcm) resolution OCT images (both B-scans\/cross sections and 3D reconstructions) but are hardly identified on the 200 to 75 \u03bcm resolution panoramic or CBCT radiographs. The optimized calibration of the X-ray unit includes choosing appropriate values for the anode voltage and current intensity of the X-ray tube, as well as the patient\u2019s positioning, in order to reach the highest possible X-rays resolution at a radiation dose that is safe for the patient. The optimization protocol is developed in vitro on OCT images of extracted teeth and is further applied in vivo for each type of dental investigation. Optimized radiographic results are compared with un-optimized previously performed radiographs. Also, we show that OCT can permit a rigorous comparison between two (types of) X-ray units. In conclusion, high-quality dental images are possible using low radiation doses if an optimized protocol, developed using OCT, is applied for each type of dental investigation. Also, there are situations when the X-ray technology has drawbacks for dental diagnosis or treatment assessment. In such situations, OCT proves capable to provide qualitative images.<\/jats:p>","DOI":"10.3390\/s21134554","type":"journal-article","created":{"date-parts":[[2021,7,5]],"date-time":"2021-07-05T02:35:22Z","timestamp":1625452522000},"page":"4554","source":"Crossref","is-referenced-by-count":26,"title":["Optimization of X-ray Investigations in Dentistry Using Optical Coherence Tomography"],"prefix":"10.3390","volume":"21","author":[{"given":"Ralph-Alexandru","family":"Erdelyi","sequence":"first","affiliation":[{"name":"Doctoral School, Polytechnic University of Timisoara, 1 Mihai Viteazu Ave., 300222 Timisoara, Romania"},{"name":"3OM Optomechatronics Group, Aurel Vlaicu University of Arad, 77 Revolutiei Ave., 310130 Arad, Romania"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5558-4777","authenticated-orcid":false,"given":"Virgil-Florin","family":"Duma","sequence":"additional","affiliation":[{"name":"Doctoral School, Polytechnic University of Timisoara, 1 Mihai Viteazu Ave., 300222 Timisoara, Romania"},{"name":"3OM Optomechatronics Group, Aurel Vlaicu University of Arad, 77 Revolutiei Ave., 310130 Arad, Romania"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5651-7215","authenticated-orcid":false,"given":"Cosmin","family":"Sinescu","sequence":"additional","affiliation":[{"name":"Research Center in Dental Medicine Using Conventional and Alternative Technologies, School of Dental Medicine, \u201cVictor Babes\u201d University of Medicine and Pharmacy of Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania"}]},{"given":"George Mihai","family":"Dobre","sequence":"additional","affiliation":[{"name":"Applied Optics Group, School of Physics, University of Kent, Canterbury CT2 7NR, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6890-1599","authenticated-orcid":false,"given":"Adrian","family":"Bradu","sequence":"additional","affiliation":[{"name":"Applied Optics Group, School of Physics, University of Kent, Canterbury CT2 7NR, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4899-9656","authenticated-orcid":false,"given":"Adrian","family":"Podoleanu","sequence":"additional","affiliation":[{"name":"Applied Optics Group, School of Physics, University of Kent, Canterbury CT2 7NR, UK"}]}],"member":"1968","published-online":{"date-parts":[[2021,7,2]]},"reference":[{"key":"ref_1","first-page":"235","article-title":"History of dental radiography: Evolution of 2D and 3D imaging modalities","volume":"3","author":"Pauwels","year":"2020","journal-title":"Med. Phys. Int. J."},{"key":"ref_2","first-page":"139","article-title":"Oral and maxillofacial radiology","volume":"139","author":"Ruprecht","year":"2008","journal-title":"Then and now. JADA"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1590\/S2176-94512010000500007","article-title":"2D\/3D Cone-Beam CT images or conventional radiography: Which is more reliable?","volume":"15","author":"Couceiro","year":"2010","journal-title":"Dent. Press J. Orthod."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"2033","DOI":"10.3390\/s130202033","article-title":"Creation of 3D Multi-Body Orthodontic Models by Using Independent Imaging Sensors","volume":"13","author":"Barone","year":"2013","journal-title":"Sensors"},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Dalessandri, D., Tonni, I., Laffranchi, L., Migliorati, M., Isola, G., Visconti, L., Bonetti, S., and Paganelli, C. (2020). 2D vs. 3D Radiological Methods for Dental Age Determination around 18 Years: A Systematic Review. Appl. Sci., 10.","DOI":"10.3390\/app10093094"},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Weiss, R., and Read-Fuller, A. (2019). Cone Beam Computed Tomography in Oral and Maxillofacial Surgery: An Evidence-Based Review. Dent. J., 7.","DOI":"10.3390\/dj7020052"},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Franchina, A., Stefanelli, L.V., Maltese, F., Mandelaris, G.A., Vantaggiato, A., Pagliarulo, M., Pranno, N., Brauner, E., Angelis, F.D., and Carlo, S.D. (2020). Validation of an Intra-Oral Scan Method Versus Cone Beam Computed Tomography Superimposition to Assess the Accuracy between Planned and Achieved Dental Implants: A Randomized In Vitro Study. Int. J. Environ. Res. Public Health, 17.","DOI":"10.3390\/ijerph17249358"},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Muruganandhan, J., Sujatha, G., Poorni, S., Srinivasan, M.R., Boreak, N., Al-Kahtani, A., Mashyakhy, M., Chohan, H., Bhandi, S., and Raj, A.T. (2021). Comparison of Four Dental Pulp-Capping Agents by Cone-Beam Computed Tomography and Histological Techniques\u2014A Split-Mouth Design Ex Vivo Study. Appl. Sci., 11.","DOI":"10.3390\/app11073045"},{"key":"ref_9","first-page":"559","article-title":"Advances in imaging from the first X ray images","volume":"14","author":"Mikla","year":"2012","journal-title":"J. Optoelectron. Adv. Mater."},{"key":"ref_10","unstructured":"Janssens, K., Adams, F., and Rindby, A. (2000). Chapter II. Interaction of X-rays with matter. Microscopical X-ray Fluorescence Analysis, John Wiley & Sons Ltd."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1093\/rpd\/ncl090","article-title":"Dose-area product measurements in panoramic dental radiology","volume":"123","author":"Poppe","year":"2007","journal-title":"Radiat. Prot. Dosim."},{"key":"ref_12","first-page":"1","article-title":"Optimization of radiation doses and patients\u2019 risk in dental radiography","volume":"2071","author":"Erdelyi","year":"2019","journal-title":"AIP Conf. Proc."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"1178","DOI":"10.1126\/science.1957169","article-title":"Optical coherence tomography","volume":"254","author":"Huang","year":"1991","journal-title":"Science"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"2183","DOI":"10.1364\/OE.11.002183","article-title":"Sensitivity advantage of swept-source and Fourier-domain optical coherence tomography","volume":"11","author":"Choma","year":"2003","journal-title":"Opt. Express"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"071412","DOI":"10.1117\/1.JBO.19.7.071412","article-title":"Optical coherence tomography today: Speed, contrast, and multimodality","volume":"19","author":"Drexler","year":"2014","journal-title":"J. Biomed. Opt."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1364\/BOE.5.000293","article-title":"Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror","volume":"5","author":"Lu","year":"2014","journal-title":"Biomed. Opt. Express"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"13365","DOI":"10.1364\/OE.24.013365","article-title":"MEMS-based handheld scanning probe for distortion-free images in Gabor-Domain Optical Coherence Microscopy","volume":"24","author":"Cogliati","year":"2016","journal-title":"Opt. Express"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"121715","DOI":"10.1117\/1.JBO.22.12.121715","article-title":"Clinical translation of handheld optical coherence tomography: Practical considerations and recent advancements","volume":"22","author":"Monroy","year":"2017","journal-title":"J. Biomed. Opt."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"743","DOI":"10.1177\/0954411914543963","article-title":"Design and testing of prototype handheld scanning probes for optical coherence tomography","volume":"228","author":"Demian","year":"2014","journal-title":"J. Eng. Med."},{"key":"ref_20","first-page":"1346","article-title":"Handheld scanning probes for optical coherence tomography","volume":"67","author":"Duma","year":"2015","journal-title":"Rom. Rep. Phys."},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Schneider, H., Ahrens, M., Strumpski, M., R\u00fcger, C., H\u00e4fer, M., H\u00fcttmann, G., Theisen-Kunde, D., Schulz-Hildebrandt, H., and Haak, R. (2020). An Intraoral OCT Probe to Enhanced Detection of Approximal Carious Lesions and Assessment of Restorations. J. Clin. Med., 9.","DOI":"10.3390\/jcm9103257"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1297","DOI":"10.1117\/1.1805562","article-title":"Imaging artificial caries under composite sealants and restorations","volume":"9","author":"Jones","year":"2004","journal-title":"J. Biomed. Opt."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"915","DOI":"10.1016\/j.dental.2011.05.003","article-title":"Non-invasive quantification of resin\u2013dentin interfacial gaps using optical coherence tomography: Validation against confocal microscopy","volume":"27","author":"Turki","year":"2011","journal-title":"Dent. Mat."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1016\/j.dental.2011.08.400","article-title":"Marginal analysis of resin composite restorative systems using optical coherence tomography","volume":"27","author":"Monteiro","year":"2011","journal-title":"Dent. Mat."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"516","DOI":"10.1002\/jbm.b.33029","article-title":"Assessing near infrared optical properties of ceramic orthodontic brackets using cross-polarization optical coherence tomography","volume":"102","author":"Isfeld","year":"2014","journal-title":"J. Biomed. Mater. Res. B Appl. Biomater."},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Sinescu, C., Bradu, A., Duma, V.-F., Topala, F., Negrutiu, M.L., and Podoleanu, A. (2017). Effects of the temperature variations in the technology of metal ceramic dental prostheses: Non-destructive detection using optical coherence tomography. Appl. Sci., 7.","DOI":"10.3390\/app7060552"},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Duma, V.-F., Sinescu, C., Bradu, A., and Podoleanu, A. (2019). Optical Coherence Tomography Investigations and Modeling of the Sintering of Ceramic Crowns. Materials, 12.","DOI":"10.3390\/ma12060947"},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Erdelyi, R.-A., Duma, V.-F., Sinescu, C., Dobre, G.M., Bradu, A., and Podoleanu, A. (2020). Dental Diagnosis and Treatment Assessments: Between X-rays Radiography and Optical Coherence Tomography. Materials, 13.","DOI":"10.3390\/ma13214825"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"8928","DOI":"10.3390\/s130708928","article-title":"Dental Optical Coherence Tomography","volume":"13","author":"Hsieh","year":"2013","journal-title":"Sensors"},{"key":"ref_30","doi-asserted-by":"crossref","unstructured":"Lai, Y.-C., Lin, J.-Y., Yao, C.-Y., Lyu, D.-Y., Lee, S.-Y., Chen, K.-W., and Chen, I.-Y. (2019). Interactive OCT-Based Tooth Scan and Reconstruction. Sensors, 19.","DOI":"10.3390\/s19194234"},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Luong, M.N., Shimada, Y., Araki, K., Yoshiyama, M., Tagami, J., and Sadr, A. (2020). Diagnosis of Occlusal Caries with Dynamic Slicing of 3D Optical Coherence Tomography Images. Sensors, 20.","DOI":"10.3390\/s20061659"},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Schneider, H., Park, K.-J., H\u00e4fer, M., R\u00fcger, C., Schmalz, G., Krause, F., Schmidt, J., Ziebolz, D., and Haak, R. (2017). Dental Applications of Optical Coherence Tomography (OCT) in Cariology. Appl. Sci., 7.","DOI":"10.3390\/app7050472"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"1350","DOI":"10.3390\/app5041350","article-title":"New Trends in Dental Biomechanics with Photonics Technologies","volume":"5","author":"Carvalho","year":"2015","journal-title":"Appl. Sci."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1097\/ICU.0b013e32835f8bf8","article-title":"Optical coherence tomography\u2013current and future applications","volume":"24","author":"Mehreen","year":"2013","journal-title":"Curr. Opin. Ophthalmol."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1007\/s00403-011-1152-x","article-title":"Optical coherence tomography in dermatology: Technical and clinical aspects","volume":"303","author":"Gambichler","year":"2011","journal-title":"Arch. Derm. Res."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"376367","DOI":"10.1155\/2014\/376367","article-title":"Endoscopic Opicat Coherence Tomography (OCT): Advances in Gastrointestinal Imaging","volume":"2014","author":"Kirtane","year":"2014","journal-title":"Gastroenterol. Res. Pract."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"19324","DOI":"10.1364\/OE.21.019324","article-title":"Master\u2013slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography","volume":"21","author":"Podoleanu","year":"2013","journal-title":"Opt. Express"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"5495","DOI":"10.1364\/AO.54.005495","article-title":"Optimization of galvanometer scanning for Optical Coherence Tomography","volume":"54","author":"Duma","year":"2015","journal-title":"Appl. Opt."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"456","DOI":"10.1016\/j.apm.2018.11.001","article-title":"Laser scanners with oscillatory elements: Design and optimization of 1D and 2D scanning functions","volume":"67","author":"Duma","year":"2019","journal-title":"Appl. Math. Model."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1080\/01694243.2014.974879","article-title":"Assessment of the sealant\/tooth interface using optical coherence tomography","volume":"29","author":"Oancea","year":"2015","journal-title":"J. Adhes. Sci. Technol."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"20130439","DOI":"10.1259\/dmfr.20130439","article-title":"Effective doses from panoramic radiography and CBCT (cone beam CT) using dose area product (DAP) in dentistry","volume":"43","author":"Shin","year":"2014","journal-title":"Dento Maxillo Facial Radiol."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"20140197","DOI":"10.1259\/dmfr.20140197","article-title":"Effective dose of dental CBCT-a meta analysis of published data and additional data for nine CBCT units","volume":"44","author":"Ludlow","year":"2015","journal-title":"Dento Maxillo Facial Radiol."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"184","DOI":"10.1093\/rpd\/ncq189","article-title":"Reference dose levels for dental panoramic radiography in Gwangju, Korea","volume":"142","author":"Lee","year":"2010","journal-title":"Radiat. Prot. Dosim."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"634","DOI":"10.1007\/s003300100928","article-title":"Radiation dose in dental radiology","volume":"12","author":"Cohnen","year":"2002","journal-title":"Eur. Radiol."},{"key":"ref_45","first-page":"67","article-title":"Comparison of radiation levels from computed tomography and conventional dental radiographs","volume":"19","author":"Ngan","year":"2003","journal-title":"Aust. Orthod. J."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"085208","DOI":"10.1088\/0957-0233\/26\/8\/085208","article-title":"Comparison of optical methods for surface roughness characterization","volume":"26","author":"Feidenhans","year":"2015","journal-title":"Meas. Sci. Technol."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"5912","DOI":"10.1364\/AO.53.005912","article-title":"Surface imaging of metallic material fractures using optical coherence tomography","volume":"53","author":"Hutiu","year":"2014","journal-title":"Appl. Opt."},{"key":"ref_48","doi-asserted-by":"crossref","unstructured":"Hutiu, G., Duma, V.-F., Demian, D., Bradu, A., and Podoleanu, A.G. (2018). Assessment of Ductile, Brittle, and Fatigue Fractures of Metals Using Optical Coherence Tomography. Metals, 8.","DOI":"10.3390\/met8020117"}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/21\/13\/4554\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,15]],"date-time":"2024-07-15T00:07:33Z","timestamp":1721002053000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/21\/13\/4554"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,7,2]]},"references-count":48,"journal-issue":{"issue":"13","published-online":{"date-parts":[[2021,7]]}},"alternative-id":["s21134554"],"URL":"https:\/\/doi.org\/10.3390\/s21134554","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,7,2]]}}}