{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,10]],"date-time":"2024-07-10T12:43:52Z","timestamp":1720615432061},"reference-count":35,"publisher":"MDPI AG","issue":"7","license":[{"start":{"date-parts":[[2021,3,31]],"date-time":"2021-03-31T00:00:00Z","timestamp":1617148800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["BU 222\/6-1","GR 1311\/91-1"],"id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"The force-enhanced light coupling between two optical fibres is investigated for the application in a pressure or force sensor, which can be arranged into arrays and integrated into textile surfaces. The optical coupling mechanisms such as the influence of the applied force, the losses at the coupling point and the angular alignment of the two fibres are studied experimentally and numerically. The results reveal that most of the losses occur at the deformation of the pump fibre. Only a small percentage of the cross-coupled light from the pump fibre is actually captured by the probe fibre. Thus, the coupling and therefore the sensor signal can be strongly increased by a proper crossing angle between the fibres, which lead to a coupling efficiency of 3%, a sensitivity improvement of more than 20 dB compared to the orthogonal alignment of the two fibres.<\/jats:p>","DOI":"10.3390\/s21072402","type":"journal-article","created":{"date-parts":[[2021,3,31]],"date-time":"2021-03-31T09:57:18Z","timestamp":1617184638000},"page":"2402","source":"Crossref","is-referenced-by-count":3,"title":["Analysis of Fibre Cross-Coupling Mechanisms in Fibre-Optical Force Sensors"],"prefix":"10.3390","volume":"21","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-7552-2258","authenticated-orcid":false,"given":"Christian-Alexander","family":"Bunge","sequence":"first","affiliation":[{"name":"Faculty for Digital Transformation (F-DIT), HTWK Leipzig University of Applied Sciences, Zschochersche Str. 69, D-042289 Leipzig, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1788-2148","authenticated-orcid":false,"given":"Jan","family":"Kallweit","sequence":"additional","affiliation":[{"name":"Institute for Textile Technology (ITA), RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074 Aachen, Germany"}]},{"given":"Levent","family":"Colakoglu","sequence":"additional","affiliation":[{"name":"Institute for Textile Technology (ITA), RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074 Aachen, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2480-8333","authenticated-orcid":false,"given":"Thomas","family":"Gries","sequence":"additional","affiliation":[{"name":"Institute for Textile Technology (ITA), RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074 Aachen, Germany"}]}],"member":"1968","published-online":{"date-parts":[[2021,3,31]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Xu, F., Li, X., Shi, Y., Li, L., Wang, W., He, L., and Liu, R. (2018). Recent Developments for Flexible Pressure Sensors: A Review. Micromachines, 9.","DOI":"10.3390\/mi9110580"},{"key":"ref_2","doi-asserted-by":"crossref","unstructured":"Wan, Q., Zhao, H., Li, J., and Xu, P. (2021). Hip Positioning and Sitting Posture Recognition Based on Human Sitting Pressure Image. Sensors, 21.","DOI":"10.3390\/s21020426"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"112451","DOI":"10.1016\/j.sna.2020.112451","article-title":"Smart-Cover: A real time sitting posture monitoring system","volume":"317","author":"Anwary","year":"2021","journal-title":"Sens. Actuator A Phys."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"2000155","DOI":"10.1002\/admt.202000155","article-title":"Fully-Textile Seam-Line Sensors for Facile Textile Integration and Tunable Multi-Modal Sensing of Pressure, Humidity, and Wetness","volume":"5","author":"Agcayazi","year":"2020","journal-title":"Adv. Mater. Technol."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"2000441","DOI":"10.1002\/admt.202000441","article-title":"Low-Cost Fabrication Method for Thin, Flexible, and Transparent Touch Screen Sensors","volume":"5","author":"Kim","year":"2020","journal-title":"Adv. Mater. Technol."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"9724","DOI":"10.1109\/JSEN.2020.2992484","article-title":"Realization of Multistage Detection Sensitivity and Dynamic Range in Capacitive Tactile Sensors","volume":"20","author":"Zhang","year":"2020","journal-title":"IEEE Sens. J."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"105759","DOI":"10.1016\/j.orgel.2020.105759","article-title":"A flexible capacitive pressure sensor based on an electrospun polyimide nanofiber membrane","volume":"84","author":"Zhu","year":"2020","journal-title":"Org. Electron."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1007\/s10853-020-05309-8","article-title":"A new approach for an ultra-thin piezoresistive sensor based on solidified carbon ink film","volume":"56","author":"Yi","year":"2021","journal-title":"J. Mater. Sci."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"10485","DOI":"10.1109\/JSEN.2020.2994264","article-title":"Design, Development and Characterization of Textile Stitch-Based Piezoresistive Sensors for Wearable Monitoring","volume":"20","author":"Choudhry","year":"2020","journal-title":"IEEE Sens. J."},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Pizarro, F., Villavicencio, P., Yunge, D., Rodr\u00edguez, M., Hermosilla, G., and Leiva, A. (2018). Easy-to-Build Textile Pressure Sensor. Sensors, 18.","DOI":"10.3390\/s18041190"},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Ullrich, J., Eisenreich, M., Zimmermann, Y., Mayer, D., Koehne, N., Tschannett, J.F., Mahmud-Ali, A., and Bechtold, T. (2020). Piezo-Sensitive Fabrics from Carbon Black Containing Conductive Cellulose Fibres for Flexible Pressure Sensors. Materials, 13.","DOI":"10.3390\/ma13225150"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.jare.2020.07.001","article-title":"A review of flexible force sensors for human health monitoring","volume":"26","author":"Cheng","year":"2020","journal-title":"J. Adv. Res."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"954","DOI":"10.1088\/0022-3735\/20\/8\/002","article-title":"Multiplexed and distributed optical fibre sensor systems","volume":"20","author":"Dakin","year":"1987","journal-title":"J. Phys. E Sci. Instrum."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"R75","DOI":"10.1088\/0957-0233\/10\/8\/201","article-title":"Distributed optical-fibre sensing","volume":"10","author":"Rogers","year":"1999","journal-title":"Meas. Sci. Technol."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.sna.2012.05.045","article-title":"Multi-point force sensor based on crossed optical fibers","volume":"183","author":"Pirozzi","year":"2012","journal-title":"Sens. Actuator A Phys."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"2443","DOI":"10.1364\/OE.22.002443","article-title":"A miniature reflective micro-force sensor based on a microfiber coupler","volume":"22","author":"Chen","year":"2014","journal-title":"Opt. Express"},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Parker, H.E., Perperidis, A., Karam-Eldaly, A., Altmann, Y., Dhaliwal, K., Thomson, R.R., McLaughlin, S., and Tanner, M.G. (2019). Characterising cross-coupling in coherent fibre bundles. European Conference on Biomedical Optics, Optical Society of America.","DOI":"10.1117\/12.2527054"},{"key":"ref_18","doi-asserted-by":"crossref","unstructured":"Pl\u00fcmpe, M., Beckers, M., Mecnika, V., Seide, G., Gries, T., and Bunge, C.A. (2017). Applications of polymer-optical fibres in sensor technology, lighting and further applications. Polymer Optical Fibres, Elsevier.","DOI":"10.1016\/B978-0-08-100039-7.00009-9"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1016\/0925-4005(91)85005-4","article-title":"Two-dimensional contour imaging with a fiber optic microbend tactile sensor array","volume":"3","author":"Emge","year":"1991","journal-title":"Sens. Actuator B Chem."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1016\/0250-6874(89)80122-2","article-title":"A fiber optic microbend tactile sensor array","volume":"20","author":"Jenstrom","year":"1989","journal-title":"Sens. Actuator"},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Schoenwald, J., Thiele, A., and Gjellum, D. (April, January 31). A novel fiber optic tactile array sensor. Proceedings of the 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, USA.","DOI":"10.1117\/12.937509"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.yofte.2018.02.001","article-title":"Polymer optical fiber strain gauge for human-robot interaction forces assessment on an active knee orthosis","volume":"41","author":"Frizera","year":"2018","journal-title":"Opt. Fiber Technol."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/j.yofte.2008.06.009","article-title":"An evaluation of the optical fiber beam as a force sensor","volume":"15","author":"Kulkarni","year":"2009","journal-title":"Opt. Fiber Technol."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"7548","DOI":"10.1109\/JSEN.2020.2985328","article-title":"Textile Multitouch Force-Sensor Array Based on Circular and Non-Circular Polymer Optical Fibers","volume":"20","author":"Bunge","year":"2020","journal-title":"IEEE Sens. J."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"4318","DOI":"10.3390\/s8074318","article-title":"Textile pressure sensor made of flexible plastic optical fibers","volume":"8","author":"Rothmaier","year":"2008","journal-title":"Sensors"},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Deng, Y., Yang, T., Dai, S., and Song, G. (2020). A Miniature Triaxial Fiber Optic Force Sensor for Flexible Ureteroscopy. IEEE Trans. Biomed. Eng., 1.","DOI":"10.1109\/TBME.2020.3034336"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"13867","DOI":"10.1038\/s41598-020-70880-8","article-title":"Smart textiles for multimodal wearable sensing using highly stretchable multiplexed optical fiber system","volume":"10","author":"Avellar","year":"2020","journal-title":"Sci. Rep."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"127810","DOI":"10.1016\/j.matlet.2020.127810","article-title":"Low-cost and high-resolution pressure sensors using highly stretchable polymer optical fibers","volume":"271","author":"Campos","year":"2020","journal-title":"Mater. Lett."},{"key":"ref_29","doi-asserted-by":"crossref","unstructured":"Bunge, C.A., Kallweit, J., Colakoglu, L., and Gries, T. (2020, January 25\u201328). Fiber Cross-Coupling Mechanisms in Optical Pressure Sensor Arrays. Proceedings of the 2020 IEEE Sensors, Rotterdam, The Netherlands.","DOI":"10.1109\/SENSORS47125.2020.9278930"},{"key":"ref_30","unstructured":"Hertz, H. Verhandlungen des Vereins zur Bef\u00f6rderung des Gewerbe Fleisses 61 (1882) 449, G. Hidethier."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"2140","DOI":"10.1016\/j.solener.2010.08.012","article-title":"Hybrid solar concentrator with zero self-absorption loss","volume":"84","author":"Wu","year":"2010","journal-title":"Sol. Energy"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"422","DOI":"10.1016\/0168-9002(95)00383-5","article-title":"Scintillating fibres","volume":"364","author":"Leutz","year":"1995","journal-title":"Nucl. Instrum. Methods Phys. Res. Sec. A Accel. Spectrom. Detect. Assoc. Equip."},{"key":"ref_33","unstructured":"Bunge, C.A., Beckers, M., and Gries, T. (2016). Polymer Optical Fibres: Fibre Types, Materials, Fabrication, Characterisation and Applications, Woodhead Publishing."},{"key":"ref_34","unstructured":"Von Mises, R. (2014). Mathematical Theory of Probability and Statistics, Academic Press."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"5714","DOI":"10.1109\/JLT.2019.2938570","article-title":"Directed illumination by side-emitting fibers with trilobal cross section","volume":"37","author":"Bunge","year":"2019","journal-title":"J. Lightwave Technol."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/21\/7\/2402\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,10]],"date-time":"2024-07-10T11:29:06Z","timestamp":1720610946000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/21\/7\/2402"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3,31]]},"references-count":35,"journal-issue":{"issue":"7","published-online":{"date-parts":[[2021,4]]}},"alternative-id":["s21072402"],"URL":"https:\/\/doi.org\/10.3390\/s21072402","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,3,31]]}}}