{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T14:50:02Z","timestamp":1740149402716,"version":"3.37.3"},"reference-count":73,"publisher":"MDPI AG","issue":"3","license":[{"start":{"date-parts":[[2021,1,25]],"date-time":"2021-01-25T00:00:00Z","timestamp":1611532800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100009629","name":"Fondazione Cassa Di Risparmio Di Trento E Rovereto","doi-asserted-by":"publisher","award":["2018.0281"],"id":[{"id":"10.13039\/501100009629","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"The substrate plays a key role in chemoresistive gas sensors. It acts as mechanical support for the sensing material, hosts the heating element and, also, aids the sensing material in signal transduction. In recent years, a significant improvement in the substrate production process has been achieved, thanks to the advances in micro- and nanofabrication for micro-electro-mechanical system (MEMS) technologies. In addition, the use of innovative materials and smaller low-power consumption silicon microheaters led to the development of high-performance gas sensors. Various heater layouts were investigated to optimize the temperature distribution on the membrane, and a suspended membrane configuration was exploited to avoid heat loss by conduction through the silicon bulk. However, there is a lack of comprehensive studies focused on predictive models for the optimization of the thermal and mechanical properties of a microheater. In this work, three microheater layouts in three membrane sizes were developed using the microfabrication process. The performance of these devices was evaluated to predict their thermal and mechanical behaviors by using both experimental and theoretical approaches. Finally, a statistical method was employed to cross-correlate the thermal predictive model and the mechanical failure analysis, aiming at microheater design optimization for gas-sensing applications.<\/jats:p>","DOI":"10.3390\/s21030783","type":"journal-article","created":{"date-parts":[[2021,1,25]],"date-time":"2021-01-25T17:28:31Z","timestamp":1611595711000},"page":"783","source":"Crossref","is-referenced-by-count":30,"title":["Optimization of a Low-Power Chemoresistive Gas Sensor: Predictive Thermal Modelling and Mechanical Failure Analysis"],"prefix":"10.3390","volume":"21","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-6688-6161","authenticated-orcid":false,"given":"Andrea","family":"Gaiardo","sequence":"first","affiliation":[{"name":"MNF\u2014The Micro Nano characterization and fabrication Facility, Bruno Kessler Foundation, Via Sommarive 18, 38123 Trento, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4166-0676","authenticated-orcid":false,"given":"David","family":"Novel","sequence":"additional","affiliation":[{"name":"MNF\u2014The Micro Nano characterization and fabrication Facility, Bruno Kessler Foundation, Via Sommarive 18, 38123 Trento, Italy"}]},{"given":"Elia","family":"Scattolo","sequence":"additional","affiliation":[{"name":"MNF\u2014The Micro Nano characterization and fabrication Facility, Bruno Kessler Foundation, Via Sommarive 18, 38123 Trento, Italy"},{"name":"Faculty of Science and Technology, Free University of Bolzano-Bozen, Piazza Universit\u00e0 5, 39100 Bolzano, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6429-6731","authenticated-orcid":false,"given":"Michele","family":"Crivellari","sequence":"additional","affiliation":[{"name":"MNF\u2014The Micro Nano characterization and fabrication Facility, Bruno Kessler Foundation, Via Sommarive 18, 38123 Trento, Italy"}]},{"given":"Antonino","family":"Picciotto","sequence":"additional","affiliation":[{"name":"MNF\u2014The Micro Nano characterization and fabrication Facility, Bruno Kessler Foundation, Via Sommarive 18, 38123 Trento, Italy"}]},{"given":"Francesco","family":"Ficorella","sequence":"additional","affiliation":[{"name":"MNF\u2014The Micro Nano characterization and fabrication Facility, Bruno Kessler Foundation, Via Sommarive 18, 38123 Trento, Italy"}]},{"given":"Erica","family":"Iacob","sequence":"additional","affiliation":[{"name":"MNF\u2014The Micro Nano characterization and fabrication Facility, Bruno Kessler Foundation, Via Sommarive 18, 38123 Trento, Italy"}]},{"given":"Alessio","family":"Bucciarelli","sequence":"additional","affiliation":[{"name":"MST\u2014MicroSystem Technology Group, Bruno Kessler Foundation, Via Sommarive 18, 38123 Trento, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0264-7185","authenticated-orcid":false,"given":"Luisa","family":"Petti","sequence":"additional","affiliation":[{"name":"Faculty of Science and Technology, Free University of Bolzano-Bozen, Piazza Universit\u00e0 5, 39100 Bolzano, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2511-5643","authenticated-orcid":false,"given":"Paolo","family":"Lugli","sequence":"additional","affiliation":[{"name":"Faculty of Science and Technology, Free University of Bolzano-Bozen, Piazza Universit\u00e0 5, 39100 Bolzano, Italy"}]},{"given":"Alvise","family":"Bagolini","sequence":"additional","affiliation":[{"name":"MNF\u2014The Micro Nano characterization and fabrication Facility, Bruno Kessler Foundation, Via Sommarive 18, 38123 Trento, Italy"}]}],"member":"1968","published-online":{"date-parts":[[2021,1,25]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1007\/BF00223722","article-title":"Towards the detection and attribution of an anthropogenic effect on climate","volume":"12","author":"Santer","year":"1995","journal-title":"Clim. Dyn."},{"key":"ref_2","unstructured":"Soloman, S. (2009). Sensors Handbook, McGraw-Hill, Inc.. [2nd ed.]."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1007\/s12566-010-0015-9","article-title":"Advances in structure elucidation of small molecules using mass spectrometry","volume":"2","author":"Kind","year":"2010","journal-title":"Bioanal. Rev."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1002\/mas.20119","article-title":"Measurements of volatile organic compounds in the earth\u2019s atmosphere using proton-transfer-reaction mass spectrometry","volume":"26","author":"Warneke","year":"2007","journal-title":"Mass Spectrom. Rev."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1016\/S0003-2670(01)82590-3","article-title":"Chemiluminescence in analytical chemistry","volume":"68","author":"Isacsson","year":"1974","journal-title":"Anal. Chim. Acta"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/S0143-8166(01)00092-6","article-title":"Near- and mid-infrared laser-optical sensors for gas analysis","volume":"37","author":"Werle","year":"2002","journal-title":"Opt. Laser Eng."},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Comini Elisabetta Faglia, G., and Sberveglieri, G. (2008). Solid State Gas Sensing, Springer Science & Business Media.","DOI":"10.1007\/978-0-387-09665-0"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"037570","DOI":"10.1149\/1945-7111\/ab729c","article-title":"Editors\u2032 Choice-Critical Review\u2014A Critical Review of Solid State Gas Sensors","volume":"167","author":"Hunter","year":"2020","journal-title":"J. Electrochem. Soc."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/chemosensors3010001","article-title":"First fifty years of chemoresistive gas sensors","volume":"3","author":"Neri","year":"2015","journal-title":"Chemosensors"},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Rackauskas, S., Barbero, N., Barolo, C., and Viscardi, G. (2017). ZnO nanowire application in chemoresistive sensing: A review. Nanomaterials, 7.","DOI":"10.3390\/nano7110381"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.snb.2012.10.031","article-title":"Sensing behavior of SnO2\/reduced graphene oxide nanocomposites toward NO2","volume":"179","author":"Neri","year":"2013","journal-title":"Sens. Actuators B Chem."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"115938","DOI":"10.1016\/j.trac.2020.115938","article-title":"Advances in electrospun nanofiber fabrication for polyaniline (PANI)-based chemoresistive sensors for gaseous ammonia","volume":"129","author":"Kumar","year":"2020","journal-title":"Trends Analyt. Chem."},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Bertoni, C., Naclerio, P., Viviani, E., Dal Zilio, S., Carrato, S., and Fraleoni-Morgera, A. (2019). Nanostructured p3ht as a promising sensing element for real-time, dynamic detection of gaseous acetone. Sensors, 19.","DOI":"10.3390\/s19061296"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"2537","DOI":"10.1002\/adfm.201500314","article-title":"When nanoparticles meet poly(ionic liquid)s: Chemoresistive CO2 sensing at room temperature","volume":"25","author":"Willa","year":"2015","journal-title":"Adv. Funct. Mater."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"1085","DOI":"10.1016\/j.snb.2016.07.134","article-title":"ZnO and Au\/ZnO thin films: Room-temperature chemoresistive properties for gas sensing applications","volume":"237","author":"Gaiardo","year":"2016","journal-title":"Sens. Actuators B Chem."},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Gaiardo, A., Fabbri, B., Guidi, V., Bellutti, P., Giberti, A., Gherardi, S., Vanzetti, L., Malag\u00f9, C., and Zonta, G. (2016). Metal sulfides as sensing materials for chemoresistive gas sensors. Sensors, 16.","DOI":"10.3390\/s16030296"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"222102","DOI":"10.1063\/1.4881179","article-title":"Resonant photoactivation of cadmium sulfide and its effect on the surface chemical activity","volume":"104","author":"Giberti","year":"2014","journal-title":"Appl. Phys. Lett."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"6847","DOI":"10.1016\/j.ceramint.2019.11.178","article-title":"Reproducibility tests with zinc oxide thick-film sensors","volume":"46","author":"Zonta","year":"2020","journal-title":"Ceram. Int."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"15825","DOI":"10.1007\/s10854-019-02025-1","article-title":"Room temperature chemiresistive gas sensors: Challenges and strategies\u2014A mini review","volume":"30","author":"Srinivasan","year":"2019","journal-title":"J. Mater. Sci. Mater. Electron."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1007\/s00604-018-2750-5","article-title":"A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenide","volume":"185","author":"Joshi","year":"2018","journal-title":"Microchim. Acta"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"13108","DOI":"10.1039\/D0TC01968B","article-title":"Emerging 2D hybrid nanomaterials: Towards enhanced sensitive and selective conductometric gas sensors at room temperature","volume":"8","author":"Hashtroudi","year":"2020","journal-title":"J. Mater. Chem. C"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"127485","DOI":"10.1016\/j.snb.2019.127485","article-title":"Tunable formation of nanostructured SiC\/SiOC core-shell for selective detection of SO2","volume":"305","author":"Gaiardo","year":"2020","journal-title":"Sens. Actuators B Chem."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"138","DOI":"10.1016\/j.proeng.2015.08.586","article-title":"Metal sulfides as a new class of sensing materials","volume":"120","author":"Guidi","year":"2015","journal-title":"Procedia. Eng."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1016\/j.mseb.2017.12.036","article-title":"Semiconductor metal oxide gas sensors: A review","volume":"229","author":"Dey","year":"2018","journal-title":"Mat. Sci. Eng. B Adv."},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Degler, D. (2018). Trends and advances in the characterization of gas sensing materials based on semiconducting oxides. Sensors, 18.","DOI":"10.3390\/s18103544"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"127227","DOI":"10.1016\/j.snb.2019.127227","article-title":"Correlation of gaseous emissions to water stress in tomato and maize crops: From field to laboratory and back","volume":"303","author":"Fabbri","year":"2020","journal-title":"Sens. Actuators B Chem."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"127062","DOI":"10.1016\/j.snb.2019.127062","article-title":"Chemoresistive sensors for colorectal cancer preventive screening through fecal odor: Double-blind approach","volume":"301","author":"Zonta","year":"2019","journal-title":"Sens. Actuators B Chem."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"884","DOI":"10.1016\/j.snb.2018.01.225","article-title":"Use of Gas Sensors and FOBT for the Early Detection of Colorectal Cancer","volume":"262","author":"Zonta","year":"2018","journal-title":"Sens. Actuators B Chem."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"3325","DOI":"10.5194\/amt-7-3325-2014","article-title":"The next generation of low-cost personal air quality sensors for quantitative exposure monitoring","volume":"7","author":"Piedrahita","year":"2014","journal-title":"Atmos. Meas. Tech."},{"key":"ref_30","doi-asserted-by":"crossref","unstructured":"Gaiardo, A., Zonta, G., Gherardi, S., Malag\u00f9, C., Fabbri, B., Valt, M., Vanzetti, L., Landini, N., Casotti, D., and Cruciani, G. (2020). Nanostructured SmFeO3 gas sensors: Investigation of the gas sensing performance reproducibility for colorectal cancer screening. Sensors, 20.","DOI":"10.3390\/s20205910"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1016\/j.snb.2019.04.116","article-title":"Development of MEMS MOS gas sensors with CMOS compatible PECVD inter-metal passivation","volume":"292","author":"Bagolini","year":"2019","journal-title":"Sens. Actuators B Chem."},{"key":"ref_32","unstructured":"Ochiwa Shinichi (Fuji Electric Co Ltd.) (1991). Gas Sensor. (Number JPH03248054), Japanese Patent."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/S0925-4005(99)00054-4","article-title":"Screen-printed perovskite-type thick films as gas sensors for environmental monitoring","volume":"55","author":"Martinelli","year":"1999","journal-title":"Sens. Actuators B Chem."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0925-4005(00)00639-0","article-title":"Micromachined metal oxide gas sensors: Opportunities to improve sensor performance","volume":"73","author":"Simon","year":"2001","journal-title":"Sens. Actuators B Chem."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1016\/j.sna.2019.05.039","article-title":"Silicon microheater based low-power full-range methane sensing device","volume":"295","author":"Ma","year":"2019","journal-title":"Sens. Actuators A"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"1960","DOI":"10.1109\/JSEN.2018.2790001","article-title":"Modeling and Simulation of Novel Semiconducting Metal Oxide Gas Sensors for Wearable Devices","volume":"18","author":"Lahlalia","year":"2018","journal-title":"IEEE Sens. J."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"2580","DOI":"10.3390\/s110302580","article-title":"Development of micro-heaters with optimized temperature compensation design for gas sensors","volume":"11","author":"Hwang","year":"2011","journal-title":"Sensors"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"826","DOI":"10.1016\/j.snb.2005.07.057","article-title":"High-temperature low-power performing micromachined suspended micro-hotplate for gas sensing applications","volume":"114","author":"Belmonte","year":"2006","journal-title":"Sens. Actuators B Chem."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"589","DOI":"10.1109\/TDMR.2014.2311801","article-title":"Technological journey towards reliable microheater development for MEMS gas sensors: A review","volume":"14","author":"Bhattacharyya","year":"2014","journal-title":"IEEE Trans. Device Mat. Reliab."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"2185","DOI":"10.1007\/s00542-015-2609-1","article-title":"Low power highly sensitive platform for gas sensing application","volume":"22","author":"Prajesh","year":"2016","journal-title":"Microsyst. Technol."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1016\/j.sna.2015.07.016","article-title":"Optimization of power consumption for gas sensor nodes: A survey","volume":"233","author":"Baranov","year":"2015","journal-title":"Sens. Actuator A Phys."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1016\/0924-4247(92)80006-O","article-title":"A heated membrane for a capacitive gas sensor","volume":"32","author":"Hille","year":"1992","journal-title":"Sens. Actuators A"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1007\/s005420050078","article-title":"Silicon hotplates for metal oxide gas sensor elements","volume":"3","author":"Sberveglieri","year":"1997","journal-title":"Microsyst. Technol."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1088\/1742-6596\/15\/1\/005","article-title":"Design and simulation of resistive SOI CMOS micro-heaters for high temperature gas sensors","volume":"15","author":"Iwaki","year":"2005","journal-title":"J. Phys. Conf. Ser."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/S0026-2692(02)00153-2","article-title":"Design and optimisation of a high-temperature silicon micro-hotplate for nanoporous palladium pellistors","volume":"34","author":"Lee","year":"2003","journal-title":"Microelectron. Eng."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"482","DOI":"10.1016\/S0924-4247(97)80008-8","article-title":"Thermal analysis and design of a micro-hotplate for integrated gas-sensor applications","volume":"54","author":"Fung","year":"1996","journal-title":"Sens. Actuators A"},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"580","DOI":"10.1016\/j.ijthermalsci.2006.08.002","article-title":"Fabrication, modeling and testing of a thin film Au\/Ti microheater","volume":"46","author":"Zhang","year":"2007","journal-title":"Int. J. Therm. Sci."},{"key":"ref_48","unstructured":"USDOD (2017). Test Method Standard: Microcircuits, Military Standard 883K."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"238","DOI":"10.1007\/BF02410522","article-title":"A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems","volume":"43","author":"Srikar","year":"2003","journal-title":"Exp. Mech."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"3242","DOI":"10.1557\/JMR.1992.3242","article-title":"A new bulge test technique for the determination of Young\u2019s modulus and Poisson\u2019s ratio of thin films","volume":"7","author":"Vlassak","year":"1992","journal-title":"J. Mater. Res."},{"key":"ref_51","doi-asserted-by":"crossref","unstructured":"Gaspar, J., Ruther, P., and Paul, O. (2006). Mechanical characterization of thin-film composites using the load-deflection response of multilayer membranes-elastic and fracture properties. Mater. Res. Soc. Symp. Proc., 977.","DOI":"10.1557\/PROC-977-0977-FF08-08"},{"key":"ref_52","doi-asserted-by":"crossref","unstructured":"Fitzgerald, A.M., Pierce, D.M., and Benedikt, Z. (2010). \u201cPredicting reliability of silicon MEMS.\u201d Reliability, Packaging, Testing, and Characterization of MEMS\/MOEMS and Nanodevices IX, International Society for Optics and Photonics.","DOI":"10.1117\/12.845008"},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"4087","DOI":"10.1023\/A:1026317303377","article-title":"Probabilistic Weibull behavior and mechanical properties of MEMS brittle materials","volume":"38","author":"Jadaan","year":"2003","journal-title":"J. Mater. Sci."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1007\/s002160051490","article-title":"Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: A status report","volume":"365","author":"Barsan","year":"1999","journal-title":"Fresenius J. Anal. Chem."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"1445","DOI":"10.1016\/j.proeng.2014.11.721","article-title":"Gas sensor system for the determination of methane in water","volume":"87","author":"Vasiliev","year":"2014","journal-title":"Procedia. Eng."},{"key":"ref_56","unstructured":"(2020, December 27). Available online: https:\/\/cmm.fbk.eu\/en\/research\/mnf-micro-nano-facility\/."},{"key":"ref_57","unstructured":"R Core Team (2019). R: A Language and Environment for Statistical Computing, R Core Team."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"045002","DOI":"10.1088\/2058-8585\/abbb7e","article-title":"Precise Dot Inkjet Printing Thought Multifactorial Statistical Optimization of the Piezoelectric Actuator Waveform","volume":"5","author":"Bucciarelli","year":"2020","journal-title":"Flex. Print. Electron."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"6374","DOI":"10.1021\/acsbiomaterials.9b00814","article-title":"Preparation and Statistical Characterization of Tunable Porous Sponge Scaffolds Using UV Cross-Linking of Methacrylate-Modified Silk Fibroin","volume":"5","author":"Bucciarelli","year":"2019","journal-title":"ACS Biomater. Sci. Eng."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"1901134","DOI":"10.1002\/adfm.201901134","article-title":"A Thermal-Reflow-Based Low-Temperature, High-Pressure Sintering of Lyophilized Silk Fibroin for the Fast Fabrication of Biosubstrates","volume":"29","author":"Bucciarelli","year":"2019","journal-title":"Adv. Funct. Mater."},{"key":"ref_61","doi-asserted-by":"crossref","unstructured":"Bucciarelli, A., Adami, A., Chandaiahgari, C.R., and Lorenzelli, L. (2020, January 16\u201319). Multivariable Optimization of Inkjet Printing Process of Ag Nanoparticle Ink on Kapton. Proceedings of the 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Manchester, UK.","DOI":"10.1109\/FLEPS49123.2020.9239474"},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1007\/BF02427976","article-title":"Comparison of tensile and bulge tests for thin-film silicon nitride","volume":"44","author":"Edwards","year":"2004","journal-title":"Exp. Mech."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1016\/j.compstruct.2004.07.003","article-title":"A unified formulation to assess theories of multilayered plates for various bending problems","volume":"69","author":"Carrera","year":"2005","journal-title":"Compos. Struct."},{"key":"ref_64","first-page":"6489375","article-title":"RBF-Based Meshless Method for Large Deflection of Elastic Thin Rectangular Plates with Boundary Conditions Involving Free Edges","volume":"2016","year":"2016","journal-title":"Math. Probl. Eng."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"1669","DOI":"10.1038\/srep01669","article-title":"Fast-response, sensitivitive and low-powered chemosensors by fusing nanostructured porous thin film and IDEs-microheater chip","volume":"3","author":"Dai","year":"2013","journal-title":"Sci. Rep."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"1384","DOI":"10.1109\/JMEMS.2015.2399696","article-title":"Micromachined hotplate platform for the investigation of ink-jet printed, functionalized metal oxide nanoparticles","volume":"24","author":"Walden","year":"2015","journal-title":"J. Microelectromech. Syst."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"2137","DOI":"10.1016\/j.jeurceramsoc.2005.03.020","article-title":"Optimization of SnO2 screen-printing inks for gas sensor applications","volume":"25","author":"Viricelle","year":"2005","journal-title":"J. Eur. Ceram. Soc."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/S0925-4005(01)00679-7","article-title":"Development of a low-power thick-film gas sensor deposited by screen-printing technique onto a micromachined hotplate","volume":"77","author":"Vincenzi","year":"2001","journal-title":"Sens. Actuators B Chem."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"548","DOI":"10.1088\/0960-1317\/13\/5\/304","article-title":"Thermal and mechanical analysis of micromachined gas sensors","volume":"13","author":"Vogel","year":"2003","journal-title":"J. Micromech. Microeng."},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1016\/S0925-4005(01)00810-3","article-title":"Design and simulations of SOI CMOS micro-hotplate gas sensors","volume":"78","author":"Udrea","year":"2001","journal-title":"Sens. Actuators B Chem."},{"key":"ref_71","doi-asserted-by":"crossref","unstructured":"Gaiardo, A., Demenev, E., Bellutti, P., Dolci, C., Maestrini, A., Antonelli, F., and Miotto, V. (2020). New Chemoresistive Gas Sensor Arrays for Outdoor Air Quality Monitoring: A Combined R&D and Outreach Activities. ECS Meeting Abstracts, IOP Publishing.","DOI":"10.1149\/MA2020-01292203mtgabs"},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"618","DOI":"10.1016\/j.chemosphere.2018.04.154","article-title":"Bluetooth gas sensing module combined with smartphones for air quality monitoring","volume":"205","author":"Arroyo","year":"2018","journal-title":"Chemosphere"},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"103829","DOI":"10.1016\/j.nanoen.2019.06.025","article-title":"An integrated flexible self-powered wearable respiration sensor","volume":"63","author":"Wang","year":"2019","journal-title":"Nano Energy"}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/21\/3\/783\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T14:06:14Z","timestamp":1720361174000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/21\/3\/783"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1,25]]},"references-count":73,"journal-issue":{"issue":"3","published-online":{"date-parts":[[2021,2]]}},"alternative-id":["s21030783"],"URL":"https:\/\/doi.org\/10.3390\/s21030783","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2021,1,25]]}}}