{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T07:10:09Z","timestamp":1720336209959},"reference-count":51,"publisher":"MDPI AG","issue":"2","license":[{"start":{"date-parts":[[2021,1,13]],"date-time":"2021-01-13T00:00:00Z","timestamp":1610496000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001691","name":"Japan Society for the Promotion of Science","doi-asserted-by":"publisher","award":["19K23717","20K15753"],"id":[{"id":"10.13039\/501100001691","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Elucidation of cell-level transport mediated by vesicles within a living cell provides key information regarding viral infection processes and also drug delivery mechanisms. Although the single-particle tracking method has enabled clear analysis of individual vesicle trajectories, information regarding the entire cell-level intracellular transport is hardly obtainable, due to the difficulty in collecting a large dataset with current methods. In this paper, we propose a visualization method of vesicle transport using optical flow, based on geometric cell center estimation and vector analysis, for measuring the trafficking directions. As a quantitative visualization method for determining the intracellular transport status, the proposed method is expected to be universally exploited in various biomedical cell image analyses.<\/jats:p>","DOI":"10.3390\/s21020522","type":"journal-article","created":{"date-parts":[[2021,1,14]],"date-time":"2021-01-14T02:50:54Z","timestamp":1610592654000},"page":"522","source":"Crossref","is-referenced-by-count":5,"title":["Visualization Method for the Cell-Level Vesicle Transport Using Optical Flow and a Diverging Colormap"],"prefix":"10.3390","volume":"21","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0952-9547","authenticated-orcid":false,"given":"Seohyun","family":"Lee","sequence":"first","affiliation":[{"name":"Information Technology Center, Data Science Research Division, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan"}]},{"given":"Hyuno","family":"Kim","sequence":"additional","affiliation":[{"name":"Information Technology Center, Data Science Research Division, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan"}]},{"given":"Hideo","family":"Higuchi","sequence":"additional","affiliation":[{"name":"Department of Physics, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan"}]},{"given":"Masatoshi","family":"Ishikawa","sequence":"additional","affiliation":[{"name":"Information Technology Center, Data Science Research Division, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan"}]}],"member":"1968","published-online":{"date-parts":[[2021,1,13]]},"reference":[{"key":"ref_1","unstructured":"Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. (2002). Molecular Biology of the Cell, Garland Science. [4th ed.]."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1016\/j.tcb.2013.01.005","article-title":"Vesicle coats: Structure, function, and general principles of assembly","volume":"23","author":"Faini","year":"2013","journal-title":"Trends Cell Biol."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1038\/nrm883","article-title":"Signal transduction and endocytosis: Close encounters of many kinds","volume":"3","author":"Sorkin","year":"2002","journal-title":"Nat. Rev. Mol. Cell Biol."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"12844","DOI":"10.1128\/JVI.05853-11","article-title":"Microvesicles and viral infection","volume":"85","author":"Meckes","year":"2011","journal-title":"J. Virol."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"559","DOI":"10.1038\/nrmicro.2017.60","article-title":"Viral effects on the content and function of extracellular vesicles","volume":"15","author":"Dittmer","year":"2017","journal-title":"Nat. Rev. Microbiol."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"1385","DOI":"10.1016\/j.addr.2003.07.008","article-title":"Roles of the cytoskeleton and motor proteins in endocytic sorting","volume":"55","author":"Murray","year":"2003","journal-title":"Adv. Drug Deliv. Rev."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"308","DOI":"10.1038\/nature03528","article-title":"Mechanics of the kinesin step","volume":"435","author":"Carter","year":"2005","journal-title":"Nature"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"5741","DOI":"10.1073\/pnas.0508511103","article-title":"Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein","volume":"103","author":"Toba","year":"2006","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"4275","DOI":"10.1007\/s00018-013-1353-x","article-title":"Stiffness, working stroke, and force of single-myosin molecules in skeletal muscle: Elucidation of these mechanical properties via nonlinear elasticity evaluation","volume":"70","author":"Kaya","year":"2013","journal-title":"Cell. Mol. Life Sci."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.bbrc.2007.04.168","article-title":"Three-dimensional nanometry of vesicle transport in living cells using dual-focus imaging optics","volume":"359","author":"Watanabe","year":"2007","journal-title":"Biochem. Biophys. Res. Commun."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"3375","DOI":"10.1073\/pnas.1219206110","article-title":"Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections","volume":"110","author":"Vilanova","year":"2013","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"2203","DOI":"10.1016\/j.celrep.2017.02.008","article-title":"Coordinated movement of vesicles and actin bundles during nerve growth revealed by superresolution microscopy","volume":"18","author":"Nozumi","year":"2017","journal-title":"Cell Rep."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"16236","DOI":"10.1364\/OE.26.016236","article-title":"Numerical method for vesicle movement analysis in a complex cytoskeleton network","volume":"26","author":"Lee","year":"2018","journal-title":"Opt. Express"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"1904","DOI":"10.1242\/jcs.201178","article-title":"3D motion of vesicles along microtubules helps them to circumvent obstacles in cells","volume":"130","author":"Wehnekamp","year":"2017","journal-title":"J. Cell Sci."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"6611","DOI":"10.1364\/BOE.10.006611","article-title":"3D rotational motion of an endocytic vesicle on a complex microtubule network in a living cell","volume":"10","author":"Lee","year":"2019","journal-title":"Biomed. Opt. Express"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"1151","DOI":"10.1021\/acs.langmuir.7b02804","article-title":"Single-Janus rod tracking reveals the \u201cRock-and-Roll\u201d of endosomes in living cells","volume":"34","author":"Gao","year":"2018","journal-title":"Langmuir"},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Lee, S., Kim, H., Ishikawa, M., and Higuchi, H. (2019, January 11\u201313). 3D Nanoscale Tracking Data Analysis for Intracellular Organelle Movement using Machine Learning Approach. Proceedings of the 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Okinawa, Japan.","DOI":"10.1109\/ICAIIC.2019.8669003"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1007\/BF01420984","article-title":"Performance of optical flow techniques","volume":"12","author":"Barron","year":"1994","journal-title":"Int. J. Comput. Vis."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"675","DOI":"10.1007\/s00138-011-0362-8","article-title":"Performance of optical flow techniques for motion analysis of fluorescent point signals in confocal microscopy","volume":"23","author":"Delpiano","year":"2012","journal-title":"Mach. Vis. Appl."},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Miura, K. (2005). Tracking movement in cell biology. Microscopy Techniques, Springer.","DOI":"10.1007\/b102218"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.cviu.2015.02.008","article-title":"Optical flow modeling and computation: A survey","volume":"134","author":"Fortun","year":"2015","journal-title":"Comput. Vis. Image Underst."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1093\/bioinformatics\/bts706","article-title":"Fast and robust optical flow for time-lapse microscopy using super-voxels","volume":"29","author":"Amat","year":"2013","journal-title":"Bioinformatics"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"3079","DOI":"10.1529\/biophysj.108.135657","article-title":"Measurement of instantaneous velocity vectors of organelle transport: Mitochondrial transport and bioenergetics in hippocampal neurons","volume":"95","author":"Gerencser","year":"2008","journal-title":"Biophys. J."},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Nedzved, O., Jin, L., Nedzved, A., Lin, W., Ablameyko, S., and Xu, Y. (2019). Automatic Analysis of Moving Particles by Total Internal Reflection Fluorescence Microscopy. International Conference on Pattern Recognition and Information Processing, Springer.","DOI":"10.1007\/978-3-030-35430-5_19"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-017-10094-7","article-title":"Optical-flow based non-invasive analysis of cardiomyocyte contractility","volume":"7","author":"Czirok","year":"2017","journal-title":"Sci. Rep."},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Fortun, D., Bouthemy, P., Paul-Gilloteaux, P., and Kervrann, C. (2013, January 7\u201311). Aggregation of patch-based estimations for illumination-invariant optical flow in live cell imaging. Proceedings of the 2013 IEEE 10th International Symposium on Biomedical Imaging, San Francisco, CA, USA.","DOI":"10.1109\/ISBI.2013.6556561"},{"key":"ref_27","first-page":"112541J","article-title":"Optical flow of vesicles: Computer vision approach for endocytosis of nanoparticles in a living cell","volume":"Volume 11254","author":"Lee","year":"2020","journal-title":"Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVII"},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Lee, S., Kim, H., Higuchi, H., and Ishikawa, M. (2020, January 9\u20131). Visualization and Data Analysis for Intracellular Transport using Computer Vision Techniques. Proceedings of the 2020 IEEE Sensors Applications Symposium (SAS), Kuala Lumpur, Malaysia.","DOI":"10.1109\/SAS48726.2020.9220026"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"707","DOI":"10.1038\/sj.bjc.6690114","article-title":"Isolation and characterization of a new human breast cancer cell line, KPL-4, expressing the Erb B family receptors and interleukin-6","volume":"79","author":"Kurebayashi","year":"1999","journal-title":"Br. J. Cancer"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"138","DOI":"10.1093\/toxsci\/kfp087","article-title":"Mechanisms of quantum dot nanoparticle cellular uptake","volume":"110","author":"Zhang","year":"2009","journal-title":"Toxicol. Sci."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1186\/1477-3155-8-13","article-title":"Dynamics and mechanisms of quantum dot nanoparticle cellular uptake","volume":"8","author":"Xiao","year":"2010","journal-title":"J. Nanobiotechnol."},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Lee, S., Kim, H., and Higuchi, H. (2018, January 12\u201314). Focus stabilization by axial position feedback in biomedical imaging microscopy. Proceedings of the 2018 IEEE Sensors Applications Symposium (SAS), Seoul, Korea.","DOI":"10.1109\/SAS.2018.8336767"},{"key":"ref_33","unstructured":"Lucas, B.D., and Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. The Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI8), Morgan Kaufmann Publishers."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1117\/12.965761","article-title":"Determining optical flow","volume":"Volume 281","author":"Horn","year":"1981","journal-title":"Techniques and Applications of Image Understanding"},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Farneb\u00e4ck, G. (2003). Two-frame motion estimation based on polynomial expansion. Scandinavian Conference on Image Analysis, Springer.","DOI":"10.1007\/3-540-45103-X_50"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1023\/B:VISI.0000011205.11775.fd","article-title":"Lucas-kanade 20 years on: A unifying framework","volume":"56","author":"Baker","year":"2004","journal-title":"Int. J. Comput. Vis."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"1074","DOI":"10.1109\/TIP.2005.851688","article-title":"Optical flow estimation using temporally oversampled video","volume":"14","author":"Lim","year":"2005","journal-title":"IEEE Trans. Image Process."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"2520","DOI":"10.1007\/s10439-010-0005-7","article-title":"Mapping the spatiotemporal dynamics of calcium signaling in cellular neural networks using optical flow","volume":"38","author":"Buibas","year":"2010","journal-title":"Ann. Biomed. Eng."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"R525","DOI":"10.1016\/j.cub.2004.06.045","article-title":"Bidirectional transport along microtubules","volume":"14","author":"Welte","year":"2004","journal-title":"Curr. Biol."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"422","DOI":"10.1126\/science.1209037","article-title":"The centrosome in cells and organisms","volume":"335","author":"Bornens","year":"2012","journal-title":"Science"},{"key":"ref_41","first-page":"36","article-title":"Image processing with ImageJ","volume":"11","author":"Ram","year":"2004","journal-title":"Biophotonics Int."},{"key":"ref_42","first-page":"1","article-title":"Representing attitude: Euler angles, unit quaternions, and rotation vectors","volume":"58","author":"Diebel","year":"2006","journal-title":"Matrix"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"1464","DOI":"10.1016\/S0360-3016(03)00430-9","article-title":"The design and testing of novel clinical parameters for dose comparison","volume":"56","author":"Childress","year":"2003","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"key":"ref_44","doi-asserted-by":"crossref","unstructured":"Bergstr\u00f6m, N., and Ishikawa, M. (2013, January 3\u20137). 1 ms tracking of target boundaries using contour propagation. Proceedings of the 2013 IEEE\/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan.","DOI":"10.1109\/IROS.2013.6696656"},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Sekh, A.A., Opstad, I.S., Birgisdottir, A.B., Myrmel, T., Ahluwalia, B.S., Agarwal, K., and Prasad, D.K. (2020, January 13\u201319). Learning Nanoscale Motion Patterns of Vesicles in Living Cells. Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA.","DOI":"10.1109\/CVPR42600.2020.01403"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1007\/BF00133570","article-title":"Snakes: Active contour models","volume":"1","author":"Kass","year":"1988","journal-title":"Int. J. Comput. Vis."},{"key":"ref_47","doi-asserted-by":"crossref","unstructured":"Lee, S., Kim, H., and Higuchi, H. (2020). Extended Dual-Focus Microscopy for Ratiometric-Based 3D Movement Tracking. Appl. Sci., 10.","DOI":"10.3390\/app10186243"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1021\/nl4041093","article-title":"Direct observation of heterogeneous amyloid fibril growth kinetics via two-color super-resolution microscopy","volume":"14","author":"Pinotsi","year":"2014","journal-title":"Nano Lett."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"4846","DOI":"10.1021\/acs.jpclett.7b02147","article-title":"CREIM: Coffee ring effect imaging model for monitoring protein self-assembly in situ","volume":"8","author":"Shaw","year":"2017","journal-title":"J. Phys. Chem. Lett."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1038\/nmeth.3257","article-title":"A sensor for quantification of macromolecular crowding in living cells","volume":"12","author":"Boersma","year":"2015","journal-title":"Nat. Methods"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1016\/j.jsb.2005.06.002","article-title":"Feature point tracking and trajectory analysis for video imaging in cell biology","volume":"151","author":"Sbalzarini","year":"2005","journal-title":"J. Struct. Biol."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/21\/2\/522\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T06:39:38Z","timestamp":1720334378000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/21\/2\/522"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1,13]]},"references-count":51,"journal-issue":{"issue":"2","published-online":{"date-parts":[[2021,1]]}},"alternative-id":["s21020522"],"URL":"https:\/\/doi.org\/10.3390\/s21020522","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,1,13]]}}}