{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,18]],"date-time":"2025-04-18T13:44:30Z","timestamp":1744983870404,"version":"3.37.3"},"reference-count":50,"publisher":"MDPI AG","issue":"22","license":[{"start":{"date-parts":[[2020,11,19]],"date-time":"2020-11-19T00:00:00Z","timestamp":1605744000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Spain is Europe\u2019s leading exporter of tomatoes harvested in greenhouses. The production of tomatoes should be kept and increased, supported by precision agriculture to meet food and commercial demand. The wireless sensor network (WSN) has demonstrated to be a tool to provide farmers with useful information on the state of their plantations due to its practical deployment. However, in order to measure its deployment within a crop, it is necessary to know the communication coverage of the nodes that make up the network. The multipath propagation of radio waves between the transceivers of the WSN nodes inside a greenhouse is degraded and attenuated by the intricate complex of stems, branches, leaf twigs, and fruits, all randomly oriented, that block the line of sight, consequently generating a signal power loss as the distance increases. Although the COST235 (European Cooperation in Science and Technology - COST), ITU-R (International Telecommunications Union\u2014Radiocommunication Sector), FITU-R (Fitted ITU-R), and Weisbberger models provide an explanation of the radio wave propagation in the presence of vegetation in the 2.4 GHz ICM band, some significant discrepancies were found when they are applied to field tests with tomato greenhouses. In this paper, a novel method is proposed for determining an empirical model of radio wave attenuation for vegetation in the 2.4 GHz band, which includes the vegetation height as a parameter in addition to the distance between transceivers of WNS nodes. The empirical attenuation model was obtained applying regularized regressions with a multiparametric equation using experimental signal RSSI measurements achieved by our own RSSI measurement system for our field tests in four plantations. The evaluation parameters gave 0.948 for R2, 0.946 for R2 Adj considering 5th grade polynomial (20 parameters), and 0.942 for R2, and 0.940 for R2 Adj when a reduction of parameters was applied using the cross validation (15 parameters). These results verify the rationality and reliability of the empirical model. Finally, the model was validated considering experimental data from other plantations, reaching similar results to our proposed model.<\/jats:p>","DOI":"10.3390\/s20226621","type":"journal-article","created":{"date-parts":[[2020,11,19]],"date-time":"2020-11-19T11:23:52Z","timestamp":1605785032000},"page":"6621","source":"Crossref","is-referenced-by-count":20,"title":["Empirical Model of Radio Wave Propagation in the Presence of Vegetation inside Greenhouses Using Regularized Regressions"],"prefix":"10.3390","volume":"20","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-0726-196X","authenticated-orcid":false,"given":"Dora","family":"Cama-Pinto","sequence":"first","affiliation":[{"name":"Department of Computer Architecture and Technology, University of Granada, 18071 Granada, Spain"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2599-8076","authenticated-orcid":false,"given":"Miguel","family":"Damas","sequence":"additional","affiliation":[{"name":"Department of Computer Architecture and Technology, University of Granada, 18071 Granada, Spain"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8031-1276","authenticated-orcid":false,"given":"Juan Antonio","family":"Holgado-Terriza","sequence":"additional","affiliation":[{"name":"Software Engineering Department, University of Granada, 18071 Granada, Spain"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5510-6297","authenticated-orcid":false,"given":"Francisco Manuel","family":"Arrabal-Campos","sequence":"additional","affiliation":[{"name":"Department Engineering, University of Almeria, Ctra. Sacramento, s\/n, 04120 La Ca\u00f1ada, Spain"}]},{"given":"Francisco","family":"G\u00f3mez-Mula","sequence":"additional","affiliation":[{"name":"Department of Computer Architecture and Technology, University of Granada, 18071 Granada, Spain"}]},{"given":"Juan Antonio Mart\u00ednez","family":"Mart\u00ednez-Lao","sequence":"additional","affiliation":[{"name":"Department Engineering, University of Almeria, Ctra. Sacramento, s\/n, 04120 La Ca\u00f1ada, Spain"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1364-7394","authenticated-orcid":false,"given":"Alejandro","family":"Cama-Pinto","sequence":"additional","affiliation":[{"name":"Faculty of Engineering, Universidad de la Costa, Calle 58 # 55\u201366, 080002 Atlantico, Colombia"}]}],"member":"1968","published-online":{"date-parts":[[2020,11,19]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"2048","DOI":"10.1109\/LCOMM.2018.2863389","article-title":"Path Loss Model for UAV-Assisted RFET","volume":"22","author":"Suman","year":"2018","journal-title":"IEEE Commun. Lett."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1016\/j.compag.2018.01.004","article-title":"Monitoring system for agronomic variables based in WSN technology on cassava crops","volume":"145","year":"2018","journal-title":"Comput. Electron. Agric."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"552","DOI":"10.1016\/j.enconman.2019.01.109","article-title":"Wind missing data arrangement using wavelet based techniques for getting maximum likelihood","volume":"185","author":"Montoya","year":"2019","journal-title":"Energy Convers. Manag."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"105835","DOI":"10.1016\/j.dib.2020.105835","article-title":"Data supporting the reconstruction study of missing wind speed logs using wavelet techniques for getting maximum likelihood","volume":"31","year":"2020","journal-title":"Data Brief"},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Hamasaki, T. (2019, January 28\u201330). Propagation Characteristics of A 2.4 GHz Wireless Sensor Module with A Pattern Antenna in Forestry and Agriculture Field. Proceedings of the 2019 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Nanjing, China.","DOI":"10.1109\/RFIT.2019.8929207"},{"key":"ref_6","first-page":"2584","article-title":"6LoWSoft: A software suite for the design of outdoor environmental measurements","volume":"11","author":"Montoya","year":"2013","journal-title":"J. Food Agric. Environ."},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Picallo, I., Klaina, H., Lopez-Iturri, P., Aguirre, E., Celaya-Echarri, M., Azpilicueta, L., Eguiz\u00e1bal, A., Falcone, F., and Alejos, A. (2019). A radio channel model for D2D communications blocked by single trees in forest environments. Sensors, 19.","DOI":"10.3390\/s19214606"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1007\/978-3-319-26925-2_18","article-title":"A novel data dissemination model for organic data flows","volume":"Volume 158","author":"Foerster","year":"2015","journal-title":"Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering"},{"key":"ref_9","first-page":"585","article-title":"Design of a monitoring network of meteorological variables related to tornadoes in Barranquilla-Colombia and its metropolitan area","volume":"25","year":"2017","journal-title":"Ingeniare"},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Cama-Pinto, A., Pi\u00f1eres-Espitia, G., Caicedo-Ortiz, J., Ram\u00edrez-Cerpa, E., Betancur-Agudelo, L., and G\u00f3mez-Mula, F. (2017). Received strength signal intensity performance analysis in wireless sensor network using Arduino platform and XBee wireless modules. Int. J. Distrib. Sens. Netw., 13.","DOI":"10.1177\/1550147717722691"},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Brinkhoff, J., and Hornbuckle, J. (2017, January 11\u201313). Characterization of WiFi signal range for agricultural WSNs. Proceedings of the 2017 23rd Asia-Pacific Conference on Communications: Bridging the Metropolitan and the Remote, (APCC), Perth, Australia.","DOI":"10.23919\/APCC.2017.8304043"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.compag.2013.08.028","article-title":"A monitoring system for intensive agriculture based on mesh networks and the android system","volume":"99","author":"Montoya","year":"2013","journal-title":"Comput. Electron. Agric."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"151","DOI":"10.3923\/ajsr.2018.151.161","article-title":"Wireless sensor network (WSN) applications in plantation canopy areas: A review","volume":"11","author":"Ramli","year":"2018","journal-title":"Asian J. Sci. Res."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"3443","DOI":"10.1109\/COMST.2019.2934365","article-title":"Toward the Internet of Underground Things: A Systematic Survey","volume":"21","author":"Saeed","year":"2019","journal-title":"IEEE Commun. Surv. Tutor."},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Razafimandimby, C., Loscr\u00ed, V., Vegni, A.M., and Neri, A. (2017, January 24\u201327). Efficient Bayesian communication approach for smart agriculture applications. Proceedings of the IEEE Vehicular Technology Conference, Toronto, ON, Canada.","DOI":"10.1109\/VTCFall.2017.8288147"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"43","DOI":"10.2528\/PIERC18062903","article-title":"Radio propagation measurement and characterization in outdoor tall food grass agriculture field for wireless sensor network at 2.4 GHz band","volume":"88","author":"Srisooksai","year":"2018","journal-title":"Prog. Electromagn. Res. C"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"164","DOI":"10.15446\/dyna.v81n184.37034","article-title":"Wireless surveillance sytem for greenhouse crops","volume":"81","year":"2014","journal-title":"DYNA"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1016\/j.jclepro.2019.04.347","article-title":"Precision irrigation perspectives on the sustainable water-saving of field crop production in China: Water demand prediction and irrigation scheme optimization","volume":"230","author":"Peng","year":"2019","journal-title":"J. Clean. Prod."},{"key":"ref_19","unstructured":"Peng, X., Ye, T., and Wang, Y. (2018, January 9\u201311). Research and design of precision irrigation system based on artificial neural network. Proceedings of the 30th Chinese Control and Decision Conference, CCDC 2018, Shenyang, China."},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Li, Z., Sun, Z., Singh, T., and Oware, E. (2019, January 9\u201313). Large range soil moisture sensing for inhomogeneous environments using magnetic induction networks. Proceedings of the 2019 IEEE Global Communications Conference, (GLOBECOM), Waikoloa, HI, USA.","DOI":"10.1109\/GLOBECOM38437.2019.9013318"},{"key":"ref_21","first-page":"e01037","article-title":"Public policies for sustainability and water security: The case of Almeria (Spain)","volume":"23","year":"2020","journal-title":"Glob. Ecol. Conserv."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"110389","DOI":"10.1016\/j.jenvman.2020.110389","article-title":"Covering plastic films in greenhouses system: A GIS-based model to improve post use suistainable management","volume":"263","author":"Parlato","year":"2020","journal-title":"J. Environ. Manag."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"106395","DOI":"10.1016\/j.agwat.2020.106395","article-title":"Minimizing water and nutrient losses from soilless cropping in southern Europe","volume":"241","author":"Massa","year":"2020","journal-title":"Agric. Water Manag."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"139375","DOI":"10.1016\/j.scitotenv.2020.139375","article-title":"Analysis of urban agriculture solid waste in the frame of circular economy: Case study of tomato crop in integrated rooftop greenhouse","volume":"734","author":"Gabarrell","year":"2020","journal-title":"Sci. Total Environ."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"109197","DOI":"10.1016\/j.ecolmodel.2020.109197","article-title":"Comparative study of two predatory mites Amblyseius swirskii Athias-Henriot and Transeius montdorensis (Schicha) by predator-prey models for improving biological control of greenhouse cucumber","volume":"431","author":"Cabello","year":"2020","journal-title":"Ecol. Model."},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Cama-Pinto, D., Damas, M., Holgado-Terriza, J.A., G\u00f3mez-Mula, F., and Cama-Pinto, A. (2019). Path loss determination using linear and cubic regression inside a classic tomato greenhouse. Int. J. Environ. Res. Public Health, 16.","DOI":"10.3390\/ijerph16101744"},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Echarri, M.C., Azpilicueta, L., Iturri, P.L., Aguirre, E., and Falcone, F. (2019). Performance evaluation and interference characterization of wireless sensor networks for complex high-node density scenarios. Sensors, 19.","DOI":"10.3390\/s19163516"},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Rahim, H.M., Leow, C.Y., Rahman, T.A., Arsad, A., and Malek, M.A. (2017, January 28\u201330). Foliage attenuation measurement at millimeter wave frequencies in tropical vegetation. Proceedings of the 2017 IEEE 13th Malaysia International Conference on Communications (MICC), Johor Bahru, Malaysia.","DOI":"10.1109\/MICC.2017.8311766"},{"key":"ref_29","unstructured":"Yang, S., Zhang, J., and Zhang, J. (2019, January 27\u201330). Impact of Foliage on Urban MmWave Wireless Propagation Channel: A Ray-tracing Based Analysis. Proceedings of the 2019 International Symposium on Antennas and Propagation (ISAP), Xi\u2019an, China."},{"key":"ref_30","unstructured":"Caicedo, J.G., Acosta, M., and Cama-Pinto, A. (2015). WSN deployment model for measuring climate variables that cause strong precipitation. Prospectiva."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1016\/j.procs.2019.01.123","article-title":"Cross-polarization effect of radio waves propagation by forest vegetation in wireless communication systems on transport","volume":"149","author":"Popov","year":"2019","journal-title":"Procedia Comput. Sci."},{"key":"ref_32","first-page":"552","article-title":"Influences of parts of tree on propagation path losses for wsn deployment in greenhouse environments","volume":"81","author":"Raheemah","year":"2015","journal-title":"J. Theor. Appl. Inf. Technol."},{"key":"ref_33","first-page":"251","article-title":"Propagation characteristics of 2.4 GHz radio wave in greenhouse of green peppers","volume":"45","author":"Li","year":"2014","journal-title":"Nongye Jixie Xuebao\/Trans. Chin. Soc. Agric. Mach."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"454","DOI":"10.1016\/j.biosystemseng.2012.08.011","article-title":"Influence of foliage on radio path losses (PLs) for Wireless Sensor Network (WSN) planning in orchards","volume":"114","author":"Vougioukas","year":"2013","journal-title":"Biosyst. Eng."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"553","DOI":"10.1016\/j.compag.2016.07.011","article-title":"New empirical path loss model for wireless sensor networks in mango greenhouses","volume":"127","author":"Raheemah","year":"2016","journal-title":"Comput. Electron. Agric."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Montero, O.R., and Araque, J.L. (2018, January 10\u201314). Approximate modeling of Electromagnetic Propagation through Vegetation. Proceedings of the 2018 8th IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Cartagena des Indias, Colombia.","DOI":"10.1109\/APWC.2018.8503668"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"6020","DOI":"10.1051\/matecconf\/201815006020","article-title":"Investigation of Empirical Wave Propagation Models in Precision Agriculture","volume":"150","author":"Sabri","year":"2018","journal-title":"MATEC Web Conf."},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Lytaev, M.S., and Vladyko, A.G. (2018, January 15\u201316). Split-step Pad\u00e9 Approximations of the Helmholtz Equation for Radio Coverage Prediction over Irregular Terrain. Proceedings of the 2018 Advances in Wireless and Optical Communications (RTUWO), Riga, Latvia.","DOI":"10.1109\/RTUWO.2018.8587886"},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Militaru, L.G., Popescu, D., Mateescu, C., and Ichim, L. (2018, January 10\u201313). Correlation between Distance and Frequency Bands in Hybrid Air-Ground Sensor Networks. Proceedings of the 5th International Conference on Control, Decision and Information Technologies (CoDIT), Thessaloniki, Greece.","DOI":"10.1109\/CoDIT.2018.8394859"},{"key":"ref_40","doi-asserted-by":"crossref","unstructured":"Granda, F., Azpilicueta, L., Vargas-Rosales, C., Lopez-Iturri, P., Aguirre, E., and Falcone, F. (2018, January 8\u201313). Integration of Wireless Sensor Networks in Intelligent Transportation Systems within Smart City Context. Proceedings of the 2018 IEEE Antennas and Propagation Society International Symposium and USNC\/URSI National Radio Science Meeting (APSURSI), Boston, MA, USA.","DOI":"10.1109\/APUSNCURSINRSM.2018.8608746"},{"key":"ref_41","doi-asserted-by":"crossref","unstructured":"Montero, O., Pantoja, J.J., Patino, M., Pineda, E., Martinez, D., Angel, G., Cruz, J., Suarez, M., and Vega, F. (2018, January 10\u201314). Attenuation of Radiofrequency Waves due to Vegetation in Colombia. Proceedings of the 2018 8th IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Cartagena des Indias, Colombia.","DOI":"10.1109\/APWC.2018.8503671"},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Shutimarrungson, N., and Wuttidittachotti, P. (2019). Realistic propagation effects on wireless sensor networks for landslide management. Eurasip J. Wirel. Commun. Netw., 94.","DOI":"10.1186\/s13638-019-1412-6"},{"key":"ref_43","unstructured":"Zolertia (2020, August 23). Re-Mote Datasheet. Available online: https:\/\/github.com\/Zolertia\/Resources\/wiki\/RE-Mote."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"153","DOI":"10.2528\/PIERB18100801","article-title":"Analysis of propagation for wireless sensor networks in outdoors","volume":"83","year":"2019","journal-title":"Prog. Electromagn. Res. B"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1007\/978-3-030-51965-0_10","article-title":"Designing an Energy Efficient Routing for Subsystems Sensors in Internet of Things Eco-System Using Distributed Approach","volume":"1224","author":"Anil","year":"2020","journal-title":"Adv. Intell. Syst. Comput."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1137\/S1052623496303470","article-title":"Convergence properties of the Nelder-Mead simplex method in low dimensions","volume":"9","author":"Lagarias","year":"1998","journal-title":"Siam J. Optim."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1016\/0010-4655(82)90173-4","article-title":"A constrained regularization method for inverting data represented by linear algebraic or integral equations","volume":"27","author":"Provencher","year":"1982","journal-title":"Comput. Phys. Commun."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1016\/0010-4655(82)90174-6","article-title":"CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations","volume":"27","author":"Provencher","year":"1982","journal-title":"Comput. Phys. Commun."},{"key":"ref_49","first-page":"501","article-title":"On the Solution of Ill-Posed Problems and the Method of Regularization","volume":"151","author":"Tikhonov","year":"1963","journal-title":"Dokl. Akad. Nauk SSSR"},{"key":"ref_50","first-page":"181","article-title":"Characterising foliage influence on LoRaWAN pathloss in a tropical vegetative environment","volume":"10","author":"Ansah","year":"2020","journal-title":"IET Wirel. Sens. Syst."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/20\/22\/6621\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,5]],"date-time":"2024-07-05T14:37:05Z","timestamp":1720190225000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/20\/22\/6621"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,11,19]]},"references-count":50,"journal-issue":{"issue":"22","published-online":{"date-parts":[[2020,11]]}},"alternative-id":["s20226621"],"URL":"https:\/\/doi.org\/10.3390\/s20226621","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2020,11,19]]}}}