{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T10:32:36Z","timestamp":1720348356081},"reference-count":65,"publisher":"MDPI AG","issue":"17","license":[{"start":{"date-parts":[[2020,9,3]],"date-time":"2020-09-03T00:00:00Z","timestamp":1599091200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Forest fires are a natural phenomenon which might have severe implications on natural and anthropogenic ecosystems. Future projections predict that, under a climate change environment, the fire season would be lengthier with higher levels of droughts, leading to higher fire severity. The main aim of this paper is to perform a spatiotemporal analysis and explore the variability of fire hazard in a small Greek island, Skiathos (a prototype case of fragile environment) where the land uses mixture is very high. First, a comparative assessment of two robust modeling techniques was examined, namely, the Analytical Hierarchy Process (AHP) knowledge-based and the fuzzy logic AHP to estimate the fire hazard in a timeframe of 20 years (1996\u20132016). The former technique was proven more representative after the comparative assessment with the real fire perimeters recorded on the island (1984\u20132016). Next, we explored the spatiotemporal dynamics of fire hazard, highlighting the risk changes in space and time through the individual and collective contribution of the most significant factors (topography, vegetation features, anthropogenic influence). The fire hazard changes were not dramatic, however, some changes have been observed in the southwestern and northern part of the island. The geostatistical analysis revealed a significant clustering process of high-risk values in the southwestern and northern part of the study area, whereas some clusters of low-risk values have been located in the northern territory. The degree of spatial autocorrelation tends to be greater for 1996 rather than for 2016, indicating the potential higher transmission of fires at the most susceptible regions in the past. The knowledge of long-term fire hazard dynamics, based on multiple types of remotely sensed data, may provide the fire and land managers with valuable fire prevention and land use planning tools.<\/jats:p>","DOI":"10.3390\/s20175014","type":"journal-article","created":{"date-parts":[[2020,9,3]],"date-time":"2020-09-03T15:22:43Z","timestamp":1599146563000},"page":"5014","source":"Crossref","is-referenced-by-count":20,"title":["Remotely Sensed Data Fusion for Spatiotemporal Geostatistical Analysis of Forest Fire Hazard"],"prefix":"10.3390","volume":"20","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5369-5059","authenticated-orcid":false,"given":"Stavros","family":"Sakellariou","sequence":"first","affiliation":[{"name":"NOVA Information Management School, Universidade Nova de Lisboa, 1070-312 Lisbon, Portugal"},{"name":"Department of Planning and Regional Development, University of Thessaly, 38334 Volos, Greece"},{"name":"Department of Agriculture Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8622-6008","authenticated-orcid":false,"given":"Pedro","family":"Cabral","sequence":"additional","affiliation":[{"name":"NOVA Information Management School, Universidade Nova de Lisboa, 1070-312 Lisbon, Portugal"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8913-7342","authenticated-orcid":false,"given":"M\u00e1rio","family":"Caetano","sequence":"additional","affiliation":[{"name":"NOVA Information Management School, Universidade Nova de Lisboa, 1070-312 Lisbon, Portugal"}]},{"given":"Filiberto","family":"Pla","sequence":"additional","affiliation":[{"name":"Institute of New Imaging Technologies (INIT), Universitat Jaume I (UJI), 12071 Castell\u00f3n, Spain"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1136-3387","authenticated-orcid":false,"given":"Marco","family":"Painho","sequence":"additional","affiliation":[{"name":"NOVA Information Management School, Universidade Nova de Lisboa, 1070-312 Lisbon, Portugal"}]},{"given":"Olga","family":"Christopoulou","sequence":"additional","affiliation":[{"name":"Department of Planning and Regional Development, University of Thessaly, 38334 Volos, Greece"}]},{"given":"Athanassios","family":"Sfougaris","sequence":"additional","affiliation":[{"name":"Department of Agriculture Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece"}]},{"given":"Nicolas","family":"Dalezios","sequence":"additional","affiliation":[{"name":"Department of Civil Engineering, University of Thessaly, 38334 Volos, Greece"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6932-2986","authenticated-orcid":false,"given":"Christos","family":"Vasilakos","sequence":"additional","affiliation":[{"name":"Department of Geography, University of the Aegean, University Hill, 81100 Mytilene, Greece"}]}],"member":"1968","published-online":{"date-parts":[[2020,9,3]]},"reference":[{"key":"ref_1","first-page":"15","article-title":"Preventing disaster: Home ignitability in the wildland-urban interface","volume":"98","author":"Cohen","year":"2000","journal-title":"J. For."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"713","DOI":"10.1071\/WF07151","article-title":"Are wildfires a disaster in the Mediterranean basin?\u2014A review","volume":"17","author":"Pausas","year":"2008","journal-title":"Int. J. Wildl. Fire"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"297","DOI":"10.1038\/534297a","article-title":"Science can map a solution to a fast-burning problem","volume":"534","author":"Parisien","year":"2016","journal-title":"Nature"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"1107","DOI":"10.1007\/s11676-017-0452-1","article-title":"Review of state-of-the-art decision support systems (DSSs) for prevention and suppression of forest fires","volume":"28","author":"Sakellariou","year":"2017","journal-title":"J. For. Res."},{"key":"ref_5","unstructured":"(2019, October 10). NIFA Total Wildland Fires and Acres, Available online: https:\/\/www.nifc.gov\/fireInfo\/fireInfo_stats_totalFires.html."},{"key":"ref_6","unstructured":"(2019, October 10). NIFA Federal Firefighting Costs (Suppression Only), Available online: https:\/\/www.nifc.gov\/fireInfo\/fireInfo_documents\/SuppCosts.pdf."},{"key":"ref_7","unstructured":"San-Miguel-Ayanz, J., Durrant, T., Boca, R., Libert\u00e0, G., Branco, A., de Rigo, D., Ferrari, D., Pieralberto, M., Tom\u00e0s Art\u00e9s, V., and Duarte, O. (2019, October 10). Forest Fires in Europe, Middle East and North Africa 2018. Available online: https:\/\/ec.europa.eu\/jrc\/en\/publication\/forest-fires-europe-middle-east-and-north-africa-2018."},{"key":"ref_8","unstructured":"(2020, February 10). European Environment Agency Forest Fires. Available online: https:\/\/www.eea.europa.eu\/data-and-maps\/indicators\/forest-fire-danger-3\/assessment."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"1895","DOI":"10.1016\/j.jenvman.2011.03.015","article-title":"Uncertainty and risk in wildland fire management: A review","volume":"92","author":"Thompson","year":"2011","journal-title":"J. Environ. Manage."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.jenvman.2016.02.021","article-title":"Applying GIS to develop a model for forest fire risk: A case study in Esp\u00edrito Santo, Brazil","volume":"173","author":"Eugenio","year":"2016","journal-title":"J. Environ. Manag."},{"key":"ref_11","first-page":"187","article-title":"Evaluation of forest fire risk with GIS","volume":"23","author":"Sivrikaya","year":"2014","journal-title":"Polish J. Environ. Stud."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1007\/s10661-009-0997-3","article-title":"Fire risk evaluation using multicriteria analysis\u2014A case study","volume":"166","author":"Vadrevu","year":"2010","journal-title":"Environ. Monit. Assess."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1016\/j.proenv.2016.03.075","article-title":"Forest Fire Vulnerability Mapping in Way Kambas National Park","volume":"33","author":"Amalina","year":"2016","journal-title":"Procedia Environ. Sci."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"589","DOI":"10.1007\/s11676-018-0666-x","article-title":"Determination of fire risk to assist fire management for insular areas: The case of a small Greek island","volume":"30","author":"Sakellariou","year":"2019","journal-title":"J. For. Res."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"190","DOI":"10.1007\/s12517-017-2976-2","article-title":"A new approach for forest fire risk modeling using fuzzy AHP and GIS in Hyrcanian forests of Iran","volume":"10","author":"Eskandari","year":"2017","journal-title":"Arab. J. Geosci."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"861","DOI":"10.1080\/19475705.2014.984247","article-title":"A comparative assessment of prediction capabilities of modified analytical hierarchy process (M-AHP) and Mamdani fuzzy logic models using Netcad-GIS for forest fire susceptibility mapping","volume":"7","author":"Pourghasemi","year":"2016","journal-title":"Geomat. Nat. Hazards Risk"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1016\/j.apgeog.2012.07.001","article-title":"The identification and assessment of areas at risk of forest fire using fuzzy methodology","volume":"35","year":"2012","journal-title":"Appl. Geogr."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"344","DOI":"10.1108\/09653560710758297","article-title":"Forest fire susceptibility and risk mapping using remote sensing and geographical information systems (GIS)","volume":"16","author":"Pradhan","year":"2007","journal-title":"Disaster Prev. Manag. An Int. J."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"1725","DOI":"10.1080\/01431160500183107","article-title":"Analysis of NOAA-AVHRR NDVI inter-annual variability for forest fire risk estimation","volume":"27","author":"Gabban","year":"2006","journal-title":"Int. J. Remote Sens."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1080\/02827581.2015.1052750","article-title":"GIS-based forest fire susceptibility mapping in Iran: A comparison between evidential belief function and binary logistic regression models","volume":"31","author":"Pourghasemi","year":"2016","journal-title":"Scand. J. For. Res."},{"key":"ref_21","unstructured":"(2017, October 11). European Environment Agency CORINE Land Cover. Available online: https:\/\/land.copernicus.eu\/pan-european\/corine-land-cover."},{"key":"ref_22","unstructured":"(2017, October 03). NOA Diachronic inventory of Forest Fires. Available online: http:\/\/ocean.space.noa.gr\/diachronic_bsm\/."},{"key":"ref_23","unstructured":"(2017, October 03). Hellenic Statistical Authority. Available online: http:\/\/www.statistics.gr\/en\/home\/."},{"key":"ref_24","unstructured":"(2019, November 01). SETE The Greek Tourism Confederation: Statistics. Available online: https:\/\/sete.gr\/el\/statistika-vivliothiki\/statistika\/?c=43476&cat=43477&key=."},{"key":"ref_25","unstructured":"(2017, October 04). Meteorological Portal\u2014Data derived from National Observatory of Athens. Available online: http:\/\/meteosearch.meteo.gr\/default.asp."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"955","DOI":"10.5721\/EuJRS20164950","article-title":"Surface moisture and temperature trends anticipate drought conditions linked to wildfire activity in the Iberian Peninsula","volume":"49","author":"Chaparro","year":"2016","journal-title":"Eur. J. Remote Sens."},{"key":"ref_27","unstructured":"(2017, December 05). Hellenic Cadastre. Available online: http:\/\/www.ktimatologio.gr\/sites\/en\/Pages\/Default.aspx."},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Samara, F. (2016). Sustainable spatial Development Model in small Islands: The Case of Skiathos Island. [Ph.D. Thesis, Department of Planning and Regional Development, University of Thessaly].","DOI":"10.5772\/62423"},{"key":"ref_29","unstructured":"(2016, November 23). Geofabrik OpenStreetMap Data Extracts Official Website. Available online: http:\/\/download.geofabrik.de\/."},{"key":"ref_30","unstructured":"(2017, October 21). USGS Earth Explorer, Available online: https:\/\/earthexplorer.usgs.gov\/."},{"key":"ref_31","unstructured":"(2017, October 10). USGS Global Visualization Viewer (GloVis), Available online: https:\/\/glovis.usgs.gov\/."},{"key":"ref_32","unstructured":"(2017, December 05). USGS Using the USGS Landsat Level-1 Data Product, Available online: https:\/\/www.usgs.gov\/land-resources\/nli\/landsat\/us."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1016\/S0034-4257(97)00104-1","article-title":"On the relation between NDVI, fractional vegetation cover, and leaf area index","volume":"62","author":"Carlson","year":"1997","journal-title":"Remote Sens. Environ."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1016\/S0034-4257(01)00318-2","article-title":"Detection of forest harvest type using multiple dates of Landsat TM imagery","volume":"80","author":"Wilson","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"ref_35","unstructured":"Environmental Systems Research Institute (2013). ESRI ArcGIS Desktop: Release 10, Environmental Systems Research Institute."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"973","DOI":"10.1007\/s00477-011-0462-z","article-title":"A simulation of probabilistic wildfire risk components for the continental United States","volume":"25","author":"Finney","year":"2011","journal-title":"Stoch. Environ. Res. Risk Assess."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1007\/s11069-008-9326-3","article-title":"Identifying wildland fire ignition factors through sensitivity analysis of a neural network","volume":"50","author":"Vasilakos","year":"2009","journal-title":"Nat. Hazards"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"598","DOI":"10.5424\/fs\/2014233-06115","article-title":"Land cover fire proneness in Europe","volume":"23","author":"Pereira","year":"2014","journal-title":"For. Syst."},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Raymond Hunt, E., Wang, L., Qu, J.J., and Hao, X. (2012). Remote sensing of fuel moisture content from canopy water indices and normalized dry matter index. J. Appl. Remote Sens.","DOI":"10.1117\/12.930077"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"1035","DOI":"10.1080\/0143116042000273998","article-title":"Use of Normalized Difference Water Index for monitoring live fuel moisture","volume":"26","author":"Dennison","year":"2005","journal-title":"Int. J. Remote Sens."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"322","DOI":"10.1016\/j.rse.2004.01.019","article-title":"Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating","volume":"92","author":"Chuvieco","year":"2004","journal-title":"Remote Sens. Environ."},{"key":"ref_42","unstructured":"(2017, October 21). USGS NDVI, the Foundation for Remote Sensing Phenology, Available online: https:\/\/phenology.cr.usgs.gov\/ndvi_foundation.php."},{"key":"ref_43","first-page":"16","article-title":"The wildland-urban interface fire problem","volume":"38","author":"Cohen","year":"2010","journal-title":"Fremontia"},{"key":"ref_44","doi-asserted-by":"crossref","unstructured":"Martell, D.L. (2007). Forest Fire Management. Handbook Of Operations Research In Natural Resources, Springer.","DOI":"10.1007\/978-0-387-71815-6_26"},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Kayacan, E., and Khanesar, M.A. (2016). Fundamentals of Type-1 Fuzzy Logic Theory. Fuzzy Neural Networks for Real Time Control Applications, Elsevier.","DOI":"10.1016\/B978-0-12-802687-8.00001-3"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/0377-2217(90)90057-I","article-title":"How to make a decision: The analytic hierarchy process","volume":"48","author":"Saaty","year":"1990","journal-title":"Eur. J. Oper. Res."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1111\/j.1538-4632.1995.tb00338.x","article-title":"Local Indicators of Spatial Association-LISA","volume":"27","author":"Anselin","year":"2010","journal-title":"Geogr. Anal."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.apgeochem.2017.07.011","article-title":"Using Local Moran\u2019s I to identify contamination hotspots of rare earth elements in urban soils of London","volume":"88","author":"Yuan","year":"2018","journal-title":"Appl. Geochemistry"},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"212","DOI":"10.1016\/j.scitotenv.2008.03.011","article-title":"Use of local Moran\u2019s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland","volume":"398","author":"Zhang","year":"2008","journal-title":"Sci. Total Environ."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1111\/j.2517-6161.1948.tb00012.x","article-title":"The Interpretation of Statistical Maps","volume":"10","author":"Moran","year":"1948","journal-title":"J. R. Stat. Soc. Ser. B"},{"key":"ref_51","unstructured":"Cliff, A.D., and Ord, J.K. (1973). Spatial Autocorrelation, Pion Ltd."},{"key":"ref_52","unstructured":"Cliff, A.D., and Ord, J.K. (1981). Spatial Processes Models and Applications, Pion Ltd."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"6123","DOI":"10.1016\/j.csda.2006.12.032","article-title":"A decomposition of Moran\u2019s I for clustering detection","volume":"51","author":"Zhang","year":"2007","journal-title":"Comput. Stat. Data Anal."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"2401","DOI":"10.5194\/bg-11-2401-2014","article-title":"Using Moran\u2019s I and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of southeastern China","volume":"11","author":"Fu","year":"2014","journal-title":"Biogeosciences"},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Webster, R., and Oliver, M.A. (2007). Geostatistics for Environmental Scientists, John Wiley & Sons, Ltd.. Statistics in Practice.","DOI":"10.1002\/9780470517277"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1016\/j.ecoinf.2013.04.007","article-title":"Virtual Fire: A web-based GIS platform for forest fire control","volume":"16","author":"Kalabokidis","year":"2013","journal-title":"Ecol. Inform."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"873","DOI":"10.1080\/13658810903194264","article-title":"Forest Fire Alert System: A Geo Web GIS prioritization model considering land susceptibility and hotspots\u2014A case study in the Caraj\u00e1s National Forest, Brazilian Amazon","volume":"24","year":"2010","journal-title":"Int. J. Geogr. Inf. Sci."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"3970","DOI":"10.3390\/s8063970","article-title":"Spatio-Temporal Analysis of Forest Fire Risk and Danger Using LANDSAT Imagery","volume":"8","author":"Saglam","year":"2008","journal-title":"Sensors"},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1108\/09653561211219964","article-title":"Fuzzy AHP for forest fire risk modeling","volume":"21","author":"Kanga","year":"2012","journal-title":"Disaster Prev. Manag. An Int. J."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"176","DOI":"10.1016\/j.ecolind.2017.01.042","article-title":"Geographical information system-based forest fire risk assessment integrating national forest inventory data and analysis of its spatiotemporal variability","volume":"77","author":"You","year":"2017","journal-title":"Ecol. Indic."},{"key":"ref_61","doi-asserted-by":"crossref","unstructured":"Massad, E., Ortega, N.R.S., de Barros, L.C., and Struchiner, C.J. (2008). Basic Concepts of Fuzzy Sets Theory. Studies in Fuzziness and Soft Computing, SPRINGER.","DOI":"10.1007\/978-3-540-69094-8_2"},{"key":"ref_62","first-page":"103","article-title":"Geostatistical approach to spatial analysis of forest damage","volume":"114","author":"Pernar","year":"2012","journal-title":"Period. Biol."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"542","DOI":"10.1016\/j.scitotenv.2016.03.231","article-title":"GIS applied to location of fires detection towers in domain area of tropical forest","volume":"562","author":"Eugenio","year":"2016","journal-title":"Sci. Total Environ."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1080\/17477891.2019.1628696","article-title":"Development of a Spatial Decision Support System (SDSS) for the active forest-urban fires management through location planning of mobile fire units","volume":"19","author":"Sakellariou","year":"2020","journal-title":"Environ. Hazards"},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"139004","DOI":"10.1016\/j.scitotenv.2020.139004","article-title":"Spatial planning of fire-agency stations as a function of wildfire likelihood in Thasos, Greece","volume":"729","author":"Sakellariou","year":"2020","journal-title":"Sci. Total Environ."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/20\/17\/5014\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,2]],"date-time":"2024-07-02T22:48:29Z","timestamp":1719960509000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/20\/17\/5014"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,9,3]]},"references-count":65,"journal-issue":{"issue":"17","published-online":{"date-parts":[[2020,9]]}},"alternative-id":["s20175014"],"URL":"https:\/\/doi.org\/10.3390\/s20175014","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,9,3]]}}}