{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T14:49:24Z","timestamp":1740149364292,"version":"3.37.3"},"reference-count":58,"publisher":"MDPI AG","issue":"11","license":[{"start":{"date-parts":[[2020,5,27]],"date-time":"2020-05-27T00:00:00Z","timestamp":1590537600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Geometric model fitting is a fundamental issue in computer vision, and the fitting accuracy is affected by outliers. In order to eliminate the impact of the outliers, the inlier threshold or scale estimator is usually adopted. However, a single inlier threshold cannot satisfy multiple models in the data, and scale estimators with a certain noise distribution model work poorly in geometric model fitting. It can be observed that the residuals of outliers are big for all true models in the data, which makes the consensus of the outliers. Based on this observation, we propose a preference analysis method based on residual histograms to study the outlier consensus for outlier detection in this paper. We have found that the outlier consensus makes the outliers gather away from the inliers on the designed residual histogram preference space, which is quite convenient to separate outliers from inliers through linkage clustering. After the outliers are detected and removed, a linkage clustering with permutation preference is introduced to segment the inliers. In addition, in order to make the linkage clustering process stable and robust, an alternative sampling and clustering framework is proposed in both the outlier detection and inlier segmentation processes. The experimental results also show that the outlier detection scheme based on residual histogram preference can detect most of the outliers in the data sets, and the fitting results are better than most of the state-of-the-art methods in geometric multi-model fitting.<\/jats:p>","DOI":"10.3390\/s20113037","type":"journal-article","created":{"date-parts":[[2020,5,28]],"date-time":"2020-05-28T16:36:58Z","timestamp":1590683818000},"page":"3037","source":"Crossref","is-referenced-by-count":8,"title":["Outlier Detection Based on Residual Histogram Preference for Geometric Multi-Model Fitting"],"prefix":"10.3390","volume":"20","author":[{"given":"Xi","family":"Zhao","sequence":"first","affiliation":[{"name":"The State Key Laboratory of Information Engineering in Surveying, Wuhan University, Wuhan 430079, China"}]},{"given":"Yun","family":"Zhang","sequence":"additional","affiliation":[{"name":"The State Key Laboratory of Information Engineering in Surveying, Wuhan University, Wuhan 430079, China"}]},{"given":"Shoulie","family":"Xie","sequence":"additional","affiliation":[{"name":"Institute for Infocomm Research, 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632, Singapore"}]},{"given":"Qianqing","family":"Qin","sequence":"additional","affiliation":[{"name":"The State Key Laboratory of Information Engineering in Surveying, Wuhan University, Wuhan 430079, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6383-7663","authenticated-orcid":false,"given":"Shiqian","family":"Wu","sequence":"additional","affiliation":[{"name":"Institute of Robotics and Intelligent Systems (IRIS), Wuhan University of Science and Technology, Wuhan 430081, China"}]},{"given":"Bin","family":"Luo","sequence":"additional","affiliation":[{"name":"The State Key Laboratory of Information Engineering in Surveying, Wuhan University, Wuhan 430079, China"}]}],"member":"1968","published-online":{"date-parts":[[2020,5,27]]},"reference":[{"doi-asserted-by":"crossref","unstructured":"Gao, J., Kim, S.J., and Brown, M.S. (2011, January 20\u201325). Constructing image panoramas using dual-homography warping. Proceedings of the CVPR 2011, Colorado Springs, CO, USA.","key":"ref_1","DOI":"10.1109\/CVPR.2011.5995433"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1007\/s11263-006-0002-3","article-title":"Automatic panoramic image stitching using invariant features","volume":"74","author":"Brown","year":"2007","journal-title":"Int. J. Comput. Vis."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"977","DOI":"10.1016\/S0262-8856(03)00137-9","article-title":"Image registration methods: A survey","volume":"21","author":"Zitova","year":"2003","journal-title":"Image Vis. Comput."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"300","DOI":"10.1016\/j.geomorph.2012.08.021","article-title":"\u2018Structure-from-Motion\u2019 photogrammetry: A low-cost, effective tool for geoscience applications","volume":"179","author":"Westoby","year":"2012","journal-title":"Geomorphology"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1007\/BF00128525","article-title":"Epipolar-plane image analysis: An approach to determining structure from motion","volume":"1","author":"Bolles","year":"1987","journal-title":"Int. J. Comput. Vis."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"878","DOI":"10.1109\/TPAMI.2007.70752","article-title":"Nonrigid structure-from-motion: Estimating shape and motion with hierarchical priors","volume":"30","author":"Torresani","year":"2008","journal-title":"Ieee Trans. Pattern Anal. Mach. Intell."},{"unstructured":"Nist\u00e9r, D., Naroditsky, O., and Bergen, J. (July, January 27). Visual odometry. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, Washington, DC, USA.","key":"ref_7"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1007\/s10846-008-9257-y","article-title":"Vision-based odometry and SLAM for medium and high altitude flying UAVs","volume":"54","author":"Caballero","year":"2009","journal-title":"J. Intell. Robot. Syst."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"343","DOI":"10.1007\/s11263-007-0042-3","article-title":"Vision-based slam: Stereo and monocular approaches","volume":"74","author":"Lemaire","year":"2007","journal-title":"Int. J. Comput. Vis."},{"unstructured":"Okabe, T., and Sato, Y. (2003, January 18\u201320). Object recognition based on photometric alignment using RANSAC. Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings, Madison, WI, USA.","key":"ref_10"},{"doi-asserted-by":"crossref","unstructured":"Papazov, C., and Burschka, D. (2010, January 8\u201312). An efficient ransac for 3d object recognition in noisy and occluded scenes. Proceedings of the Asian Conference on Computer Vision, Queenstown, New Zealand.","key":"ref_11","DOI":"10.1007\/978-3-642-19315-6_11"},{"unstructured":"Rabin, J., Delon, J., Gousseau, Y., and Moisan, L. (2010, January 17\u201320). MAC-RANSAC: A robust algorithm for the recognition of multiple objects. Proceedings of the International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT), Paris, France.","key":"ref_12"},{"unstructured":"Pizzoli, M., Forster, C., and Scaramuzza, D. (June, January 31). REMODE: Probabilistic, monocular dense reconstruction in real time. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China.","key":"ref_13"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1109\/TPAMI.2007.1166","article-title":"Stereo Processing by Semiglobal Matching and Mutual Information","volume":"30","author":"Hirschmuller","year":"2008","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1145\/358669.358692","article-title":"Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography","volume":"24","author":"Fischler","year":"1981","journal-title":"Commun. ACM"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1023\/A:1007927408552","article-title":"Performance evaluation of RANSAC family","volume":"24","author":"Choi","year":"1997","journal-title":"J. Comput. Vis."},{"unstructured":"Vincent, E., and Lagani\u00e9re, R. (2001, January 19\u201321). Detecting planar homographies in an image pair. Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis. In conjunction with 23rd International Conference on Information Technology Interfaces, Pula, Croatia.","key":"ref_17"},{"doi-asserted-by":"crossref","unstructured":"Kanazawa, Y., and Kawakami, H. (2004, January 7\u20139). Detection of planar regions with uncalibrated stereo using distributions of feature points. Proceedings of the BMVC, London, UK.","key":"ref_18","DOI":"10.5244\/C.18.27"},{"doi-asserted-by":"crossref","unstructured":"Zuliani, M., Kenney, C.S., and Manjunath, B. (2005, January 14). The multiransac algorithm and its application to detect planar homographies. Proceedings of the IEEE International Conference on Image Processing 2005, Genova, Italy.","key":"ref_19","DOI":"10.1109\/ICIP.2005.1530351"},{"doi-asserted-by":"crossref","unstructured":"Toldo, R., and Fusiello, A. (2008, January 12\u201318). Robust multiple structures estimation with j-linkage. Proceedings of the European conference on computer vision, Marseille, France.","key":"ref_20","DOI":"10.1007\/978-3-540-88682-2_41"},{"unstructured":"Toldo, R., and Fusiello, A. (2010, January 17\u201320). Real-time incremental j-linkage for robust multiple structures estimation. Proceedings of the International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT), Paris, France.","key":"ref_21"},{"doi-asserted-by":"crossref","unstructured":"Magri, L., and Fusiello, A. (2014, January 23\u201328). T-linkage: A continuous relaxation of j-linkage for multi-model fitting. Proceedings of the IEEE conference on computer vision and pattern recognition, Columbus, OH, USA.","key":"ref_22","DOI":"10.1109\/CVPR.2014.505"},{"doi-asserted-by":"crossref","unstructured":"Magri, L., and Fusiello, A. (2015, January 7\u201310). Robust Multiple Model Fitting with Preference Analysis and Low-rank Approximation. Proceedings of the BMVC, Swansea, UK.","key":"ref_23","DOI":"10.5244\/C.29.20"},{"doi-asserted-by":"crossref","unstructured":"Magri, L., and Fusiello, A. (2016, January 27\u201330). Multiple model fitting as a set coverage problem. Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA.","key":"ref_24","DOI":"10.1109\/CVPR.2016.361"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.jvcir.2017.08.005","article-title":"Multiple structure recovery with t-linkage","volume":"49","author":"Magri","year":"2017","journal-title":"J. Vis. Commun. Image Represent."},{"unstructured":"Chin, T.-J., Wang, H., and Suter, D. (October, January 29). Robust fitting of multiple structures: The statistical learning approach. Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan.","key":"ref_26"},{"doi-asserted-by":"crossref","unstructured":"Wong, H.S., Chin, T.-J., Yu, J., and Suter, D. (2010, January 8\u201312). Efficient multi-structure robust fitting with incremental top-k lists comparison. Proceedings of the Asian Conference on Computer Vision, Queenstown, New Zealand.","key":"ref_27","DOI":"10.1007\/978-3-642-19282-1_44"},{"doi-asserted-by":"crossref","unstructured":"Wong, H.S., Chin, T.-J., Yu, J., and Suter, D. (2011, January 6\u201313). Dynamic and hierarchical multi-structure geometric model fitting. Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain.","key":"ref_28","DOI":"10.1109\/ICCV.2011.6126350"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1016\/j.patcog.2012.07.005","article-title":"Mode seeking over permutations for rapid geometric model fitting","volume":"46","author":"Wong","year":"2013","journal-title":"Pattern Recognit."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"1755","DOI":"10.1016\/j.cviu.2013.08.007","article-title":"A simultaneous sample-and-filter strategy for robust multi-structure model fitting","volume":"117","author":"Wong","year":"2013","journal-title":"Comput. Vis. Image Underst."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"294","DOI":"10.1016\/j.patrec.2016.04.023","article-title":"Mode seeking on graphs for geometric model fitting via preference analysis","volume":"83","author":"Xiao","year":"2016","journal-title":"Pattern Recognit. Lett."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"1658","DOI":"10.1109\/TPAMI.2013.2296310","article-title":"The random cluster model for robust geometric fitting","volume":"36","author":"Pham","year":"2014","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"756","DOI":"10.1016\/j.imavis.2013.07.007","article-title":"Image-consistent patches from unstructured points with J-linkage","volume":"31","author":"Toldo","year":"2013","journal-title":"Image Vis. Comput."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"138","DOI":"10.1006\/cviu.1999.0832","article-title":"MLESAC: A new robust estimator with application to estimating image geometry","volume":"78","author":"Torr","year":"2000","journal-title":"Comput. Vis. Image Underst."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/s11263-011-0474-7","article-title":"Energy-based geometric multi-model fitting","volume":"97","author":"Isack","year":"2012","journal-title":"Int. J. Comput. Vis."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"4601","DOI":"10.1109\/TIP.2014.2346025","article-title":"Interacting geometric priors for robust multimodel fitting","volume":"23","author":"Pham","year":"2014","journal-title":"IEEE Trans. Image Process."},{"doi-asserted-by":"crossref","unstructured":"Yu, J., Chin, T.-J., and Suter, D. (2011, January 20\u201325). A global optimization approach to robust multi-model fitting. Proceedings of the CVPR 2011, Colorado Springs, CO, USA.","key":"ref_37","DOI":"10.1109\/CVPR.2011.5995608"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"748","DOI":"10.1016\/j.patcog.2016.06.026","article-title":"Hypergraph modelling for geometric model fitting","volume":"60","author":"Xiao","year":"2016","journal-title":"Pattern Recognit."},{"doi-asserted-by":"crossref","unstructured":"Amayo, P., Pini\u00e9s, P., Paz, L.M., and Newman, P. (2018, January 18\u201322). Geometric multi-model fitting with a convex relaxation algorithm. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA.","key":"ref_39","DOI":"10.1109\/CVPR.2018.00849"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1109\/34.659940","article-title":"Robust adaptive segmentation of range images","volume":"20","author":"Lee","year":"1998","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"649","DOI":"10.1017\/S0263574799001812","article-title":"Robust segmentation of visual data using ranked unbiased scale estimate","volume":"17","author":"Suter","year":"1999","journal-title":"Robotica"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"1177","DOI":"10.1109\/TPAMI.2011.216","article-title":"Simultaneously fitting and segmenting multiple-structure data with outliers","volume":"34","author":"Wang","year":"2011","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"1459","DOI":"10.1109\/TPAMI.2004.109","article-title":"Robust adaptive-scale parametric model estimation for computer vision","volume":"26","author":"Wang","year":"2004","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/j.neucom.2017.02.015","article-title":"A novel robust model fitting approach towards multiple-structure data segmentation","volume":"239","author":"Yan","year":"2017","journal-title":"Neurocomputing"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"818","DOI":"10.1109\/34.608280","article-title":"Bias in robust estimation caused by discontinuities and multiple structures","volume":"19","author":"Stewart","year":"1997","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"unstructured":"Zhang, W., and K\u01d2seck\u00e1, J. (2006). Nonparametric estimation of multiple structures with outliers. Dynamical Vision, Springer.","key":"ref_46"},{"unstructured":"Wong, H.S. (2013). A preference analysis approach to robust geometric model fitting in computer vision. [Ph.D. Thesis, Adelaide University].","key":"ref_47"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"2052","DOI":"10.1109\/TMM.2014.2346476","article-title":"Image alignment by piecewise planar region matching","volume":"16","author":"Lou","year":"2014","journal-title":"IEEE Trans. Multimed."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"1365","DOI":"10.1109\/TMM.2017.2771566","article-title":"Quasi-homography warps in image stitching","volume":"20","author":"Li","year":"2017","journal-title":"IEEE Trans. Multimed."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"1542","DOI":"10.1109\/TMM.2016.2568743","article-title":"6-DOF image localization from massive geo-tagged reference images","volume":"18","author":"Song","year":"2016","journal-title":"IEEE Trans. Multimed."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"2351","DOI":"10.1109\/TPAMI.2012.52","article-title":"Generalized projection-based M-estimator","volume":"34","author":"Mittal","year":"2012","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"doi-asserted-by":"crossref","unstructured":"Qi, W., Su, H., and Aliverti, A. (2020). A Smartphone-based Adaptive Recognition and Real-time Monitoring System for Human Activities. IEEE Trans. Hum. -Mach. Syst.","key":"ref_52","DOI":"10.1109\/THMS.2020.2984181"},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"555","DOI":"10.1109\/TFUZZ.2014.2317511","article-title":"Fuzzy approximation-based adaptive backstepping control of an exoskeleton for human upper limbs","volume":"23","author":"Li","year":"2014","journal-title":"IEEE Trans. Fuzzy Syst."},{"doi-asserted-by":"crossref","unstructured":"Cao, Z., Simon, T., Wei, S.E., and Sheikh, Y. (2016). Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. arXiv, Available online: https:\/\/arxiv.org\/abs\/1611.08050.","key":"ref_54","DOI":"10.1109\/CVPR.2017.143"},{"doi-asserted-by":"crossref","unstructured":"Zhang, S.H., Li, R., Dong, X., Rosin, P.L., Cai, Z., Xi, H., Yang, D., Huang, H.Z., and Hu, S.M. (2018). Pose2Seg: Detection Free Human Instance Segmentation. arXiv, Available online: https:\/\/arxiv.org\/abs\/1803.10683.","key":"ref_55","DOI":"10.1109\/CVPR.2019.00098"},{"doi-asserted-by":"crossref","unstructured":"Zhao, X., Qin, Q., and Luo, B. (2019). Motion Segmentation Based on Model Selection in Permutation Space for RGB Sensors. Sensors, 19.","key":"ref_56","DOI":"10.3390\/s19132936"},{"doi-asserted-by":"crossref","unstructured":"Judd, K.M., Gammell, J.D., and Newman, P. (2018). Multimotion Visual Odometry (MVO): Simultaneous Estimation of Camera and Third-Party Motions. arXiv, Available online: https:\/\/arxiv.org\/abs\/1808.00274.","key":"ref_57","DOI":"10.1109\/IROS.2018.8594213"},{"doi-asserted-by":"crossref","unstructured":"Wang, C., Luo, B., Zhang, Y., Zhao, Q., Yin, L., Wang, W., Su, X., Wang, Y., and Li, C. (2020). DymSLAM: 4D Dynamic Scene Reconstruction Based on Geometrical Motion Segmentation. arXiv, Available online: https:\/\/arxiv.org\/abs\/2003.04569.","key":"ref_58","DOI":"10.1109\/LRA.2020.3045647"}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/20\/11\/3037\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T16:11:14Z","timestamp":1722960674000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/20\/11\/3037"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,5,27]]},"references-count":58,"journal-issue":{"issue":"11","published-online":{"date-parts":[[2020,6]]}},"alternative-id":["s20113037"],"URL":"https:\/\/doi.org\/10.3390\/s20113037","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2020,5,27]]}}}