{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T09:51:10Z","timestamp":1722937870540},"reference-count":37,"publisher":"MDPI AG","issue":"4","license":[{"start":{"date-parts":[[2020,2,14]],"date-time":"2020-02-14T00:00:00Z","timestamp":1581638400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001665","name":"Agence Nationale de la Recherche","doi-asserted-by":"publisher","award":["Projet-ANR-12-ASTR-0041"],"id":[{"id":"10.13039\/501100001665","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Dynamic measurements of shock and detonation velocities are performed using long chirped fiber Bragg gratings (CFBGs). Such thin probes, with a diameter of typically 125 \u00b5m or even 80 \u00b5m can be directly inserted into high-explosive (HE) samples or simply glued laterally. During the detonation, the width of the optical spectrum is continuously reduced by the propagation of the wave-front, which physically shortens the CFBG. The light power reflected back shows a ramp-down type signal, from which the wave-front position is obtained as a function of time, thus yielding a detonation velocity profile. A calibration procedure was developed, with the support of optical simulations, to cancel out the optical spectrum distortions from the different optical components and to determine the wavelength-position transfer function of the CFBG. The fitted slopes of the X\u2013T diagram give steady detonation velocity values which are in very good agreement with the classical measurements obtained from discrete electrical shorting pins (ESP). The main parameters influencing the uncertainties on the steady detonation velocity value measured by CFBG are discussed. To conclude, different HE experimental configurations tested at CEA (Commissariat \u00e0 l\u2019Energie Atomique et aux Energies Alternatives) are presented: bare cylindrical sticks, wedges for shock-to-detonation transitions (SDT), spheres, a cast-cured stick around a CFBG, and a detonation wave-front profile configuration.<\/jats:p>","DOI":"10.3390\/s20041026","type":"journal-article","created":{"date-parts":[[2020,2,20]],"date-time":"2020-02-20T08:20:03Z","timestamp":1582186803000},"page":"1026","source":"Crossref","is-referenced-by-count":8,"title":["Development of a Shock and Detonation Velocity Measurement System Using Chirped Fiber Bragg Gratings"],"prefix":"10.3390","volume":"20","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2795-8548","authenticated-orcid":false,"given":"Yohan","family":"Barbarin","sequence":"first","affiliation":[{"name":"CEA, DAM, GRAMAT, BP 80200, F-46500 Gramat, France"}]},{"given":"Alexandre","family":"Lefran\u00e7ois","sequence":"additional","affiliation":[{"name":"CEA, DAM, GRAMAT, BP 80200, F-46500 Gramat, France"}]},{"given":"Vincent","family":"Chuzeville","sequence":"additional","affiliation":[{"name":"CEA, DAM, GRAMAT, BP 80200, F-46500 Gramat, France"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2508-4696","authenticated-orcid":false,"given":"Sylvain","family":"Magne","sequence":"additional","affiliation":[{"name":"CEA, LIST, Laboratoire Capteurs Fibres Optiques, F-91191 Gif-sur-Yvette, France"}]},{"given":"Laurent","family":"Jacquet","sequence":"additional","affiliation":[{"name":"CEA, DAM, GRAMAT, BP 80200, F-46500 Gramat, France"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7126-6936","authenticated-orcid":false,"given":"Thomas","family":"Elia","sequence":"additional","affiliation":[{"name":"CEA, DAM, GRAMAT, BP 80200, F-46500 Gramat, France"}]},{"given":"Karol","family":"Woirin","sequence":"additional","affiliation":[{"name":"Formerly at ArianeGroup\\CRB, F-91710 Vert-le-Petit, France"}]},{"given":"Christelle","family":"Collet","sequence":"additional","affiliation":[{"name":"Formerly at ArianeGroup\\CRB, F-91710 Vert-le-Petit, France"}]},{"given":"Antoine","family":"Osmont","sequence":"additional","affiliation":[{"name":"CEA, DAM, GRAMAT, BP 80200, F-46500 Gramat, France"}]},{"given":"J\u00e9r\u00f4me","family":"Luc","sequence":"additional","affiliation":[{"name":"CEA, DAM, GRAMAT, BP 80200, F-46500 Gramat, France"}]}],"member":"1968","published-online":{"date-parts":[[2020,2,14]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"517","DOI":"10.1117\/12.566589","article-title":"Optical probes for continuous Fabry-Perot velocimetry inside materials","volume":"5580","author":"Goosman","year":"2004","journal-title":"Proc. SPIE"},{"key":"ref_2","unstructured":"Hare, D.E., Holtkamp, D.B., and Strand, O.T. (2010, January 11\u201316). Embedded fiber optic probes to measure detonation velocities using the Photonic Doppler Velocimeter. Proceedings of the 14th International Detonation Symposium, Coeur d\u2019Alene, Idaho."},{"key":"ref_3","unstructured":"Benterou, J., Udd, E., Wilkins, P., Roeske, F., Roos, E., and Jackson, D. (2007). In-Situ Continuous Detonation Velocity Measurements Using Fiber-Optic Bragg Grating Sensors, Lawrence Livermore National Lab. (LLNL). LLNL e-report, UCRL-Proceedings-233137."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"73160E","DOI":"10.1117\/12.819208","article-title":"Embedded fiber optic Bragg grating (FBG) detonation velocity sensor","volume":"7316","author":"Benterou","year":"2009","journal-title":"Proc. SPIE"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"76770B","DOI":"10.1117\/12.850923","article-title":"Review of high-speed fiber optic grating sensor systems","volume":"7677","author":"Udd","year":"2010","journal-title":"Proc. SPIE"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"802808","DOI":"10.1117\/12.884703","article-title":"High speed measurements using fiber-optic Bragg gratings","volume":"8028","author":"Benterou","year":"2011","journal-title":"Proc. SPIE"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"015003","DOI":"10.1063\/1.4774112","article-title":"Chirped fiber Bragg grating detonation velocity sensing","volume":"84","author":"Rodriguez","year":"2015","journal-title":"Rev. Sci. Instr."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"872204","DOI":"10.1117\/12.2015188","article-title":"Fiber Bragg grating sensing of detonation and shock experiments at Los Alamos National Laboratory","volume":"8722","author":"Rodriguez","year":"2013","journal-title":"Proc. SPIE"},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"87942K","DOI":"10.1117\/12.2025986","article-title":"Real-time, distributed measurement of detonation velocities inside high explosives with the help of chirped fiber Bragg gratings","volume":"8794","author":"Magne","year":"2013","journal-title":"Proc. SPIE"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"142029","DOI":"10.1088\/1742-6596\/500\/14\/142029","article-title":"Fiber Bragg Grating sensor for shock wave diagnostics","volume":"500","author":"Ravid","year":"2014","journal-title":"J. Phys. Conf. Ser."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"3849","DOI":"10.1364\/AO.54.003849","article-title":"Detection of high explosive detonation across material interfaces with chirped fiber Bragg gratings","volume":"54","author":"Gilbertson","year":"2015","journal-title":"Appl. Opt."},{"key":"ref_12","first-page":"94800S-1","article-title":"Optimization of detonation velocity measurements using a Chirped Fiber Bragg Grating","volume":"9480","author":"Barbarin","year":"2015","journal-title":"Proc. SPIE"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"98520Q","DOI":"10.1117\/12.2228309","article-title":"Ultrafast fiber grating sensor systems for velocity, position, pressure, and temperature measurements","volume":"9852","author":"Udd","year":"2016","journal-title":"Proc. SPIE"},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Magne, S., Laffont, G., Ferdinand, P., Barbarin, Y., Lefran\u00e7ois, A., Chuzeville, V., Luc, J., and Woirin, K. (2016, January 5\u20138). Chirped Fiber Bragg gratings for distributed detonation velocity measurements Bragg gratings. Proceedings of the Photosensitivity, and Poling in Glass Waveguides, Sydney, Australia.","DOI":"10.1364\/BGPP.2016.BM5B.3"},{"key":"ref_15","unstructured":"Woirin, K., Barbarin, Y., Lefran\u00e7ois, A., Balbarie, M., Magne, S., and Collet, C. (2017, January 27\u201330). Transition and detonation processes characterization with Braggfast, a new fiber Bragg grating analysis system for energetic materials. Proceedings of the 48th International Annual Conference of the Fraunhofer ICT, Karlsruhe, Germany."},{"key":"ref_16","unstructured":"Woirin, K., Barbarin, Y., Lefran\u00e7ois, A., Balbarie, M., Magne, S., and Moriceau, J. (2017, January 6\u201310). A new fiber Bragg grating analysis system for transition and detonation processes characterizations. Proceedings of the 6th International Symposium on Energetic Materials and their applications, Sendai, Japan."},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Barbarin, Y., Lefran\u00e7ois, A., Magne, S., Chuzeville, V., Balbarie, M., Jacquet, L., Sinatti, F., Osmont, A., and Luc, J. (2017, January 24\u201328). Dynamic measurements of physical quantities in extreme environment using fiber Bragg grating. Proceedings of the 25th International Conference on Optical Fiber Sensors, Jeju, South Korea.","DOI":"10.1117\/12.2265670"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"2552","DOI":"10.3390\/s17112552","article-title":"Detonation velocity measurement with Chirped Fiber Bragg Grating","volume":"17","author":"Wei","year":"2017","journal-title":"Sensors"},{"key":"ref_19","first-page":"106540O","article-title":"Nanosecond resolution pressure, temperature, position and velocity measurements in energetic materials","volume":"Volume 10654","author":"Udd","year":"2018","journal-title":"Fiber Optic Sensors and Applications XV"},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Pooley, J., Price, E., Ferguson, J.W., and Ibsen, M. (2019). Optimized chirped fibre Bragg gratings for detonation velocity measurements. Sensors, 19.","DOI":"10.3390\/s19153333"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"666","DOI":"10.1364\/OPEX.13.000666","article-title":"High resolution Optical Frequency-Domain Reflectometry for characterization of components and assemblies","volume":"13","author":"Soller","year":"2005","journal-title":"Opt. Express"},{"key":"ref_22","unstructured":"Benier, J., and Adolf, L.-M. (2015, January 4\u20137). Development of optical fiber sensor for detonation velocity measurement. Proceedings of the Europyro Conference, Toulouse, France."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"23464","DOI":"10.1364\/OE.27.023464","article-title":"Detonation velocity measurements with uniform fibre Bragg gratings","volume":"27","author":"Pooley","year":"2019","journal-title":"Opt. Express"},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Pooley, J., Price, E., Ferguson, J.W., and Ibsen, M. (2019). Detonation velocity measurements using rare-earth doped fibres. Sensors, 19.","DOI":"10.3390\/s19071697"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"030009","DOI":"10.1063\/1.4971467","article-title":"Detonation initiation of heterogeneous melt-cast high explosives","volume":"1793","author":"Chuzeville","year":"2017","journal-title":"AIP Conf. Proc."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"742","DOI":"10.1364\/JOSAA.1.000742","article-title":"Thin films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides","volume":"1","author":"Chilwell","year":"1984","journal-title":"J. Opt. Soc. Am. A"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"1277","DOI":"10.1109\/50.618322","article-title":"Fiber grating spectra","volume":"15","author":"Erdogan","year":"1997","journal-title":"J. Lightwave Technol."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1109\/CJECE.2005.1532605","article-title":"Simulation methods in optical propagation","volume":"30","author":"Apithy","year":"2005","journal-title":"Canadian J. Electr. Comput. Eng."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"145902","DOI":"10.1063\/1.5031832","article-title":"Real-time distributed monitoring of pressure and shock velocity by ultrafast spectrometry with Chirped Fiber Bragg Gratings: Experimental vs. calculated wavelength-to-pressure sensitivities in the range [0\u20134 GPa]","volume":"124","author":"Magne","year":"2018","journal-title":"J. Appl. Phys."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"1281","DOI":"10.1364\/OPEX.13.001281","article-title":"Influence of cladding-mode coupling losses on the spectrum of a linearly chirped multi-channel fiber Bragg grating","volume":"13","author":"Li","year":"2005","journal-title":"Opt. Express"},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Rougier, B., Lefran\u00e7ois, A., Chuzeville, V., Poeuf, S., and Aubert, H. (2019). Static and dynamic permittivity measurement of high explosives in the W band to investigate shock and detonation phenomena. Propellants Explos. Pyrotech., 44.","DOI":"10.1002\/prep.201800097"},{"key":"ref_32","unstructured":"Rougier, B., Aubert, H., Lefran\u00e7ois, A., Bouton, E., Luc, J., Osmont, A., and Barbarin, Y. (, 2018). Simultaneous shock and particle velocities measurement using a single microwave interferometer on pressed TATB composition T2 submitted to plate impact. Proceedings of the 16th International Symposium on Detonation, Cambridge, MD, USA."},{"key":"ref_33","doi-asserted-by":"crossref","unstructured":"Ramakrishnan, M., Rajan, G., Semenova, Y., and Farrell, G. (2016). Overview of Fiber Optic Sensor Technologies for Strain\/Temperature Sensing Applications in Composite Materials. Sensors, 16.","DOI":"10.3390\/s16010099"},{"key":"ref_34","unstructured":"Lefran\u00e7ois, A., Baudin, G., Le Gallic, C.., Boyce, P., and Coudoing, J.-P. (2002, January 11\u201316). Nanometric Aluminium powder influence on the detonation efficiency of explosives. Proceedings of the 12th International Symposium on Detonation, San Diego, CA, USA."},{"key":"ref_35","unstructured":"Elia, T., Lefran\u00e7ois, A., Gnetier, M., and Baudin, G. (, 2018). Diverging spherical run-distance to detonation characterization. Proceedings of the 16th International Symposium on Detonation, Cambridge, MD, USA."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Rodriguez, G., and Gilbertson, S. (2017). Ultrafast fiber Bragg grating interrogation for sensing in detonation and shock wave experiments. Sensors, 17.","DOI":"10.3390\/s17020248"},{"key":"ref_37","unstructured":"Barbarin, Y., Lefran\u00e7ois, A., Sinatti, F., Bey, A., Balbarie, M., Osmont, A., and Luc, J. (November, January 30). Dynamic dispersive spectrometer using a fiber Bragg grating for high pressure measurements. Proceedings of the IEEE Sensors, Orlando, FL, USA."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/20\/4\/1026\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,24]],"date-time":"2024-06-24T09:51:43Z","timestamp":1719222703000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/20\/4\/1026"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,2,14]]},"references-count":37,"journal-issue":{"issue":"4","published-online":{"date-parts":[[2020,2]]}},"alternative-id":["s20041026"],"URL":"https:\/\/doi.org\/10.3390\/s20041026","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,2,14]]}}}