{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T14:49:35Z","timestamp":1740149375033,"version":"3.37.3"},"reference-count":45,"publisher":"MDPI AG","issue":"18","license":[{"start":{"date-parts":[[2019,9,18]],"date-time":"2019-09-18T00:00:00Z","timestamp":1568764800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61605243"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Geosynchronous orbit (GSO) is the ideal orbit for communication, navigation, meteorology and other satellites, but the space of GSO is limited, and there are still a large number of space debris threatening the safety of spacecraft. Therefore, real-time detection of GSO debris is necessary to avoid collision accidents. Because radar is limited by transmitting power and operating distance, it is difficult to detect GSO debris, so photoelectric detection becomes the mainstream way to detect GSO debris. This paper presents an adaptive real-time detection algorithm for GSO debris in the charge coupled device (CCD) images. The main work is as follows: An image adaptive fast registration algorithm and an enhanced dilation difference algorithm are proposed. Combining with mathematical morphology, threshold segmentation and global nearest neighbor (GNN) multi-target tracking algorithm, the functions of image background suppression, registration, suspected target extraction and multi-target tracking are realized. The processing results of a large number of measured data show that the algorithm can detect dim geostationary earth orbit (GEO) and non-GEO debris in GSO belt stably and efficiently, and the processing speed meets the real-time requirements, with strong adaptive ability, and has high practical application value.<\/jats:p>","DOI":"10.3390\/s19184026","type":"journal-article","created":{"date-parts":[[2019,9,18]],"date-time":"2019-09-18T15:01:15Z","timestamp":1568818875000},"page":"4026","source":"Crossref","is-referenced-by-count":8,"title":["An Adaptive Real-Time Detection Algorithm for Dim and Small Photoelectric GSO Debris"],"prefix":"10.3390","volume":"19","author":[{"given":"Quan","family":"Sun","sequence":"first","affiliation":[{"name":"National Key Laboratory of Science and Technology on ATR, National University of Defense Technology, Changsha 410073, China"}]},{"given":"Zhaodong","family":"Niu","sequence":"additional","affiliation":[{"name":"National Key Laboratory of Science and Technology on ATR, National University of Defense Technology, Changsha 410073, China"}]},{"given":"Weihua","family":"Wang","sequence":"additional","affiliation":[{"name":"National Key Laboratory of Science and Technology on ATR, National University of Defense Technology, Changsha 410073, China"}]},{"given":"Haijing","family":"Li","sequence":"additional","affiliation":[{"name":"China Xi\u2019an Satellite Control Center, Xi\u2019an 710000, China"}]},{"given":"Lang","family":"Luo","sequence":"additional","affiliation":[{"name":"China Xi\u2019an Satellite Control Center, Xi\u2019an 710000, China"}]},{"given":"Xiaotian","family":"Lin","sequence":"additional","affiliation":[{"name":"China Xi\u2019an Satellite Control Center, Xi\u2019an 710000, China"}]}],"member":"1968","published-online":{"date-parts":[[2019,9,18]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"465","DOI":"10.1016\/j.asr.2019.04.006","article-title":"FocusGEO observations of space debris at Geosynchronous Earth Orbit","volume":"64","author":"Luo","year":"2019","journal-title":"Adv. Space Res."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.actaastro.2015.01.001","article-title":"Algorithms and applications for detecting faint space debris in GEO","volume":"110","author":"Sun","year":"2015","journal-title":"Acta Astronaut."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"4828","DOI":"10.1016\/j.proeng.2011.08.901","article-title":"Research on Relative Motion of Approach to GEO satellite based on HEO","volume":"15","author":"Fu","year":"2011","journal-title":"Procedia Eng."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"3305","DOI":"10.1016\/j.asr.2018.03.005","article-title":"Lighthouse: A spacebased mission concept for the surveillance of geosynchronous space debris from low earth orbit","volume":"62","author":"Lupo","year":"2018","journal-title":"Adv. Space Res."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"1022","DOI":"10.1016\/j.asr.2007.04.048","article-title":"International scientific optical network for space debris research","volume":"41","author":"Molotov","year":"2008","journal-title":"Adv. Space Res."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"1291","DOI":"10.1016\/S0273-1177(01)00399-4","article-title":"The search for debris in GEO","volume":"28","author":"Schildknecht","year":"2001","journal-title":"Adv. Space Res."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"414","DOI":"10.1016\/j.asr.2015.01.019","article-title":"Ground-based optical observation system for LEO objects","volume":"56","author":"Yanagisawa","year":"2015","journal-title":"Adv. Space Res."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"2320","DOI":"10.1016\/j.asr.2018.02.005","article-title":"Application of CCD drift-scan photoelectric technique on monitoring GEO satellites","volume":"61","author":"Yu","year":"2018","journal-title":"Adv. Space Res."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"377","DOI":"10.1016\/j.asr.2015.01.007","article-title":"Analysis on the long-term dynamical evolution of the inclined geosynchronous orbits in the Chinese BeiDou navigation system","volume":"56","author":"Zhao","year":"2015","journal-title":"Adv. Space Res."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1007\/s00159-006-0003-9","article-title":"Optical surveys for space debris","volume":"14","author":"Schildknecht","year":"2007","journal-title":"Astron. Astrophys. Rev."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1664","DOI":"10.1016\/j.asr.2014.02.023","article-title":"An adaptive threshold method for improving astrometry of space debris CCD images","volume":"53","author":"Sun","year":"2014","journal-title":"Adv. Space Res."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"218","DOI":"10.1016\/j.asr.2015.04.006","article-title":"Improving space debris detection in GEO ring using image deconvolution","volume":"56","author":"Montojo","year":"2015","journal-title":"Adv. Space Res."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1016\/j.aeue.2017.03.026","article-title":"An antipodal Vivaldi antenna with band-notched characteristics for ultra-wideband applications","volume":"76","author":"Zhou","year":"2017","journal-title":"AEU Int. J. Electron. Commun."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/S0273-1177(98)00229-4","article-title":"Optical surveys of space debris in GEO","volume":"23","author":"Schildknecht","year":"1999","journal-title":"Adv. Space Res."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1007\/s40295-018-00140-5","article-title":"Event-based sensing for space situational awareness","volume":"66","author":"Cohen","year":"2019","journal-title":"J. Astronaut. Sci."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"0601003","DOI":"10.3788\/gzxb20184706.0601003","article-title":"System Analysis of Ground-based Inverse Synthetic Aperture Lidar for Geosynchronous Orbit Object Imaging","volume":"47","author":"Hu","year":"2018","journal-title":"Acta Photonica Sin."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"733","DOI":"10.1016\/j.asr.2019.03.008","article-title":"Robust foreground segmentation and image registration for optical detection of GEO objects","volume":"64","author":"Do","year":"2019","journal-title":"Adv. Space Res."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"1007","DOI":"10.1016\/j.actaastro.2011.06.018","article-title":"Time-resolved infrared spectrophotometric observations of high area to mass ratio (HAMR) objects in GEO","volume":"69","author":"Skinner","year":"2011","journal-title":"Acta Astronaut."},{"key":"ref_19","unstructured":"Kelecy, T., Baker, E., Seitzer, P., Payne, T., and Thurston, R. (2008, January 16\u201319). Prediction and tracking analysis of a class of high area-to-mass ratio debris objects in geosynchronous orbit. Proceedings of the 2008 Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, USA."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"1166","DOI":"10.1016\/j.asr.2003.10.040","article-title":"Geosynchronous region orbital debris modeling with GEO_EVOLVE 2.0","volume":"34","author":"Krisko","year":"2004","journal-title":"Adv. Space Res."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"514","DOI":"10.1016\/j.asr.2016.05.025","article-title":"BVRI photometric observations and light-curve analysis of GEO objects","volume":"58","author":"Cardona","year":"2016","journal-title":"Adv. Space Res."},{"key":"ref_22","unstructured":"Seitzer, P., Cowardin, H.M., Barker, E., Abercromby, K.J., Kelecy, T.M., and Horstman, M. (2010, January 14\u201317). Optical photometric observations of GEO debris. Proceedings of the 2010 AMOS Technical Conference, Wailea, HI, USA."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"2815890","DOI":"10.1155\/2019\/2815890","article-title":"Effect Analysis of Optical Masking Algorithm for GEO Space Debris Detection","volume":"2019","author":"Kong","year":"2019","journal-title":"Int. J. Opt."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"399","DOI":"10.1093\/pasj\/57.2.399","article-title":"Automatic detection algorithm for small moving objects","volume":"57","author":"Yanagisawa","year":"2005","journal-title":"Publ. Astron. Soc. Jpn."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1029","DOI":"10.1016\/j.asr.2007.04.033","article-title":"Distinguishing features of CCD astrometry of faint GEO objects","volume":"41","author":"Kouprianov","year":"2008","journal-title":"Adv. Space Res."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"1270","DOI":"10.1016\/j.asr.2009.06.013","article-title":"A new algorithm for optical observations of space debris with the TAROT telescopes","volume":"44","author":"Blanchet","year":"2009","journal-title":"Adv. Space Res."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"1152","DOI":"10.1109\/TAES.2003.1261119","article-title":"Multitarget Bayes filtering via first-order multitarget moments","volume":"39","author":"Mahler","year":"2003","journal-title":"IEEE Trans. Aerosp. Electron. Syst."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"3553","DOI":"10.1109\/TSP.2007.894241","article-title":"Analytic implementations of the cardinalized probability hypothesis density filter","volume":"55","author":"Vo","year":"2007","journal-title":"IEEE Trans. Signal Process."},{"key":"ref_29","first-page":"409","article-title":"The cardinality balanced multi-target multi-Bernoulli filter and its implementations","volume":"57","author":"Vo","year":"2008","journal-title":"IEEE Trans. Signal Process."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"1975","DOI":"10.1109\/TSP.2016.2641392","article-title":"An efficient implementation of the generalized labeled multi-Bernoulli filter","volume":"65","author":"Vo","year":"2016","journal-title":"IEEE Trans. Signal Process."},{"key":"ref_31","unstructured":"Fan, H.Q. (2017). Advances in Statistical Multisourc-Multitarget Information Fusion. Artech House, National Defense Industry Press."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"1275","DOI":"10.1109\/7.259531","article-title":"Joint probabilistic data association for autonomous navigation","volume":"29","author":"Dezert","year":"1993","journal-title":"IEEE Trans. Aerosp. Electron. Syst."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1109\/MAES.2004.1263228","article-title":"Multiple hypothesis tracking for multiple target tracking","volume":"19","author":"Blackman","year":"2004","journal-title":"IEEE Aerosp. Electron. Syst. Mag."},{"key":"ref_34","unstructured":"Duan, Y. (2017). Research on LEO Target Detection for Binding Telescopes with Large FOV. [Ph.D. Thesis, National University of Defense Technology]."},{"key":"ref_35","first-page":"26","article-title":"Fast parallel algorithm of morphology operation based on element subsection","volume":"40","author":"Cheng","year":"2016","journal-title":"Video Eng."},{"key":"ref_36","unstructured":"Sun, Q., Niu, Z.D., and Yao, C. (2019, January 25\u201327). Implementation of Real-time Detection Algorithm for Space Debris Based on Multi-core DSP. Proceedings of the 2019 International Conference on Computer Graphics and Digital Image Processing, Rome, Italy."},{"key":"ref_37","unstructured":"Huang, B.K. (2016). Research on Intensity-Based Image Registration Technology. [Master\u2019s Thesis, Jiangxi University of Science and Technology]."},{"key":"ref_38","unstructured":"Xiu, P.S. (2015). Small Target Detection and Tracking in Deep Space. [Master\u2019s Thesis, University of Chinese Academy of Science]."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"3688","DOI":"10.1093\/mnras\/stx1085","article-title":"The Catalina Surveys Southern Periodic Variable Star Catalogue","volume":"469","author":"Drake","year":"2017","journal-title":"Mon. Not. R. Astron. Soc."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1088\/0067-0049\/213\/1\/9","article-title":"The Catalina Surveys Periodic Variable Star Catalog","volume":"213","author":"Drake","year":"2014","journal-title":"Astrophys. J. Suppl. Ser."},{"key":"ref_41","doi-asserted-by":"crossref","unstructured":"Griffiths, M. (2018). Observer\u2019s Guide to Variable Stars, Springer.","DOI":"10.1007\/978-3-030-00904-5"},{"key":"ref_42","unstructured":"Bar-Shalom, Y., and Li, X.R. (1993). Estimation and Tracking: Principles, Techniques, and Soft-Ware, Artech House."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"3460","DOI":"10.1109\/TSP.2013.2259822","article-title":"Labeled random finite sets and multi-object conjugate priors","volume":"61","author":"Vo","year":"2013","journal-title":"IEEE Trans. Signal Process."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"1483","DOI":"10.2514\/1.55843","article-title":"Accuracy of Two-Line-Element Data for Geostationary and High-Eccentricity Orbits","volume":"35","author":"Schildknecht","year":"2012","journal-title":"J. Guid. Control. Dyn."},{"key":"ref_45","first-page":"28","article-title":"Application of ROC in Detection Performance Evaluation of Infrared Imaging System","volume":"10","author":"Li","year":"2012","journal-title":"Opt. Optoelectron. Technol."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/19\/18\/4026\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,20]],"date-time":"2024-06-20T16:56:58Z","timestamp":1718902618000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/19\/18\/4026"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,9,18]]},"references-count":45,"journal-issue":{"issue":"18","published-online":{"date-parts":[[2019,9]]}},"alternative-id":["s19184026"],"URL":"https:\/\/doi.org\/10.3390\/s19184026","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2019,9,18]]}}}