{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T14:49:10Z","timestamp":1740149350137,"version":"3.37.3"},"reference-count":78,"publisher":"MDPI AG","issue":"8","license":[{"start":{"date-parts":[[2019,4,17]],"date-time":"2019-04-17T00:00:00Z","timestamp":1555459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"This paper is a section of several preliminary studies of the Underwater Drones Group of the Universit\u00e0 degli Studi \u201cRoma Tre\u201d Science Department: We describe the study philosophy, the theoretical technological considerations for sizing and the development of a technological demonstrator of a high accuracy buoyancy and depth control. We develop the main requirements and the boundary conditions that design the buoyancy system and develop the mathematical conditions that define the main parameters.<\/jats:p>","DOI":"10.3390\/s19081831","type":"journal-article","created":{"date-parts":[[2019,4,17]],"date-time":"2019-04-17T11:58:09Z","timestamp":1555502289000},"page":"1831","source":"Crossref","is-referenced-by-count":35,"title":["High Accuracy Buoyancy for Underwater Gliders: The Uncertainty in the Depth Control"],"prefix":"10.3390","volume":"19","author":[{"given":"Enrico","family":"Petritoli","sequence":"first","affiliation":[{"name":"Science Department, Universit\u00e0 degli Studi \u201cRoma Tre\u201d, Via della Vasca Navale n. 84, 00146 Rome, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8152-2112","authenticated-orcid":false,"given":"Fabio","family":"Leccese","sequence":"additional","affiliation":[{"name":"Science Department, Universit\u00e0 degli Studi \u201cRoma Tre\u201d, Via della Vasca Navale n. 84, 00146 Rome, Italy"}]},{"given":"Marco","family":"Cagnetti","sequence":"additional","affiliation":[{"name":"Science Department, Universit\u00e0 degli Studi \u201cRoma Tre\u201d, Via della Vasca Navale n. 84, 00146 Rome, Italy"}]}],"member":"1968","published-online":{"date-parts":[[2019,4,17]]},"reference":[{"key":"ref_1","unstructured":"Inzartsev, A.V. (2009). Autonomous underwater gliders. Underwater Vehicles, In-Tech. Chapter 26."},{"key":"ref_2","unstructured":"Kayton, M., and Fried, W.R. (2007). Avionics Navigation Systems, Wiley."},{"key":"ref_3","unstructured":"Jenkins, S.A., Humphreys, D.E., Sherman, J., Osse, J., Jones, C., Leonard, N., Graver, J., Bachmayer, R., Clem, T., and Carroll, P. (2003). Underwater Glider System Study, Scripps Institution of Oceanography. Technical Report No. 53."},{"key":"ref_4","unstructured":"Graver, J.G. (2005). Underwater Gliders: Dynamics, Control and Design. [Ph.D. Thesis, Princeton University]."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1007\/s11802-008-0113-2","article-title":"MATLAB-Based simulation of buoyancy-driven underwater glider motion","volume":"7","author":"Kan","year":"2007","journal-title":"J. Ocean Univ. Chin."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"2053","DOI":"10.1016\/S0005-1098(02)00136-X","article-title":"Stabilizing underwater vehicle motion using internal rotors","volume":"38","author":"Woolsey","year":"2002","journal-title":"Automatica"},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Jekeli, C. (2001). Inertial Navigation Systems with Geodetic Applications, Walter de Gruyter Berlin.","DOI":"10.1515\/9783110800234"},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Smith, R.N., Chao, Y., Jones, B.H., Caron, D.A., Li, P., and Sukhatme, G.S. (2010). Trajectory Design for Autonomous Underwater Vehicles based on Ocean Model Predictions for Feature Tracking. Field and Service Robotics, Springer.","DOI":"10.1007\/978-3-642-13408-1_24"},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Mitchell, B., Wilkening, E., and Mahmoudian, N. (2013, January 17\u201319). Low cost underwater gliders for littoral marine research. Proceedings of the American Control Conference (ACC), Seattle, WA, USA.","DOI":"10.1109\/ACC.2013.6580034"},{"key":"ref_10","first-page":"1","article-title":"Glider Technology for Ocean Observations: A Review","volume":"2016","author":"Meyer","year":"2016","journal-title":"Ocean Sci. Discuss."},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Griffiths, G. (2002). Autonomous buoyancy-driven underwater gliders. Technology and Applications of Autonomous Underwater Vehicles, Taylor & Francis.","DOI":"10.1201\/9780203522301"},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Wang, C., Zhang, Z., Gu, J., Liu, J., and Miao, T. (2012, January 5\u20136). Design and Hydrodynamic Performance Analysis of Underwater Glider Model. Proceedings of the 2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM), Hunan, China.","DOI":"10.1109\/CDCIEM.2012.59"},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"De Francesco, E., De Francesco, E., De Francesco, R., Leccese, F., and Cagnetti, M. (2015, January 4\u20135). A proposal to update LSA databases for an operational availability based on autonomic logistic. Proceedings of the 2nd IEEE International Workshop on Metrology for Aerospace, MetroAeroSpace, Benevento, Italy.","DOI":"10.1109\/MetroAeroSpace.2015.7180623"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"424","DOI":"10.1109\/48.972073","article-title":"Seaglider: A longrange autonomous underwater vehicle for oceanographic research","volume":"26","author":"Eriksen","year":"2001","journal-title":"IEEE J Oceanic Eng."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"1","DOI":"10.4031\/002533204787522703","article-title":"Underwater Gliders for Ocean Research","volume":"38","author":"Rudnick","year":"2004","journal-title":"Mar. Technol. Soc. J."},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Austin, R. (2010). Unmanned Aircraft Systems, Wiley.","DOI":"10.1002\/9780470664797"},{"key":"ref_17","unstructured":"Graver, J.G., Liu, J., Woolsey, C., and Leonard, N.E. (1998, January 2\u20135). Design and Analysis of an Underwater Vehicle for Controlled Gliding. Proceedings of the Conference on Information Sciences and Systems (CISS), Princeton, NJ, USA."},{"key":"ref_18","doi-asserted-by":"crossref","unstructured":"Leccese, F., Cagnetti, M., Giarnetti, S., Petritoli, E., Luisetto, I., Tuti, S., \u00d0urovi\u0107-Pej\u010dev, R., \u00d0or\u0111evi\u0107, T., Toma\u0161evi\u0107, A., and Bursi\u0107, V. (2018, January 8\u201310). A Simple Takagi-Sugeno Fuzzy Modelling Case Study for an Underwater Glider Control System. Proceedings of the 2018 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Bari, Italy.","DOI":"10.1109\/MetroSea.2018.8657877"},{"key":"ref_19","unstructured":"Teledyne Webb Research (2019, February 01). Slocum Electric Glider. Available online: http:\/\/www.webbresearch.com\/."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"5","DOI":"10.4031\/MTSJ.47.5.4","article-title":"State of Technology in Autonomous Underwater Gliders","volume":"47","author":"Wood","year":"2013","journal-title":"Mar. Technol. Soc. J."},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Waldmann, C., Kausche, A., and Iversen, M. (2014, January 25\u201329). MOTH-An underwater glider design study carried out as part of the HGF alliance ROBEX. Proceedings of the 2014 IEEE\/OES Autonomous Underwater Vehicles (AUV), Oxford, UK.","DOI":"10.1109\/AUV.2014.7054401"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"264","DOI":"10.1175\/1520-0426(1992)009<0264:TALCE>2.0.CO;2","article-title":"The Autonomous Lagrangian Circulation Explorer (ALACE)","volume":"9","author":"Davis","year":"1992","journal-title":"J. Atmos. Oceanic Technol."},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Seo, D.C., Gyungnam, J., and Choi, H.S. (2008, January 8\u201311). Pitching control simulation of an underwater glider using CFD analysis. Proceedings of the Oceans\u2014MTS\/IEEE Kobe Techno-Ocean, Kobe, Japan.","DOI":"10.1109\/OCEANSKOBE.2008.4530978"},{"key":"ref_24","unstructured":"Evans, C.D., and Riggins, R. (1995, January 22\u201326). The Design and Analysis of Integrated Navigation Systems Using Real INS and GPS Data. Proceedings of the IEEE 1995 National Aerospace and Electronics Conference, Dayton, OH, USA."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1109\/JOE.2012.2227551","article-title":"Motion Parameter Optimization and Sensor Scheduling for the Sea-Wing Underwater Glider","volume":"38","author":"Yu","year":"2013","journal-title":"IEEE J. Oceanic Eng."},{"key":"ref_26","unstructured":"Hussain, N.A.A., Arshad, M.R., and Mohd-Mokhtar, R. (2010, January 8\u201311). Modeling and Identification of an Underwater Glider. Proceedings of the 2010 International Symposium on Robotics and Intelligent Sensors (IRIS2010), Nagoya, Japan."},{"key":"ref_27","unstructured":"Bohenek, B.J. (1994). The Enhanced Performance of an Integrate Navigation System. A Highly Dynamic Environment, Air Force Institute of Technology."},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Beard, R.W., and McLain, T.W. (2012). Small Unmanned Aircraft\u2014Theory and Practice, Princeton University Press.","DOI":"10.1515\/9781400840601"},{"key":"ref_29","doi-asserted-by":"crossref","unstructured":"Petritoli, E., Leccese, F., and Ciani, L. (2017, January 21\u201323). Reliability assessment of UAV systems. Proceedings of the 4th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Padua, Italy.","DOI":"10.1109\/MetroAeroSpace.2017.7999577"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"1671","DOI":"10.3390\/rs4061671","article-title":"Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use","volume":"4","author":"Watts","year":"2012","journal-title":"Remote Sens."},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Petritoli, E., and Leccese, F. (2015, January 4\u20135). Improvement of altitude precision in indoor and urban canyon navigation for small flying vehicles. Proceedings of the 2nd IEEE International Workshop on Metrology for Aerospace (MetroAeroSpace 2015), Benevento, Italy.","DOI":"10.1109\/MetroAeroSpace.2015.7180626"},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Andrade-Bustos, I., Salgado-Jim\u00e9nez, T., Garc\u00eda-Valdovinos, L.G., and Bandala-S\u00e1nchez, M. (2016, January 19\u201323). Stable Sliding PD Control for underwater gliders: Experimental results. Proceedings of the Oceans 2016 MTS\/IEEE Monterey, Monterey, CA, USA.","DOI":"10.1109\/OCEANS.2016.7761186"},{"key":"ref_33","unstructured":"Pereira, A., Heidarsson, H., Caron, D.A., Jones, B.H., and Sukhatme, G.S. (2009, January 14\u201316). A communication framework for the cost-effective operation of slocum gliders in coastal regions. Proceedings of the 7th International Conference on Field and Service Robotics, Cambridge, MA, USA."},{"key":"ref_34","unstructured":"Skibski, C.E. (2009). Design of an Autonomous Underwater Glider focusing on External Wing Control Surfaces and Sensor Integration. [Bachelor\u2019s Thesis, Florida Institute of Technology]."},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Isa, K., and Arshad, M.R. (2013, January 9\u201312). An analysis of homeostatic motion control system for a hybrid-driven underwater glider. Proceedings of the 2013 IEEE\/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Wollongong, Australia.","DOI":"10.1109\/AIM.2013.6584319"},{"key":"ref_36","unstructured":"K\u00fcchemann, D. (1978). The Aerodynamic Design of Aircraft, Pergamon Press. Pergamon international library of science, technology, engineering, and social studie."},{"key":"ref_37","first-page":"711","article-title":"Design Mathematical Modeling and Analysis of Underwater Glider","volume":"4","author":"Parthasarathy","year":"2015","journal-title":"Int. J. Sci. Res."},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Song, D.L., Yao, L.L., Wang, Z.Y., and Han, L. (2015, January 12\u201314). Pitching Angle Control Method of Underwater Glider Based on Motion Compensation. Proceedings of the 2015 International Conference on Computational Intelligence and Communication Networks (CICN), Jabalpur, India.","DOI":"10.1109\/CICN.2015.294"},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Smith, R.N., Schwager, M., Smith, S.L., Rus, D., and Sukhatme, G.S. (2011, January 9\u201313). Persistent Ocean Monitoring with Underwater Gliders Towards Accurate Reconstruction of Dynamic Ocean Processes. Proceedings of the 2011 IEEE International Conference Robotics and Automation (ICRA), Shanghai, China.","DOI":"10.1109\/ICRA.2011.5979583"},{"key":"ref_40","unstructured":"Techy, L., Tomokiyo, R., Quenzer, J., Beauchamp, T., and Morgansen, K. (2010). Full Scale Wind Tunnel Study of the Seaglider Underwater Glider, University of Washington. UWAA Technical Report UWAATR-2010-0002."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"711","DOI":"10.1109\/48.972114","article-title":"Performance metrics for oceanographic surveys with autonomous underwater vehicles","volume":"26","author":"Wilcox","year":"2001","journal-title":"IEEE J Oceanic Eng."},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Petritoli, E., Giagnacovo, T., and Leccese, F. (2014, January 29\u201330). Lightweight GNSS\/IRS integrated navigation system for UAV vehicles. Proceedings of the 2014 IEEE International Workshop on Metrology for Aerospace (MetroAeroSpace), Benevento Italy.","DOI":"10.1109\/MetroAeroSpace.2014.6865894"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"447","DOI":"10.1109\/48.972077","article-title":"SLOCUM: An underwater glider propelled by environmental energy","volume":"26","author":"Webb","year":"2001","journal-title":"IEEE J Oceanic Eng."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"22","DOI":"10.5670\/oceanog.1989.26","article-title":"The Slocum Mission","volume":"2","author":"Stommel","year":"1989","journal-title":"Oceanography"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"437","DOI":"10.1109\/48.972076","article-title":"The autonomous underwater glider \u201cSpray\u201d","volume":"26","author":"Sherman","year":"2001","journal-title":"IEEE J Oceanic Eng."},{"key":"ref_46","doi-asserted-by":"crossref","unstructured":"Titterton, D., and Weston, J. (2004). Strapdown Inertial Navigation Technology, The Institution of Electrical Engineers and The American Institute of Aeronautics and Astronautics. [2nd ed.].","DOI":"10.1049\/PBRA017E"},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.oceaneng.2008.07.009","article-title":"Development of the AUV \u2018ISiMI\u2019 and free running test in an ocean engineering basin","volume":"36","author":"Jun","year":"2009","journal-title":"Ocean Eng."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1109\/48.972106","article-title":"Model-Based feedback control of autonomous underwater gliders","volume":"26","author":"Leonard","year":"2001","journal-title":"IEEE J. Ocean Eng."},{"key":"ref_49","doi-asserted-by":"crossref","unstructured":"Arima, M., Ichihashi, N., and Ikebuchi, T. (2008, January 8\u201311). Motion characteristics of an underwater glider with independently controllable main wings. Proceedings of the OCEANS 2008\u2014MTS\/IEEE Kobe Techno-Ocean, Kobe, Japan.","DOI":"10.1109\/OCEANSKOBE.2008.4531062"},{"key":"ref_50","unstructured":"Roger, E.O., Genderson, J.G., Smith, W.S., Denny, G., and Farley, P.J. (2004, January 20\u201324). Underwater acoustic glider. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA."},{"key":"ref_51","doi-asserted-by":"crossref","unstructured":"Woithe, H.C., and Kremer, U. (2009, January 11\u201315). A programming architecture for smart autonomous underwater vehicles. Proceedings of the IEEE\/RSJ International Conference on Intelligent Robots and Systems 2009\u2014IROS 2009, St. Louis, MI, USA.","DOI":"10.1109\/IROS.2009.5354098"},{"key":"ref_52","doi-asserted-by":"crossref","unstructured":"Woithe, H.C., Tilkidjieva, D., and Kremer, U. (2008). Towards a Resource-Aware Programming Architecture for Smart Autonomous Underwater Vehicles, Rutgers University. Technical Report, DCS-TR-637.","DOI":"10.1109\/IROS.2009.5354098"},{"key":"ref_53","unstructured":"Lennart, L. (1999). System Identification Theory for the User, Prentice Hall. [2nd ed.]."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"3","DOI":"10.21014\/acta_imeko.v7i2.535","article-title":"High accuracy attitude and navigation system for an autonomous underwater vehicle (AUV)","volume":"7","author":"Petritoli","year":"2018","journal-title":"Acta IMEKO"},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Petritoli, E., and Leccese, F. (2017, January 11\u201313). A high accuracy navigation system for a tailless underwater glider. Proceedings of the IMEKO TC19 Workshop on Metrology for the Sea, MetroSea 2017: Learning to Measure Sea Health Parameters, Naples, Italy.","DOI":"10.1109\/MetroSea.2018.8657831"},{"key":"ref_56","doi-asserted-by":"crossref","unstructured":"Petritoli, E., and Leccese, F. (2017, January 11\u201313). A high accuracy attitude system for a tailless underwater glider. Proceedings of the IMEKO TC19 Workshop on Metrology for the Sea, MetroSea 2017: Learning to Measure Sea Health Parameters, Naples, Italy.","DOI":"10.1109\/MetroSea.2018.8657831"},{"key":"ref_57","unstructured":"DSIAC (2019, February 28). Reliability of UAVs and Drones. Available online: https:\/\/www.dsiac.org\/resources\/journals\/dsiac\/spring-2017-volume-4-number-2\/reliability-uavs-and-drones."},{"key":"ref_58","unstructured":"Etkin, B. (1959). Dynamic of Flight, John Wiley and Sons."},{"key":"ref_59","doi-asserted-by":"crossref","unstructured":"Tan, X., Kim, D., Usher, N., Laboy, D., Jackson, J., Kapetanovic, A., Rapai, J., Sabadus, B., and Zhou, X. (2006, January 9\u201315). An Autonomous Robotic Fish for Mobile Sensing. Proceedings of the 2006 IEEE\/RSJ International Conference on Intelligent Robots and Systems, Beijing, China.","DOI":"10.1109\/IROS.2006.282110"},{"key":"ref_60","doi-asserted-by":"crossref","unstructured":"Smith, R.N., Pereira, A., Chao, Y., Li, P.P., Caron, D.A., Jones, B.H., and Sukhatme, G.S. (2010, January 4\u20138). Autonomous Underwater Vehicle trajectory design coupled with predictive ocean models: A case study. Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, USA.","DOI":"10.1109\/ROBOT.2010.5509240"},{"key":"ref_61","doi-asserted-by":"crossref","unstructured":"Petritoli, E., Leccese, F., and Cagnetti, M. (2018, January 8\u201310). A High Accuracy Buoyancy System Control for an Underwater Glider. Proceedings of the 2018 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Bari, Italy.","DOI":"10.1109\/MetroSea.2018.8657831"},{"key":"ref_62","doi-asserted-by":"crossref","unstructured":"Techy, L., Kristi Morganseny, A., and Woolseyz, C.A. (July, January 29). Long-baseline acoustic localization of the Seaglider underwater glider. Proceedings of the American Control Conference (ACC) 2011, San Francisco, CA, USA.","DOI":"10.1109\/ACC.2011.5991416"},{"key":"ref_63","doi-asserted-by":"crossref","unstructured":"Hussain, N.A.A., Ali, S.S.A., Saad, M.N.M., and Nordin, N. (2016, January 13\u201314). Underactuated nonlinear adaptive control approach using U-model for multivariable underwater glider control parameters. Proceedings of the 2016 IEEE International Conference on Underwater System Technology: Theory and Applications (USYS), Penang, Malaysia.","DOI":"10.1109\/USYS.2016.7893947"},{"key":"ref_64","doi-asserted-by":"crossref","unstructured":"Yu, P., Zhao, Y., Wang, T., Zhou, H., Su, S., and Zhen, C. (2017, January 24\u201326). Steady-state spiral motion simulation and turning speed analysis of an underwater glider. Proceedings of the 2017 4th International Conference on Information Cybernetics and Computational Social Systems (ICCSS), Dalian, China.","DOI":"10.1109\/ICCSS.2017.8091442"},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1109\/MCS.2010.939943","article-title":"Jerrold Eldon Marsden [Obituaries]","volume":"31","author":"Bloch","year":"2011","journal-title":"Control Syst. IEEE"},{"key":"ref_66","unstructured":"Williams, C.D. (2004, January 20\u201323). AUV systems research at the NRC-IOT: An update. Proceedings of the Underwater Technology 2004\u2014UT \u201904. 2004 International Symposium on, Taipei, Taiwan."},{"key":"ref_67","doi-asserted-by":"crossref","unstructured":"Jing, D., and Haifeng, W. (2013, January 16\u201319). System health management for unmanned aerial vehicle: conception, state-of-art, framework and challenge. Proceedings of the Electronic Measurement & Instruments (ICEMI). In Proceedings of the 2013 IEEE 11th International Conference, Harbin, China.","DOI":"10.1109\/ICEMI.2013.6743144"},{"key":"ref_68","unstructured":"(2019, February 15). Javafoil\u2014Analysys of Airfolis. Available online: https:\/\/www.mh-aerotools.de\/airfoils\/javafoil.htm."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"449","DOI":"10.1007\/s11831-015-9147-y","article-title":"A Survey of Free Software for the Design, Analysis, Modelling, and Simulation of an Unmanned Aerial Vehicle","volume":"23","author":"Vogeltanz","year":"2016","journal-title":"Arch. Comput. Meth. Eng."},{"key":"ref_70","unstructured":"Vogeltanz, T., and Ja\u0161ek, R. (2014, January 13\u201315). Free software for the modelling and simulation of a mini-UAV. Proceedings of the Mathematics and Computers in Science and Industry, Varna, Bulgaria."},{"key":"ref_71","doi-asserted-by":"crossref","unstructured":"Jodeh, N., Blue, P., and Waldron, A. (2006, January 21\u201324). Development of small unmanned aerial vehicle research platform: Modeling and simulating with flight test validation. Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit, Keystone, CO, USA.","DOI":"10.2514\/6.2006-6261"},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1146\/annurev.fluid.35.101101.161102","article-title":"Aerodynamics of small vehicles","volume":"35","author":"Mueller","year":"2003","journal-title":"Annual review of fluid mechanics"},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/j.ast.2006.05.005","article-title":"Autonomous flight and navigation of VTOL UAVs: From autonomy demonstrations to out-of-sight flights","volume":"11","author":"Fabiani","year":"2007","journal-title":"Aerosp. Sci. Technol."},{"key":"ref_74","doi-asserted-by":"crossref","unstructured":"Wu, N., Wu, C., Ge, T., Yang, D., and Yang, R. (2018). Pitch Channel Control of a REMUS AUV with Input Saturation and Coupling Disturbances. Appl. Sci., 8.","DOI":"10.3390\/app8020253"},{"key":"ref_75","doi-asserted-by":"crossref","unstructured":"Hahn, A. (2010, January 4\u20137). Vehicle sketch pad: A parametric geometry modeller for conceptual aircraft design. Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA.","DOI":"10.2514\/6.2010-657"},{"key":"ref_76","doi-asserted-by":"crossref","unstructured":"Wang, T., Wu, C., Wang, J., and Ge, T. (2018). Modeling and Control of Negative-Buoyancy Tri-Tilt-Rotor Autonomous Underwater Vehicles Based on Immersion and Invariance Methodology. Appl. Sci., 8.","DOI":"10.3390\/app8071150"},{"key":"ref_77","doi-asserted-by":"crossref","unstructured":"Boussalis, H., Valavanis, K., Guillaume, D., Pena, F., Diaz, E.U., and & Alvarenga, J. (2013, January 25\u201328). Control of a simulated wing structure with multiple segmented control surfaces. Proceedings of the 2013 21st Mediterranean Conference IEEE Control & Automation (MED), Crete, Greece.","DOI":"10.1109\/MED.2013.6608768"},{"key":"ref_78","doi-asserted-by":"crossref","unstructured":"Wang, T., Wang, J., Wu, C., Zhao, M., and Ge, T. (2018). Disturbance-Rejection Control for the Hover and Transition Modes of a Negative-Buoyancy Quad Tilt-Rotor Autonomous Underwater Vehicle. Appl. Sci., 8.","DOI":"10.3390\/app8122459"}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/19\/8\/1831\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,17]],"date-time":"2024-06-17T04:09:52Z","timestamp":1718597392000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/19\/8\/1831"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,4,17]]},"references-count":78,"journal-issue":{"issue":"8","published-online":{"date-parts":[[2019,4]]}},"alternative-id":["s19081831"],"URL":"https:\/\/doi.org\/10.3390\/s19081831","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2019,4,17]]}}}