{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T04:29:53Z","timestamp":1726201793549},"reference-count":52,"publisher":"MDPI AG","issue":"4","license":[{"start":{"date-parts":[[2019,2,21]],"date-time":"2019-02-21T00:00:00Z","timestamp":1550707200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100002924","name":"FEDER","doi-asserted-by":"publisher","award":["UID\/CTM\/50025\/2013NOVA.ID.FCT"],"id":[{"id":"10.13039\/501100002924","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001871","name":"Funda\u00e7\u00e3o para a Ci\u00eancia e a Tecnologia","doi-asserted-by":"publisher","award":["PD\/BD\/105876\/2014"],"id":[{"id":"10.13039\/501100001871","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Electronic skin (e-skin) is pursued as a key component in robotics and prosthesis to confer them sensing properties that mimic human skin. For pressure monitoring, a great emphasis on piezoresistive sensors was registered due to the simplicity of sensor design and readout mechanism. For higher sensitivity, films composing these sensors may be micro-structured, usually by expensive photolithography techniques or low-cost and low-customizable molds. Sensors commonly present different sensitivities in different pressure ranges, which should be avoided in robotics and prosthesis applications. The combination of pressure sensing and temperature is also relevant for the field and has room for improvement. This work proposes an alternative approach for film micro-structuration based on the production of highly customizable and low-cost molds through laser engraving. These bimodal e-skin piezoresistive and temperature sensors could achieve a stable sensitivity of \u22126.4 \u00d7 10\u22123 kPa\u22121 from 1.6 kPa to 100 kPa, with a very robust and reproducible performance over 27,500 cycles of objects grasping and releasing and an exceptionally high temperature coefficient of resistance (TCR) of 8.3%\/\u00b0C. These results point toward the versatility and high benefit\/cost ratio of the laser engraving technique to produce sensors with a suitable performance for robotics and functional prosthesis.<\/jats:p>","DOI":"10.3390\/s19040899","type":"journal-article","created":{"date-parts":[[2019,2,22]],"date-time":"2019-02-22T08:49:44Z","timestamp":1550825384000},"page":"899","source":"Crossref","is-referenced-by-count":31,"title":["E-Skin Bimodal Sensors for Robotics and Prosthesis Using PDMS Molds Engraved by Laser"],"prefix":"10.3390","volume":"19","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2820-2125","authenticated-orcid":false,"given":"Andreia","family":"dos Santos","sequence":"first","affiliation":[{"name":"CENIMAT|i3N, Departamento de Ci\u00eancia dos Materiais, Faculdade de Ci\u00eancias e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal"}]},{"given":"Nuno","family":"Pinela","sequence":"additional","affiliation":[{"name":"CENIMAT|i3N, Departamento de Ci\u00eancia dos Materiais, Faculdade de Ci\u00eancias e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal"}]},{"given":"Pedro","family":"Alves","sequence":"additional","affiliation":[{"name":"CENIMAT|i3N, Departamento de Ci\u00eancia dos Materiais, Faculdade de Ci\u00eancias e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal"}]},{"given":"Rodrigo","family":"Santos","sequence":"additional","affiliation":[{"name":"CENIMAT|i3N, Departamento de Ci\u00eancia dos Materiais, Faculdade de Ci\u00eancias e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8177-4865","authenticated-orcid":false,"given":"Ricardo","family":"Farinha","sequence":"additional","affiliation":[{"name":"CENIMAT|i3N, Departamento de Ci\u00eancia dos Materiais, Faculdade de Ci\u00eancias e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal"}]},{"given":"Elvira","family":"Fortunato","sequence":"additional","affiliation":[{"name":"CENIMAT|i3N, Departamento de Ci\u00eancia dos Materiais, Faculdade de Ci\u00eancias e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal"}]},{"given":"Rodrigo","family":"Martins","sequence":"additional","affiliation":[{"name":"CENIMAT|i3N, Departamento de Ci\u00eancia dos Materiais, Faculdade de Ci\u00eancias e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7350-649X","authenticated-orcid":false,"given":"Hugo","family":"\u00c1guas","sequence":"additional","affiliation":[{"name":"CENIMAT|i3N, Departamento de Ci\u00eancia dos Materiais, Faculdade de Ci\u00eancias e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6608-3422","authenticated-orcid":false,"given":"Rui","family":"Igreja","sequence":"additional","affiliation":[{"name":"CENIMAT|i3N, Departamento de Ci\u00eancia dos Materiais, Faculdade de Ci\u00eancias e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal"}]}],"member":"1968","published-online":{"date-parts":[[2019,2,21]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"5997","DOI":"10.1002\/adma.201302240","article-title":"25th anniversary article: The evolution of electronic skin (E-Skin): A brief history, design considerations, and recent progress","volume":"25","author":"Hammock","year":"2013","journal-title":"Adv. Mater."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"937","DOI":"10.1038\/nmat4671","article-title":"Pursuing prosthetic electronic skin","volume":"15","author":"Chortos","year":"2016","journal-title":"Nat. Mater."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"9966","DOI":"10.1073\/pnas.0401918101","article-title":"A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications","volume":"101","author":"Someya","year":"2004","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"12321","DOI":"10.1073\/pnas.0502392102","article-title":"Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes","volume":"102","author":"Someya","year":"2005","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"083303","DOI":"10.1063\/1.4794143","article-title":"Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane","volume":"102","author":"Hu","year":"2013","journal-title":"Appl. Phys. Lett."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"1859","DOI":"10.1038\/ncomms2832","article-title":"Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring","volume":"4","author":"Schwartz","year":"2013","journal-title":"Nat. Commun."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"6692","DOI":"10.1002\/adma.201303041","article-title":"A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design","volume":"25","author":"Yao","year":"2013","journal-title":"Adv. Mater."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"4496","DOI":"10.1038\/ncomms5496","article-title":"Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring","volume":"5","author":"Dagdeviren","year":"2014","journal-title":"Nat. Commun."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"4689","DOI":"10.1021\/nn500441k","article-title":"Giant Tunneling Piezoresistance of Composite Elastomers with Interlocked Microdome Arrays for Ultrasensitive and Multimodal Electronic Skins","volume":"8","author":"Park","year":"2014","journal-title":"ACS Nano"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"634","DOI":"10.1002\/adma.201403807","article-title":"Highly skin-conformal microhairy sensor for pulse signal amplification","volume":"27","author":"Pang","year":"2015","journal-title":"Adv. Mater."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"9974","DOI":"10.1021\/acsnano.5b03510","article-title":"Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated","volume":"9","author":"Park","year":"2015","journal-title":"ACS Nano"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"12705","DOI":"10.1038\/srep12705","article-title":"A Sensor Array Using Multi-functional Field-effect Transistors with Ultrahigh Sensitivity and Precision for Bio-monitoring","volume":"5","author":"Kim","year":"2015","journal-title":"Sci. Rep."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"907","DOI":"10.1016\/j.bios.2015.10.062","article-title":"Ultrasensitive, passive and wearable sensors for monitoring human muscle motion and physiological signals","volume":"77","author":"Cai","year":"2016","journal-title":"Biosens. Bioelectron."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.nanoen.2016.02.012","article-title":"Highly sensitive, wearable and wireless pressure sensor using free-standing ZnO nanoneedle\/PVDF hybrid thin film for heart rate monitoring","volume":"22","author":"Shin","year":"2016","journal-title":"Nano Energy"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1016\/j.eml.2016.05.015","article-title":"Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation","volume":"9","author":"Dagdeviren","year":"2016","journal-title":"Extrem. Mech. Lett."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"5747","DOI":"10.1038\/ncomms6747","article-title":"Stretchable silicon nanoribbon electronics for skin prosthesis","volume":"5","author":"Kim","year":"2014","journal-title":"Nat. Commun."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"2287","DOI":"10.1002\/adfm.201404365","article-title":"Elastomeric Electronic Skin for Prosthetic Tactile Sensation","volume":"25","author":"Gerratt","year":"2015","journal-title":"Adv. Funct. Mater."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"034001","DOI":"10.1088\/1361-6439\/aaa1d8","article-title":"Fabrication and characterization of bending and pressure sensors for a soft prosthetic hand","volume":"28","author":"Rocha","year":"2018","journal-title":"J. Micromech. Microeng."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"795","DOI":"10.1038\/nmat3380","article-title":"A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres","volume":"11","author":"Pang","year":"2012","journal-title":"Nat. Mater."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"3002","DOI":"10.1038\/ncomms4002","article-title":"An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film","volume":"5","author":"Pan","year":"2014","journal-title":"Nat. Commun."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"3132","DOI":"10.1038\/ncomms4132","article-title":"A wearable and highly sensitive pressure sensor with ultrathin gold nanowires","volume":"5","author":"Gong","year":"2014","journal-title":"Nat. Commun."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1336","DOI":"10.1002\/adma.201304248","article-title":"Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals","volume":"26","author":"Wang","year":"2014","journal-title":"Adv. Mater."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"3451","DOI":"10.1002\/adma.201305182","article-title":"Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array","volume":"26","author":"Choong","year":"2014","journal-title":"Adv. Mater."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"9247","DOI":"10.1039\/C5TC01604E","article-title":"A flexible high-sensitivity piezoresistive sensor comprising a Au nanoribbon-coated polymer sponge","volume":"3","author":"Yin","year":"2015","journal-title":"J. Mater. Chem. C"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"11652","DOI":"10.1039\/C5NR00076A","article-title":"A highly sensitive pressure sensor using a double-layered graphene structure for tactile sensing","volume":"7","author":"Chun","year":"2015","journal-title":"Nanoscale"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"5300","DOI":"10.1002\/adma.201600408","article-title":"Linearly and Highly Pressure-Sensitive Electronic Skin Based on a Bioinspired Hierarchical Structural Array","volume":"28","author":"Bae","year":"2016","journal-title":"Adv. Mater."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"345","DOI":"10.1016\/j.sna.2017.09.054","article-title":"Pyramid microstructure with single walled carbon nanotubes for flexible and transparent micro-pressure sensor with ultra-high sensitivity","volume":"266","author":"Huang","year":"2017","journal-title":"Sens. Actuators A Phys."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"859","DOI":"10.1038\/nmat2834","article-title":"Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers","volume":"9","author":"Mannsfeld","year":"2010","journal-title":"Nat. Mater."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1038\/nnano.2011.184","article-title":"Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes","volume":"6","author":"Lipomi","year":"2011","journal-title":"Nat. Nanotechnol."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"6269","DOI":"10.1038\/ncomms7269","article-title":"Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection","volume":"6","author":"Zang","year":"2015","journal-title":"Nat. Commun."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1633","DOI":"10.1038\/ncomms2639","article-title":"High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene)","volume":"4","author":"Persano","year":"2013","journal-title":"Nat. Commun."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.nanoen.2014.04.016","article-title":"Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film","volume":"7","author":"Pi","year":"2014","journal-title":"Nano Energy"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"3109","DOI":"10.1021\/nl300988z","article-title":"Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors based on Micropatterned Plastic Films","volume":"12","author":"Fan","year":"2012","journal-title":"Nano Lett."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"8266","DOI":"10.1021\/nn4037514","article-title":"Triboelectric Active Sensor Array for Self-Powered Static and Dynamic Pressure Detection and Tactile Imaging","volume":"7","author":"Lin","year":"2013","journal-title":"ACS Nano"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"3208","DOI":"10.1021\/nl5005652","article-title":"Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification","volume":"14","author":"Zhu","year":"2014","journal-title":"Nano Lett."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"3887","DOI":"10.1002\/smll.201400863","article-title":"Nature-Replicated Nano-in-Micro Structures for Triboelectric Energy Harvesting","volume":"10","author":"Seol","year":"2014","journal-title":"Small"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1016\/j.nanoen.2017.09.024","article-title":"Low-voltage, high-sensitivity and high-reliability bimodal sensor array with fully inkjet-printed flexible conducting electrode for low power consumption electronic skin","volume":"41","author":"Kim","year":"2017","journal-title":"Nano Energy"},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Zhou, Y., He, J., Wang, H., Qi, K., Nan, N., You, X., Shao, W., Wang, L., Ding, B., and Cui, S. (2017). Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor. Sci. Rep., 7.","DOI":"10.1038\/s41598-017-13281-8"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"1262","DOI":"10.1016\/j.snb.2017.08.116","article-title":"Highly sensitive and skin-like pressure sensor based on asymmetric double-layered structures of reduced graphite oxide","volume":"255","author":"Zhu","year":"2018","journal-title":"Sens. Actuators B Chem."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"1451","DOI":"10.1039\/C7TC05228F","article-title":"A flexible and highly sensitive pressure sensor based on elastic carbon foam","volume":"6","author":"Liu","year":"2018","journal-title":"J. Mater. Chem. C"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"115502","DOI":"10.1088\/1361-6528\/aaa855","article-title":"A wearable pressure sensor based on ultra-violet\/ozone microstructured carbon nanotube\/polydimethylsiloxane arrays for electronic skins","volume":"29","author":"Yu","year":"2018","journal-title":"Nanotechnology"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1016\/j.nanoen.2017.04.015","article-title":"High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators","volume":"36","author":"Wang","year":"2017","journal-title":"Nano Energy"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"e1500661","DOI":"10.1126\/sciadv.1500661","article-title":"Fingertip skin-inspired microstructured ferroelectric skins discriminate static\/dynamic pressure and temperature stimuli","volume":"1","author":"Park","year":"2015","journal-title":"Sci. Adv."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"4178","DOI":"10.1002\/adma.201501408","article-title":"Highly Sensitive and Multimodal All-Carbon Skin Sensors Capable of Simultaneously Detecting Tactile and Biological Stimuli","volume":"27","author":"Kim","year":"2015","journal-title":"Adv. Mater."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"1702050","DOI":"10.1002\/adfm.201702050","article-title":"A Skin-Inspired Integrated Sensor for Synchronous Monitoring of Multiparameter Signals","volume":"27","author":"Gui","year":"2017","journal-title":"Adv. Funct. Mater."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"1800182","DOI":"10.1002\/aelm.201800182","article-title":"Piezoresistive E-Skin Sensors Produced with Laser Engraved Molds","volume":"4","author":"Pinela","year":"2018","journal-title":"Adv. Electron. Mater."},{"key":"ref_47","doi-asserted-by":"crossref","unstructured":"Dos Santos, A., Pinela, N., Alves, P., Santos, R., Fortunato, E., Martins, R., \u00c1guas, H., and Igreja, R. (2018). E-Skin Pressure Sensors Made by Laser Engraved PDMS Molds. Proceedings, 2.","DOI":"10.3390\/proceedings2131039"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"2358","DOI":"10.1039\/c004051g","article-title":"Three-dimensional large-scale microfluidic integration by laser ablation of interlayer connections","volume":"10","author":"Huft","year":"2010","journal-title":"Lab Chip"},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"924","DOI":"10.1039\/b418299e","article-title":"Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using CO2 laser ablation","volume":"130","author":"Fogarty","year":"2005","journal-title":"Analyst"},{"key":"ref_50","doi-asserted-by":"crossref","unstructured":"Dumitras, D.C. (2012). CO2 Laser and Micro-Fluidics. CO2 Laser-Optimisation and Application, InTech.","DOI":"10.5772\/2496"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"2841","DOI":"10.1002\/adfm.201500453","article-title":"Bioinspired Interlocked and Hierarchical Design of ZnO Nanowire Arrays for Static and Dynamic Pressure-Sensitive Electronic Skins","volume":"25","author":"Ha","year":"2015","journal-title":"Adv. Funct. Mater."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"2031","DOI":"10.1063\/1.1149706","article-title":"Thermally actuated interferometric sensors based on the thermal expansion of transparent elastomeric media","volume":"70","author":"Grzybowski","year":"1999","journal-title":"Rev. Sci. Instrum."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/19\/4\/899\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,16]],"date-time":"2024-06-16T03:57:17Z","timestamp":1718510237000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/19\/4\/899"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,2,21]]},"references-count":52,"journal-issue":{"issue":"4","published-online":{"date-parts":[[2019,2]]}},"alternative-id":["s19040899"],"URL":"https:\/\/doi.org\/10.3390\/s19040899","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,2,21]]}}}