{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,8]],"date-time":"2025-04-08T22:09:11Z","timestamp":1744150151127,"version":"3.37.3"},"reference-count":82,"publisher":"MDPI AG","issue":"3","license":[{"start":{"date-parts":[[2019,1,24]],"date-time":"2019-01-24T00:00:00Z","timestamp":1548288000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100010198","name":"Ministerio de Econom\u00eda, Industria y Competitividad, Gobierno de Espa\u00f1a","doi-asserted-by":"publisher","award":["BES-2015-071698","TEC2014-59229-R"],"id":[{"id":"10.13039\/501100010198","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"This paper describes the development and validation of the currently smallest aerial platform with olfaction capabilities. The developed Smelling Nano Aerial Vehicle (SNAV) is based on a lightweight commercial nano-quadcopter (27 g) equipped with a custom gas sensing board that can host up to two in situ metal oxide semiconductor (MOX) gas sensors. Due to its small form-factor, the SNAV is not a hazard for humans, enabling its use in public areas or inside buildings. It can autonomously carry out gas sensing missions of hazardous environments inaccessible to terrestrial robots and bigger drones, for example searching for victims and hazardous gas leaks inside pockets that form within the wreckage of collapsed buildings in the aftermath of an earthquake or explosion. The first contribution of this work is assessing the impact of the nano-propellers on the MOX sensor signals at different distances to a gas source. A second contribution is adapting the \u2018bout\u2019 detection algorithm, proposed by Schmuker et al. (2016) to extract specific features from the derivative of the MOX sensor response, for real-time operation. The third and main contribution is the experimental validation of the SNAV for gas source localization (GSL) and mapping in a large indoor environment (160 m2) with a gas source placed in challenging positions for the drone, for example hidden in the ceiling of the room or inside a power outlet box. Two GSL strategies are compared, one based on the instantaneous gas sensor response and the other one based on the bout frequency. From the measurements collected (in motion) along a predefined sweeping path we built (in less than 3 min) a 3D map of the gas distribution and identified the most likely source location. Using the bout frequency yielded on average a higher localization accuracy than using the instantaneous gas sensor response (1.38 m versus 2.05 m error), however accurate tuning of an additional parameter (the noise threshold) is required in the former case. The main conclusion of this paper is that a nano-drone has the potential to perform gas sensing tasks in complex environments.<\/jats:p>","DOI":"10.3390\/s19030478","type":"journal-article","created":{"date-parts":[[2019,1,24]],"date-time":"2019-01-24T16:12:48Z","timestamp":1548346368000},"page":"478","source":"Crossref","is-referenced-by-count":110,"title":["Smelling Nano Aerial Vehicle for Gas Source Localization and Mapping"],"prefix":"10.3390","volume":"19","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-7327-6396","authenticated-orcid":false,"given":"Javier","family":"Burgu\u00e9s","sequence":"first","affiliation":[{"name":"Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain"},{"name":"Department of Electronics and Biomedical Engineering, Universitat de Barcelona, Marti i Franqu\u00e9s 1, 08028 Barcelona, Spain"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5061-5474","authenticated-orcid":false,"given":"Victor","family":"Hern\u00e1ndez","sequence":"additional","affiliation":[{"name":"AASS Mobile Robot Olfaction Lab, \u00d6rebro University, SE 70182 \u00d6rebro, Sweden"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0217-9326","authenticated-orcid":false,"given":"Achim","family":"Lilienthal","sequence":"additional","affiliation":[{"name":"AASS Mobile Robot Olfaction Lab, \u00d6rebro University, SE 70182 \u00d6rebro, Sweden"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2663-2965","authenticated-orcid":false,"given":"Santiago","family":"Marco","sequence":"additional","affiliation":[{"name":"Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain"},{"name":"Department of Electronics and Biomedical Engineering, Universitat de Barcelona, Marti i Franqu\u00e9s 1, 08028 Barcelona, Spain"}]}],"member":"1968","published-online":{"date-parts":[[2019,1,24]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"603","DOI":"10.1126\/science.1231806","article-title":"Controlled flight of a biologically inspired, insect-scale robot","volume":"340","author":"Ma","year":"2013","journal-title":"Science"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/j.paerosci.2017.04.003","article-title":"Classifications, applications, and design challenges of drones: A review","volume":"91","author":"Hassanalian","year":"2017","journal-title":"Prog. Aerosp. Sci."},{"key":"ref_3","first-page":"1187","article-title":"The use of unmanned aerial vehicles (uavs) for remote sensing and mapping","volume":"37","author":"Everaerts","year":"2008","journal-title":"Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"1355","DOI":"10.3390\/rs4051355","article-title":"Low power greenhouse gas sensors for unmanned aerial vehicles","volume":"4","author":"Khan","year":"2012","journal-title":"Remote Sens."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.snb.2012.04.036","article-title":"Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle","volume":"169","author":"Berman","year":"2012","journal-title":"Sens. Actuators B Chem."},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Carrozzo, M., De Vito, S., Esposito, E., Salvato, M., Formisano, F., Massera, E., Di Francia, G., Veneri, P.D., Iadaresta, M., and Mennella, A. (2018, January 20\u201322). UAV Intelligent Chemical Multisensor Payload for Networked and Impromptu Gas Monitoring Tasks. Proceedings of the 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Rome, Italy.","DOI":"10.1109\/MetroAeroSpace.2018.8453543"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"484","DOI":"10.1016\/j.chemosphere.2015.08.028","article-title":"Development of a multicopter-carried whole air sampling apparatus and its applications in environmental studies","volume":"144","author":"Chang","year":"2016","journal-title":"Chemosphere"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"1289","DOI":"10.3923\/jas.2013.1289.1296","article-title":"UAV platform based atmospheric environmental emergency monitoring system design","volume":"13","author":"Xie","year":"2013","journal-title":"J. Appl. Sci."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"765","DOI":"10.1109\/TIM.2015.2506319","article-title":"Autonomous Gas Detection and Mapping With Unmanned Aerial Vehicles","volume":"65","author":"Rossi","year":"2016","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"McGonigle, A.J.S., Aiuppa, A., Giudice, G., Tamburello, G., Hodson, A.J., and Gurrieri, S. (2008). Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes. Geophys. Res. Lett., 35.","DOI":"10.1029\/2007GL032508"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"667","DOI":"10.5047\/eps.2012.11.001","article-title":"Composition of volcanic gases emitted during repeating Vulcanian eruption stage of Shinmoedake, Kirishima volcano, Japan","volume":"65","author":"Shinohara","year":"2013","journal-title":"Earth Planets Space"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"2441","DOI":"10.5194\/amt-11-2441-2018","article-title":"Implementation of electrochemical, optical and denuder-based sensors and sampling techniques on UAV for volcanic gas measurements: Examples from Masaya, Turrialba and Stromboli volcanoes","volume":"11","author":"Tirpitz","year":"2018","journal-title":"Atmos. Meas. Tech."},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Mori, T., Hashimoto, T., Terada, A., Yoshimoto, M., Kazahaya, R., Shinohara, H., and Tanaka, R. (2016). Volcanic plume measurements using a UAV for the 2014 Mt. Ontake eruption the Phreatic Eruption of Mt. Ontake Volcano in 2014 5. Volcanology. Earth Planets Space, 68.","DOI":"10.1186\/s40623-016-0418-0"},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Astuti, G., Giudice, G., Longo, D., Melita, C.D., Muscato, G., and Orlando, A. (2009). An overview of the \u201cvolcan project\u201d: An UAS for exploration of volcanic environments. J. Intell. Robot. Syst. Theory Appl.","DOI":"10.1007\/s10846-008-9275-9"},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Neumann, P.P., Kohlhoff, H., H\u00fcllmann, D., Lilienthal, A.J., and Kluge, M. (June, January 29). Bringing Mobile Robot Olfaction to the next dimension\u2014UAV-based remote sensing of gas clouds and source localization. Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore.","DOI":"10.1109\/ICRA.2017.7989450"},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Golston, L.M., Aubut, N.F., Frish, M.B., Yang, S., Talbot, R.W., Gretencord, C., McSpiritt, J., and Zondlo, M.A. (2018). Natural gas fugitive leak detection using an unmanned aerial vehicle: Localization and quantification of emission rate. Atmosphere, 9.","DOI":"10.3390\/atmos9090333"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"584","DOI":"10.1016\/j.proeng.2012.08.208","article-title":"Early forest fire detection and verification using optical smoke, gas and microwave sensors","volume":"45","author":"Tobera","year":"2012","journal-title":"Procedia Eng."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1002\/rob.20108","article-title":"A cooperative perception system for multiple UAVs: Application to automatic detection of forest fires","volume":"23","author":"Merino","year":"2006","journal-title":"J. F. Robot."},{"key":"ref_19","unstructured":"Pfeifer, J., Khanna, R., Constantin, D., Popovic, M., Galceran, E., Walter, A., Siegwart, R., and Liebisch, F. (2016, January 26\u201329). Towards automatic UAV data interpretation. Proceedings of the International Conference of Agricultural Engineering 2016, At Aahus, Denmark."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"3334","DOI":"10.3390\/s150203334","article-title":"Mini-UAV based sensory system for measuring environmental variables in greenhouses","volume":"15","author":"Joossen","year":"2015","journal-title":"Sensors"},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Pobkrut, T., Eamsa-Ard, T., and Kerdcharoen, T. (July, January 28). Sensor drone for aerial odor mapping for agriculture and security services. Proceedings of the 2016 13th International Conference on Electrical Engineering\/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Chiang Mai, Thailand.","DOI":"10.1109\/ECTICon.2016.7561340"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"193","DOI":"10.2495\/WM080211","article-title":"A new approach to solid waste landfills aerial monitoring","volume":"109","author":"Lega","year":"2008","journal-title":"WIT Trans. Ecol. Environ."},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Allen, G., Hollingsworth, P., Kabbabe, K., Pitt, J.R., Mead, M.I., Illingworth, S., Roberts, G., Bourn, M., Shallcross, D.E., and Percival, C.J. (2018). The development and trial of an unmanned aerial system for the measurement of methane flux from landfill and greenhouse gas emission hotspots. Waste Manag.","DOI":"10.1016\/j.wasman.2017.12.024"},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Emran, B.J., Tannant, D.D., and Najjaran, H. (2017). Low-altitude aerial methane concentration mapping. Remote Sens., 9.","DOI":"10.3390\/rs9080823"},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Daniel, K., Dusza, B., Lewandowski, A., and Wietfeld, C. (2009, January 23\u201326). Airshield: A system-of-systems muav remote sensing architecture for disaster response. Proceedings of the 2009 3rd Annual IEEE Systems Conference, Vancouver, BC, Canada.","DOI":"10.1109\/SYSTEMS.2009.4815797"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"19667","DOI":"10.3390\/s150819667","article-title":"Towards the development of a low cost airborne sensing system to monitor dust particles after blasting at open-pit mine sites","volume":"15","author":"Alvarado","year":"2015","journal-title":"Sensors"},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Villa, T., Gonzalez, F., Miljievic, B., Ristovski, Z., and Morawska, L. (2016). An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives. Sensors, 16.","DOI":"10.3390\/s16071072"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"281","DOI":"10.14358\/PERS.81.4.281","article-title":"Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs)","volume":"81","author":"Pajares","year":"2015","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_29","doi-asserted-by":"crossref","unstructured":"Rossi, M., and Brunelli, D. (2017, January 6\u20139). Gas Sensing on Unmanned Vehicles: Challenges and Opportunities. Proceedings of the 2017 New Generation of CAS (NGCAS), Genova, Italy.","DOI":"10.1109\/NGCAS.2017.58"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1126\/sciadv.1602557","article-title":"Room temperature multiplexed gas sensing using chemical-sensitive 3. 5-nm-thin silicon transistors","volume":"3","author":"Fahad","year":"2017","journal-title":"Sci. Adv."},{"key":"ref_31","unstructured":"Dunkley, O., Engel, J., Sturm, J., and Cremers, D. (2014, January 14\u201318). Visual-Inertial Navigation for a Camera-Equipped 25 g Nano-Quadrotor. Proceedings of the IROS Aerial Open Source Robotics Workshop, Chicago, IL, USA."},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Preiss, J.A., Honig, W., Sukhatme, G.S., and Ayanian, N. (June, January 29). Crazyswarm: A large nano-quadcopter swarm. Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore.","DOI":"10.1109\/ICRA.2017.7989376"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"185138","DOI":"10.1155\/2013\/185138","article-title":"Recent advances in wireless indoor localization techniques and system","volume":"2013","author":"Farid","year":"2013","journal-title":"J. Comput. Networks Commun."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"13664","DOI":"10.3390\/s121013664","article-title":"Overcoming the slow recovery of MOX gas sensors through a system modeling approach","volume":"12","author":"Monroy","year":"2012","journal-title":"Sensors"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.robot.2004.05.002","article-title":"Building gas concentration gridmaps with a mobile robot","volume":"48","author":"Lilienthal","year":"2004","journal-title":"Rob. Auton. Syst."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"869","DOI":"10.1177\/0278364908095118","article-title":"Robot odor localization: A taxonomy and survey","volume":"27","author":"Kowadlo","year":"2008","journal-title":"Int. J. Rob. Res."},{"key":"ref_37","unstructured":"Lochmatter, T. (2010). Bio-Inspired and Probabilistic Algorithms for Distributed Odor Source Localization using Mobile Robots, \u00c9cole polytechnique f\u00e9d\u00e9rale de Lausanne (EPFL)."},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Hernandez Bennetts, V., Lilienthal, A.J., Neumann, P.P., and Trincavelli, M. (2012). Mobile Robots for Localizing Gas Emission Sources on Landfill Sites: Is Bio-Inspiration the Way to Go?. Front. Neuroeng., 4.","DOI":"10.3389\/fneng.2011.00020"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"817","DOI":"10.1163\/1568553041738103","article-title":"Experimental analysis of gas-sensitive Braitenberg vehicles","volume":"18","author":"Lilienthal","year":"2004","journal-title":"Adv. Robot."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/S0925-4005(98)00036-7","article-title":"Remote sensing of gas\/odor source location and concentration distribution using mobile system","volume":"49","author":"Ishida","year":"1998","journal-title":"Sens. Actuators B Chem."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"1068","DOI":"10.1109\/TSMCB.2006.874689","article-title":"Chemical plume source localization","volume":"36","author":"Pang","year":"2006","journal-title":"IEEE Trans. Syst. Man Cybern. Part B Cybern."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"406","DOI":"10.1038\/nature05464","article-title":"\u201cInfotaxis\u201d as a strategy for searching without gradients","volume":"445","author":"Vergassola","year":"2007","journal-title":"Nature"},{"key":"ref_43","doi-asserted-by":"crossref","unstructured":"Pomareda, V., Magrans, R., Jim\u00e9nez-Soto, J.M., Mart\u00ednez, D., Tres\u00e1nchez, M., Burgu\u00e9s, J., Palac\u00edn, J., and Marco, S. (2017). Chemical source localization fusing concentration information in the presence of chemical background noise. Sensors, 17.","DOI":"10.3390\/s17040904"},{"key":"ref_44","unstructured":"Turner, D.B. (1994). Workbook of Atmospheric Dispersion Estimates: An Introduction to Dispersion Modeling, CRC Press."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1023\/A:1016283702837","article-title":"Filament-based atmospheric dispersion model to achieve short time-scale structure of odor plumes","volume":"2","author":"Farrell","year":"2002","journal-title":"Environ. Fluid Mech."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"529","DOI":"10.1017\/S0022112087001940","article-title":"Criteria for the selection of stochastic models of particle trajectories in turbulent flows","volume":"180","author":"Thomson","year":"1987","journal-title":"J. Fluid Mech."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"913","DOI":"10.1103\/RevModPhys.73.913","article-title":"Particles and fields in fluid turbulence","volume":"73","author":"Falkovich","year":"2001","journal-title":"Rev. Mod. Phys."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1002\/qj.49707331704","article-title":"The problem of diffusion in the lower atmosphere","volume":"73","author":"Sutton","year":"1947","journal-title":"Q. J. R. Meteorol. Soc."},{"key":"ref_49","unstructured":"Bakkum, E.A., and Duijm, N.J. (1997). Vapour Cloud Dispersion, CPR E."},{"key":"ref_50","unstructured":"Luo, B., Meng, Q.H., Wang, J.Y., Sun, B., and Wang, Y. (2015, January 28\u201330). Three-dimensional gas distribution mapping with a micro-drone. Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China."},{"key":"ref_51","doi-asserted-by":"crossref","unstructured":"Lilienthal, A.J., Reggente, M., Trinca, M., Blanco, J.L., and Gonzalez, J. (2009, January 10\u201315). A statistical approach to gas distribution modelling with mobile robots\u2014The Kernel DM+V algorithm. Proceedings of the 2009 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, MO, USA.","DOI":"10.1109\/IROS.2009.5354304"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"260","DOI":"10.1109\/JSEN.2002.800682","article-title":"Distributed odor source localization","volume":"2","author":"Hayes","year":"2002","journal-title":"IEEE Sens. J."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1109\/MRA.2012.2184671","article-title":"Autonomous gas-sensitive microdrone: Wind vector estimation and gas distribution mapping","volume":"19","author":"Neumann","year":"2012","journal-title":"IEEE Robot. Autom. Mag."},{"key":"ref_54","doi-asserted-by":"crossref","unstructured":"Burgu\u00e9s, J., and Marco, S. (2018). Low power operation of temperature-modulated metal oxide semiconductor gas sensors. Sensors, 18.","DOI":"10.3390\/s18020339"},{"key":"ref_55","unstructured":"Lilienthal, A., Zell, A., Wandel, M., and Weimar, U. (2001, January 21\u201326). Sensing odour sources in indoor environments without a constant airflow by a mobile robot. Proceedings of the 2001 IEEE International Conference on Robotics and Automation (ICRA), Seoul, Korea."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1073\/pnas.92.1.62","article-title":"Chemical signals in the marine environment: Dispersal, detection, and temporal signal analysis","volume":"92","author":"Atema","year":"1995","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_57","unstructured":"Farah, A., and Duckett, T. (2002, January 11\u201312). Reactive Localisation of an Odour Source by a learning Mobile Robot. Proceedings of the Second Swedish Workshop on Autonomous Robotics, Stockholm, Sweden."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1023\/A:1016223500111","article-title":"A multidisciplinary study of spatial and temporal scales containing information in turbulent chemical plume tracking","volume":"2","author":"Weissburg","year":"2002","journal-title":"Environ. Fluid Mech."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"1034","DOI":"10.4319\/lo.2001.46.5.1034","article-title":"Chemosensory guidance cues in a turbulent chemical odor plume","volume":"46","author":"Webster","year":"2001","journal-title":"Limnol. Oceanogr."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"6145","DOI":"10.3390\/s110606145","article-title":"The multi-chamber electronic nose-an improved olfaction sensor for mobile robotics","volume":"11","author":"Monroy","year":"2011","journal-title":"Sensors"},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"1442","DOI":"10.1016\/j.proeng.2012.09.429","article-title":"Odor markers detection system for mobile robot navigation","volume":"47","author":"Batog","year":"2012","journal-title":"Procedia Eng."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1016\/S0925-4005(97)80001-9","article-title":"Different strategies for the identification of gas sensing systems","volume":"34","author":"Marco","year":"1996","journal-title":"Sens. Actuators B Chem."},{"key":"ref_63","unstructured":"Pardo, A., Marco, S., Samitier, J., Davide, F.A.M., Di Natale, C., and D\u2019Amico, A. (1996, January 4\u20136). Dynamic measurements with chemical sensor arrays based on inverse modelling. Proceedings of the IEEE Instrumentation and Measurement Technology Conference, Brussels, Belgium."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"618","DOI":"10.1016\/j.snb.2015.03.028","article-title":"Reservoir computing compensates slow response of chemosensor arrays exposed to fast varying gas concentrations in continuous monitoring","volume":"215","author":"Fonollosa","year":"2015","journal-title":"Sens. Actuators B Chem."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"636","DOI":"10.1016\/j.snb.2016.05.098","article-title":"Exploiting plume structure to decode gas source distance using metal-oxide gas sensors","volume":"235","author":"Schmuker","year":"2016","journal-title":"Sens. Actuators B Chem."},{"key":"ref_66","unstructured":"Bitcraze, A.B. (2018, July 07). Getting Started with the Loco Positioning System. Available online: https:\/\/www.bitcraze.io\/getting-started-with-the-loco-positioning-system\/."},{"key":"ref_67","unstructured":"(2016). DecaWave DWM1000 Datasheet, DecaWave."},{"key":"ref_68","unstructured":"Nelson, G. (1992). Gas Mixtures: Preparation and Control, CRC Press."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"1699","DOI":"10.1351\/pac199567101699","article-title":"Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995)","volume":"67","author":"Currie","year":"1995","journal-title":"Pure Appl. Chem."},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1016\/j.aca.2018.01.062","article-title":"Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models","volume":"1013","author":"Marco","year":"2018","journal-title":"Anal. Chim. Acta"},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"16404","DOI":"10.3390\/s121216404","article-title":"Detecting changes of a distant gas source with an array of MOX gas sensors","volume":"12","author":"Pashami","year":"2012","journal-title":"Sensors"},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/j.aca.2018.03.005","article-title":"Multivariate estimation of the limit of detection by orthogonal partial least squares in temperature-modulated MOX sensors","volume":"1019","author":"Marco","year":"2018","journal-title":"Anal. Chim. Acta"},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"012049","DOI":"10.1088\/1757-899X\/318\/1\/012049","article-title":"Gas Source Localization via Behaviour Based Mobile Robot and Weighted Arithmetic Mean Gas Source Localization via Behaviour Based Mobile Robot and Weighted Arithmetic Mean","volume":"318","author":"Shakaff","year":"2018","journal-title":"IOP Conf. Ser. Mater. Sci. Eng."},{"key":"ref_74","doi-asserted-by":"crossref","unstructured":"Li, J.G., Sun, B., Zeng, F.L., Liu, J., Yang, J., and Yang, L. (2016, January 27\u201329). Experimental study on multiple odor sources mapping by a mobile robot in time-varying airflow environment. Proceedings of the Chinese Control Conference (CCC), Chengdu, China.","DOI":"10.1109\/ChiCC.2016.7554304"},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1007\/s10514-006-7102-3","article-title":"Using na\u00efve physics for odor localization in a cluttered indoor environment","volume":"20","author":"Kowadlo","year":"2006","journal-title":"Auton. Robots"},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"1616","DOI":"10.3390\/s6111616","article-title":"Airborne chemical sensing with mobile robots","volume":"6","author":"Lilienthal","year":"2006","journal-title":"Sensors"},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1063\/1.3156484","article-title":"Three-dimensional statistical gas distribution mapping in an uncontrolled indoor environment","volume":"1137","author":"Reggente","year":"2009","journal-title":"AIP Conf. Proc."},{"key":"ref_78","doi-asserted-by":"crossref","first-page":"7323","DOI":"10.3390\/s130607323","article-title":"TREFEX: Trend estimation and change detection in the response of MOX gas sensors","volume":"13","author":"Pashami","year":"2013","journal-title":"Sensors"},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1017\/S0263574708004694","article-title":"Gas distribution mapping of multiple odour sources using a mobile robot","volume":"27","author":"Loutfi","year":"2009","journal-title":"Robotica"},{"key":"ref_80","doi-asserted-by":"crossref","unstructured":"Lilienthal, A., Reimann, D., and Zell, A. (2003). Gas Source Tracing with a Mobile Robot Using an Adapted Moth Strategy. Auton. Mob. Syst., 150\u2013160.","DOI":"10.1007\/978-3-642-18986-9_16"},{"key":"ref_81","unstructured":"Lilienthal, A., Trincavelli, M., and Schaffernicht, E. (2013, January 2\u20135). It\u2019s always smelly around here! Modeling the Spatial Distribution of Gas Detection Events with BASED Grid Maps. Proceedings of the 15th International Symposium on Olfaction and Electronic Nose (ISOEN 2013), Daegu, Korea."},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"1142","DOI":"10.1166\/sl.2014.3189","article-title":"Bayesian Spatial Event Distribution Grid Maps for Modeling the Spatial Distribution of Gas Detection Events","volume":"12","author":"Schaffernicht","year":"2014","journal-title":"Sens. Lett."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/19\/3\/478\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,15]],"date-time":"2024-06-15T17:04:49Z","timestamp":1718471089000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/19\/3\/478"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,1,24]]},"references-count":82,"journal-issue":{"issue":"3","published-online":{"date-parts":[[2019,2]]}},"alternative-id":["s19030478"],"URL":"https:\/\/doi.org\/10.3390\/s19030478","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2019,1,24]]}}}