{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T18:43:19Z","timestamp":1735584199300},"reference-count":113,"publisher":"MDPI AG","issue":"8","license":[{"start":{"date-parts":[[2018,8,14]],"date-time":"2018-08-14T00:00:00Z","timestamp":1534204800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Machine learning has emerged with big data technologies and high-performance computing to create new opportunities for data intensive science in the multi-disciplinary agri-technologies domain. In this paper, we present a comprehensive review of research dedicated to applications of machine learning in agricultural production systems. The works analyzed were categorized in (a) crop management, including applications on yield prediction, disease detection, weed detection crop quality, and species recognition; (b) livestock management, including applications on animal welfare and livestock production; (c) water management; and (d) soil management. The filtering and classification of the presented articles demonstrate how agriculture will benefit from machine learning technologies. By applying machine learning to sensor data, farm management systems are evolving into real time artificial intelligence enabled programs that provide rich recommendations and insights for farmer decision support and action.<\/jats:p>","DOI":"10.3390\/s18082674","type":"journal-article","created":{"date-parts":[[2018,8,14]],"date-time":"2018-08-14T14:31:16Z","timestamp":1534257076000},"page":"2674","source":"Crossref","is-referenced-by-count":1636,"title":["Machine Learning in Agriculture: A Review"],"prefix":"10.3390","volume":"18","author":[{"given":"Konstantinos","family":"Liakos","sequence":"first","affiliation":[{"name":"Institute for Bio-Economy and Agri-Technology (IBO), Centre of Research and Technology\u2014Hellas (CERTH), 6th km Charilaou-Thermi Rd, GR 57001 Thessaloniki, Greece"}]},{"given":"Patrizia","family":"Busato","sequence":"additional","affiliation":[{"name":"Department of Agriculture, Forestry and Food Sciences (DISAFA), Faculty of Agriculture, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy"}]},{"given":"Dimitrios","family":"Moshou","sequence":"additional","affiliation":[{"name":"Institute for Bio-Economy and Agri-Technology (IBO), Centre of Research and Technology\u2014Hellas (CERTH), 6th km Charilaou-Thermi Rd, GR 57001 Thessaloniki, Greece"},{"name":"Agricultural Engineering Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4297-4837","authenticated-orcid":false,"given":"Simon","family":"Pearson","sequence":"additional","affiliation":[{"name":"Lincoln Institute for Agri-food Technology (LIAT), University of Lincoln, Brayford Way, Brayford Pool, Lincoln LN6 7TS, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7058-5986","authenticated-orcid":false,"given":"Dionysis","family":"Bochtis","sequence":"additional","affiliation":[{"name":"Institute for Bio-Economy and Agri-Technology (IBO), Centre of Research and Technology\u2014Hellas (CERTH), 6th km Charilaou-Thermi Rd, GR 57001 Thessaloniki, Greece"}]}],"member":"1968","published-online":{"date-parts":[[2018,8,14]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1147\/rd.441.0206","article-title":"Some Studies in Machine Learning Using the Game of Checkers","volume":"44","author":"Samuel","year":"1959","journal-title":"IBM J. Res. Dev."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"345","DOI":"10.1093\/nar\/gkm391","article-title":"CPC: Assess the protein-coding potential of transcripts using sequence features and support vector machine","volume":"35","author":"Kong","year":"2007","journal-title":"Nucleic Acids Res."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1186\/s13059-015-0742-x","article-title":"Extensive identification and analysis of conserved small ORFs in animals","volume":"16","author":"Mackowiak","year":"2015","journal-title":"Genome Biol."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"1213","DOI":"10.1016\/j.clinbiochem.2016.07.013","article-title":"Clinical chemistry in higher dimensions: Machine-learning and enhanced prediction from routine clinical chemistry data","volume":"49","author":"Richardson","year":"2016","journal-title":"Clin. Biochem."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"383","DOI":"10.1016\/j.cels.2015.12.003","article-title":"Prediction of Synergism from Chemical-Genetic Interactions by Machine Learning","volume":"1","author":"Wildenhain","year":"2015","journal-title":"Cell Syst."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"1127","DOI":"10.1016\/j.ijrobp.2015.07.2286","article-title":"Machine learning approaches for predicting radiation therapy outcomes: A clinician\u2019s perspective","volume":"93","author":"Kang","year":"2015","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Asadi, H., Dowling, R., Yan, B., and Mitchell, P. (2014). Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy. PLoS ONE, 9.","DOI":"10.1371\/journal.pone.0088225"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1016\/j.canlet.2017.06.004","article-title":"Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma","volume":"403","author":"Zhang","year":"2017","journal-title":"Cancer Lett."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1016\/j.eswa.2017.05.029","article-title":"An extensive evaluation of seven machine learning methods for rainfall prediction in weather derivatives","volume":"85","author":"Cramer","year":"2017","journal-title":"Expert Syst. Appl."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/j.agrformet.2017.02.011","article-title":"Meteorological drought forecasting for ungauged areas based on machine learning: Using long-range climate forecast and remote sensing data","volume":"237\u2013238","author":"Rhee","year":"2017","journal-title":"Agric. For. Meteorol."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/j.solener.2016.03.015","article-title":"A novel Grouping Genetic Algorithm-Extreme Learning Machine approach for global solar radiation prediction from numerical weather models inputs","volume":"132","year":"2016","journal-title":"Sol. Energy"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"405","DOI":"10.1016\/j.eswa.2017.04.006","article-title":"Machine learning models and bankruptcy prediction","volume":"83","author":"Barboza","year":"2017","journal-title":"Expert Syst. Appl."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.eneco.2017.05.023","article-title":"A deep learning ensemble approach for crude oil price forecasting","volume":"66","author":"Zhao","year":"2017","journal-title":"Energy Econ."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"416","DOI":"10.1016\/j.eswa.2016.11.010","article-title":"Explaining machine learning models in sales predictions","volume":"71","author":"Bohanec","year":"2017","journal-title":"Expert Syst. Appl."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.robot.2017.01.002","article-title":"Tool-body assimilation model considering grasping motion through deep learning","volume":"91","author":"Takahashi","year":"2017","journal-title":"Rob. Auton. Syst."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"268","DOI":"10.1016\/j.robot.2014.09.022","article-title":"A tensor-based approach to touch modality classification by using machine learning","volume":"63","author":"Gastaldo","year":"2015","journal-title":"Rob. Auton. Syst."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/j.aquaculture.2016.12.008","article-title":"Fast detection of pathogens in salmon farming industry","volume":"470","author":"Nachtigall","year":"2017","journal-title":"Aquaculture"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1016\/j.compag.2018.02.006","article-title":"Near infrared computer vision and neuro-fuzzy model-based feeding decision system for fish in aquaculture","volume":"146","author":"Zhou","year":"2018","journal-title":"Comput. Electron. Agric."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/j.foodcont.2018.06.002","article-title":"Italian tomato-based products authentication by multi-element approach: A mineral elements database to distinguish the domestic provenance","volume":"93","author":"Fragni","year":"2018","journal-title":"Food Control"},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Maione, C., and Barbosa, R.M. (2018). Recent applications of multivariate data analysis methods in the authentication of rice and the most analyzed parameters: A review. Crit. Rev. Food Sci. Nutr., 1\u201312.","DOI":"10.1080\/10408398.2018.1431763"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"11030","DOI":"10.1002\/2017GL075619","article-title":"Prolongation of SMAP to Spatiotemporally Seamless Coverage of Continental U.S. Using a Deep Learning Neural Network","volume":"44","author":"Fang","year":"2017","journal-title":"Geophys. Res. Lett."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"559","DOI":"10.1080\/14786440109462720","article-title":"On lines and planes of closest fit to systems of points in space","volume":"2","author":"Pearson","year":"1901","journal-title":"Lond. Edinb. Dublin Philos. Mag. J. Sci."},{"key":"ref_23","first-page":"581","article-title":"Partial Least Squares","volume":"Volume 6","author":"Wold","year":"1985","journal-title":"Encyclopedia of Statistical Sciences"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1111\/j.1469-1809.1936.tb02137.x","article-title":"The use of multiple measures in taxonomic problems","volume":"7","author":"Fisher","year":"1936","journal-title":"Ann. Eugen."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1111\/j.2517-6161.1958.tb00292.x","article-title":"The Regression Analysis of Binary Sequences","volume":"20","author":"Cox","year":"1958","journal-title":"J. R. Stat. Soc. Ser. B"},{"key":"ref_26","first-page":"191","article-title":"Multiple regression analysis","volume":"1","author":"Efroymson","year":"1960","journal-title":"Math. Methods Digit. Comput."},{"key":"ref_27","unstructured":"Craven, B.D., and Islam, S.M.N. (2011). Ordinary least-squares regression. SAGE Dict. Quant. Manag. Res., 224\u2013228."},{"key":"ref_28","first-page":"1","article-title":"Multivariate Adaptive Regression Splines","volume":"19","author":"Friedman","year":"1991","journal-title":"Ann. Stat."},{"key":"ref_29","first-page":"343","article-title":"Learning with continuous classes","volume":"92","author":"Quinlan","year":"1992","journal-title":"Mach. Learn."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"829","DOI":"10.1080\/01621459.1979.10481038","article-title":"Robust locally weighted regression and smoothing scatterplots","volume":"74","author":"Cleveland","year":"1979","journal-title":"J. Am. Stat. Assoc."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1007\/BF02289125","article-title":"Communality of a variable: Formulation by cluster analysis","volume":"22","author":"Tryon","year":"1957","journal-title":"Psychometrika"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1109\/TIT.1982.1056489","article-title":"Least Squares Quantization in PCM","volume":"28","author":"Lloyd","year":"1982","journal-title":"IEEE Trans. Inf. Theory"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1007\/BF02289588","article-title":"Hierarchical clustering schemes","volume":"32","author":"Johnson","year":"1967","journal-title":"Psychometrika"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/j.2517-6161.1977.tb01600.x","article-title":"Maximum likelihood from incomplete data via the EM algorithm","volume":"39","author":"Dempster","year":"1977","journal-title":"J. R. Stat. Soc. Ser. B Methodol."},{"key":"ref_35","unstructured":"Russell, S.J., and Norvig, P. (1995). Artificial Intelligence: A Modern Approach, Prentice Hall."},{"key":"ref_36","first-page":"552","article-title":"Probabilistic Reasoning in Intelligent Systems","volume":"88","author":"Pearl","year":"1988","journal-title":"Morgan Kauffmann San Mateo"},{"key":"ref_37","unstructured":"Duda, R.O., and Hart, P.E. (1973). Pattern Classification and Scene Analysis, Wiley."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1080\/08839518708927979","article-title":"Models for reasoning under uncertainty","volume":"1","author":"Neapolitan","year":"1987","journal-title":"Appl. Artif. Intell."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"238","DOI":"10.2307\/1403797","article-title":"Discriminatory Analysis\u2013Nonparametric discrimination consistency properties","volume":"57","author":"Fix","year":"1951","journal-title":"Int. Stat. Rev."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1023\/A:1006559212014","article-title":"Locally Weighted Learning","volume":"11","author":"Atkeson","year":"1997","journal-title":"Artif. Intell."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/0893-6080(88)90334-6","article-title":"Learning vector quantization","volume":"1","author":"Kohonen","year":"1988","journal-title":"Neural Netw."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"65","DOI":"10.2307\/2985543","article-title":"Matching and Prediction on the Principle of Biological Classification","volume":"8","author":"Belson","year":"1959","journal-title":"Appl. Stat."},{"key":"ref_43","unstructured":"Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984). Classification and Regression Trees, Routledge."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"119","DOI":"10.2307\/2986296","article-title":"An Exploratory Technique for Investigating Large Quantities of Categorical Data","volume":"29","author":"Kass","year":"1980","journal-title":"Appl. Stat."},{"key":"ref_45","unstructured":"Quinlan, J.R. (1992). C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers Inc."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1007\/BF02478259","article-title":"A logical calculus of the ideas immanent in nervous activity","volume":"5","author":"McCulloch","year":"1943","journal-title":"Bull. Math. Biophys."},{"key":"ref_47","first-page":"321","article-title":"Multivariable Functional Interpolation and Adaptive Networks","volume":"2","author":"Broomhead","year":"1988","journal-title":"Complex Syst."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"386","DOI":"10.1037\/h0042519","article-title":"The perceptron: A probabilistic model for information storage and organization in the brain","volume":"65","author":"Rosenblatt","year":"1958","journal-title":"Psychol. Rev."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1007\/BF01931367","article-title":"Taylor expansion of the accumulated rounding error","volume":"16","author":"Linnainmaa","year":"1976","journal-title":"BIT"},{"key":"ref_50","unstructured":"Riedmiller, M., and Braun, H. (April, January 28). A direct adaptive method for faster backpropagation learning: The RPROP algorithm. Proceedings of the IEEE International Conference on Neural Networks, San Francisco, CA, USA."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"4979","DOI":"10.1364\/AO.26.004979","article-title":"Counterpropagation networks","volume":"26","year":"1987","journal-title":"Appl. Opt."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"665","DOI":"10.1109\/21.256541","article-title":"ANFIS: Adaptive-Network-Based Fuzzy Inference System","volume":"23","author":"Jang","year":"1993","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/j.chemolab.2006.02.003","article-title":"Supervised Kohonen networks for classification problems","volume":"83","author":"Melssen","year":"2006","journal-title":"Chemom. Intell. Lab. Syst."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"2554","DOI":"10.1073\/pnas.79.8.2554","article-title":"Neural networks and physical systems with emergent collective computational abilities","volume":"79","author":"Hopfield","year":"1982","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"683","DOI":"10.1109\/72.159058","article-title":"Multilayer Perceptron, Fuzzy Sets, and Classification","volume":"3","author":"Pal","year":"1992","journal-title":"IEEE Trans. Neural Netw."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"1464","DOI":"10.1109\/5.58325","article-title":"The Self-Organizing Map","volume":"78","author":"Kohonen","year":"1990","journal-title":"Proc. IEEE"},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.neucom.2005.12.126","article-title":"Extreme learning machine: Theory and applications","volume":"70","author":"Huang","year":"2006","journal-title":"Neurocomputing"},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"568","DOI":"10.1109\/72.97934","article-title":"A general regression neural network","volume":"2","author":"Specht","year":"1991","journal-title":"IEEE Trans. Neural Netw."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1007\/s11063-012-9236-y","article-title":"Bin Self-adaptive evolutionary extreme learning machine","volume":"36","author":"Cao","year":"2012","journal-title":"Neural Process. Lett."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"ref_61","unstructured":"Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning, MIT Press."},{"key":"ref_62","first-page":"448","article-title":"Deep Boltzmann Machines","volume":"1","author":"Salakhutdinov","year":"2009","journal-title":"Aistats"},{"key":"ref_63","first-page":"3371","article-title":"Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion Pierre-Antoine Manzagol","volume":"11","author":"Vincent","year":"2010","journal-title":"J. Mach. Learn. Res."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support vector machine","volume":"20","author":"Vapnik","year":"1995","journal-title":"Mach. Learn."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1023\/A:1018628609742","article-title":"Least Squares Support Vector Machine Classifiers","volume":"9","author":"Suykens","year":"1999","journal-title":"Neural Process. Lett."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1961189.1961199","article-title":"LIBSVM: A Library for Support Vector Machines","volume":"2","author":"Chang","year":"2013","journal-title":"ACM Trans. Intell. Syst. Technol."},{"key":"ref_67","unstructured":"Smola, A. (1996). Regression Estimation with Support Vector Learning Machines. [Master\u2019s Thesis, The Technical University of Munich]."},{"key":"ref_68","doi-asserted-by":"crossref","unstructured":"Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., and Vandewalle, J. (2002). Least Squares Support Vector Machines, World Scientific.","DOI":"10.1142\/5089"},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/j.chemolab.2007.12.004","article-title":"A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm","volume":"92","author":"Fragoso","year":"2008","journal-title":"Chemom. Intell. Lab. Syst."},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random Forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"ref_71","unstructured":"Schapire, R.E. (August, January 31). A brief introduction to boosting. Proceedings of the IJCAI International Joint Conference on Artificial Intelligence, Stockholm, Sweden."},{"key":"ref_72","unstructured":"Freund, Y., and Schapire, R.E. (1996, January 3\u20136). Experiments with a New Boosting Algorithm. Proceedings of the Thirteenth International Conference on International Conference on Machine Learning, Bari, Italy."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/BF00058655","article-title":"Bagging Predictors","volume":"24","author":"Breiman","year":"1996","journal-title":"Mach. Learn."},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.compag.2017.03.010","article-title":"Automatic fruit count on coffee branches using computer vision","volume":"137","author":"Ramos","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.biosystemseng.2015.10.003","article-title":"Detection of cherry tree branches with full foliage in planar architecture for automated sweet-cherry harvesting","volume":"146","author":"Amatya","year":"2015","journal-title":"Biosyst. Eng."},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.biosystemseng.2013.07.007","article-title":"Identification and determination of the number of immature green citrus fruit in a canopy under different ambient light conditions","volume":"117","author":"Sengupta","year":"2014","journal-title":"Biosyst. Eng."},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"3254","DOI":"10.1109\/JSTARS.2016.2561618","article-title":"Modeling Managed Grassland Biomass Estimation by Using Multitemporal Remote Sensing Data\u2014A Machine Learning Approach","volume":"10","author":"Ali","year":"2016","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_78","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.compag.2015.11.018","article-title":"Wheat yield prediction using machine learning and advanced sensing techniques","volume":"121","author":"Pantazi","year":"2016","journal-title":"Comput. Electron. Agric."},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.biosystemseng.2015.12.003","article-title":"Detection of tomatoes using spectral-spatial methods in remotely sensed RGB images captured by UAV","volume":"146","author":"Senthilnath","year":"2016","journal-title":"Biosyst. Eng."},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"537","DOI":"10.1016\/j.sjbs.2017.01.024","article-title":"Support vector machine-based open crop model (SBOCM): Case of rice production in China","volume":"24","author":"Su","year":"2017","journal-title":"Saudi J. Biol. Sci."},{"key":"ref_81","doi-asserted-by":"crossref","unstructured":"Kung, H.-Y., Kuo, T.-H., Chen, C.-H., and Tsai, P.-Y. (2016). Accuracy Analysis Mechanism for Agriculture Data Using the Ensemble Neural Network Method. Sustainability, 8.","DOI":"10.3390\/su8080735"},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1016\/j.compag.2017.03.017","article-title":"Detection of Silybum marianum infection with Microbotryum silybum using VNIR field spectroscopy","volume":"137","author":"Pantazi","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"ref_83","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.compag.2017.03.016","article-title":"Vision-based pest detection based on SVM classification method","volume":"137","author":"Ebrahimi","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"ref_84","doi-asserted-by":"crossref","first-page":"404","DOI":"10.1016\/j.compag.2016.01.008","article-title":"Detecting Bakanae disease in rice seedlings by machine vision","volume":"121","author":"Chung","year":"2016","journal-title":"Comput. Electron. Agric."},{"key":"ref_85","doi-asserted-by":"crossref","first-page":"383","DOI":"10.1007\/s11119-017-9507-8","article-title":"Detection of biotic and abiotic stresses in crops by using hierarchical self organizing classifiers","volume":"18","author":"Pantazi","year":"2017","journal-title":"Precis. Agric."},{"key":"ref_86","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.biosystemseng.2013.07.008","article-title":"Water stress detection based on optical multisensor fusion with a least squares support vector machine classifier","volume":"117","author":"Moshou","year":"2014","journal-title":"Biosyst. Eng."},{"key":"ref_87","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.compag.2004.04.003","article-title":"Automatic detection of \u201cyellow rust\u201d in wheat using reflectance measurements and neural networks","volume":"44","author":"Moshou","year":"2004","journal-title":"Comput. Electron. Agric."},{"key":"ref_88","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.rti.2005.03.003","article-title":"Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps","volume":"11","author":"Moshou","year":"2005","journal-title":"Real-Time Imaging"},{"key":"ref_89","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1007\/s11119-006-9002-0","article-title":"Simultaneous identification of plant stresses and diseases in arable crops using proximal optical sensing and self-organising maps","volume":"7","author":"Moshou","year":"2006","journal-title":"Precis. Agric."},{"key":"ref_90","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1016\/j.compag.2018.01.009","article-title":"Deep learning models for plant disease detection and diagnosis","volume":"145","author":"Ferentinos","year":"2018","journal-title":"Comput. Electron. Agric."},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"224","DOI":"10.1016\/j.compag.2017.05.026","article-title":"Evaluation of hierarchical self-organising maps for weed mapping using UAS multispectral imagery","volume":"139","author":"Pantazi","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"ref_92","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1016\/j.biosystemseng.2016.01.014","article-title":"Active learning system for weed species recognition based on hyperspectral sensing","volume":"146","author":"Pantazi","year":"2016","journal-title":"Biosyst. Eng."},{"key":"ref_93","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1016\/j.compag.2017.05.018","article-title":"Controlled comparison of machine vision algorithms for Rumex and Urtica detection in grassland","volume":"140","author":"Binch","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"ref_94","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.compag.2017.05.005","article-title":"Classification of foreign matter embedded inside cotton lint using short wave infrared (SWIR) hyperspectral transmittance imaging","volume":"139","author":"Zhang","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"ref_95","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/j.compag.2017.04.002","article-title":"Differentiation of deciduous-calyx and persistent-calyx pears using hyperspectral reflectance imaging and multivariate analysis","volume":"137","author":"Hu","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"ref_96","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/j.compag.2015.11.009","article-title":"Classification of geographic origin of rice by data mining and inductively coupled plasma mass spectrometry","volume":"121","author":"Maione","year":"2016","journal-title":"Comput. Electron. Agric."},{"key":"ref_97","doi-asserted-by":"crossref","first-page":"418","DOI":"10.1016\/j.compag.2016.07.003","article-title":"Deep learning for plant identification using vein morphological patterns","volume":"127","author":"Grinblat","year":"2016","journal-title":"Comput. Electron. Agric."},{"key":"ref_98","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.compag.2014.12.002","article-title":"Dynamic cattle behavioural classification using supervised ensemble classifiers","volume":"111","author":"Dutta","year":"2015","journal-title":"Comput. Electron. Agric."},{"key":"ref_99","doi-asserted-by":"crossref","first-page":"28456","DOI":"10.3390\/s151128456","article-title":"In vivo pattern classification of ingestive behavior in ruminants using FBG sensors and machine learning","volume":"15","author":"Pegorini","year":"2015","journal-title":"Sensors"},{"key":"ref_100","doi-asserted-by":"crossref","first-page":"17582","DOI":"10.1038\/s41598-017-17451-6","article-title":"Automated tracking to measure behavioural changes in pigs for health and welfare monitoring","volume":"7","author":"Matthews","year":"2017","journal-title":"Sci. Rep."},{"key":"ref_101","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1016\/j.compag.2007.08.005","article-title":"Artificial neural network models of the rumen fermentation pattern in dairy cattle","volume":"60","author":"Craninx","year":"2008","journal-title":"Comput. Electron. Agric."},{"key":"ref_102","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1016\/j.compag.2015.12.009","article-title":"Early warning in egg production curves from commercial hens: A SVM approach","volume":"121","author":"Morales","year":"2016","journal-title":"Comput. Electron. Agric."},{"key":"ref_103","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1016\/j.compag.2014.10.001","article-title":"Improved estimation of bovine weight trajectories using Support Vector Machine Classification","volume":"110","author":"Alonso","year":"2015","journal-title":"Comput. Electron. Agric."},{"key":"ref_104","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1016\/j.compag.2012.08.009","article-title":"Support Vector Regression to predict carcass weight in beef cattle in advance of the slaughter","volume":"91","author":"Alonso","year":"2013","journal-title":"Comput. Electron. Agric."},{"key":"ref_105","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/j.compind.2018.02.016","article-title":"Towards on-farm pig face recognition using convolutional neural networks","volume":"98","author":"Hansen","year":"2018","journal-title":"Comput. Ind."},{"key":"ref_106","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.compag.2017.05.002","article-title":"Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration","volume":"139","author":"Mehdizadeh","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"ref_107","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/j.compag.2017.01.027","article-title":"Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data","volume":"136","author":"Feng","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"ref_108","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1016\/j.compag.2016.01.016","article-title":"An extreme learning machine approach for modeling evapotranspiration using extrinsic inputs","volume":"121","author":"Patil","year":"2016","journal-title":"Comput. Electron. Agric."},{"key":"ref_109","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/j.compag.2015.08.008","article-title":"Extreme learning machine based prediction of daily dew point temperature","volume":"117","author":"Mohammadi","year":"2015","journal-title":"Comput. Electron. Agric."},{"key":"ref_110","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.compag.2014.04.004","article-title":"Machine learning assessments of soil drying for agricultural planning","volume":"104","author":"Coopersmith","year":"2014","journal-title":"Comput. Electron. Agric."},{"key":"ref_111","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/j.biosystemseng.2016.04.018","article-title":"Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy","volume":"152","author":"Morellos","year":"2016","journal-title":"Biosyst. Eng."},{"key":"ref_112","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/j.compag.2016.03.025","article-title":"Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature","volume":"124","author":"Nahvi","year":"2016","journal-title":"Comput. Electron. Agric."},{"key":"ref_113","doi-asserted-by":"crossref","first-page":"420","DOI":"10.1016\/j.compag.2015.12.020","article-title":"Soil moisture modeling based on stochastic behavior of forces on a no-till chisel opener","volume":"121","author":"Johann","year":"2016","journal-title":"Comput. Electron. Agric."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/18\/8\/2674\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,12]],"date-time":"2024-06-12T02:59:56Z","timestamp":1718161196000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/18\/8\/2674"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,8,14]]},"references-count":113,"journal-issue":{"issue":"8","published-online":{"date-parts":[[2018,8]]}},"alternative-id":["s18082674"],"URL":"https:\/\/doi.org\/10.3390\/s18082674","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,8,14]]}}}