{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,9]],"date-time":"2025-04-09T11:50:20Z","timestamp":1744199420524,"version":"3.37.3"},"reference-count":111,"publisher":"MDPI AG","issue":"7","license":[{"start":{"date-parts":[[2018,7,20]],"date-time":"2018-07-20T00:00:00Z","timestamp":1532044800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Aptasensors have a great potential for environmental monitoring, particularly for real-time on-site detection of aquatic toxins produced by marine and freshwater microorganisms (cyanobacteria, dinoflagellates, and diatoms), with several advantages over other biosensors that are worth considering. Freshwater monitoring is of vital importance for public health, in numerous human activities, and animal welfare, since these toxins may cause fatal intoxications. Similarly, in marine waters, very effective monitoring programs have been put in place in many countries to detect when toxins exceed established regulatory levels and accordingly enforce shellfish harvesting closures. Recent advances in the fields of aptamer selection, nanomaterials and communication technologies, offer a vast array of possibilities to develop new imaginative strategies to create improved, ultrasensitive, reliable and real-time devices, featuring unique characteristics to produce and amplify the signal. So far, not many strategies have been used to detect aquatic toxins, mostly limited to the optic and electrochemical sensors, the majority applied to detect microcystin-LR using a target-induced switching mode. The limits of detection of these aptasensors have been decreasing from the nM to the fM order of magnitude in the past 20 years. Aspects related to sensor components, performance, aptamers sequences, matrices analyzed and future perspectives, are considered and discussed.<\/jats:p>","DOI":"10.3390\/s18072367","type":"journal-article","created":{"date-parts":[[2018,7,23]],"date-time":"2018-07-23T07:24:27Z","timestamp":1532330667000},"page":"2367","source":"Crossref","is-referenced-by-count":70,"title":["Aptamer-Based Biosensors to Detect Aquatic Phycotoxins and Cyanotoxins"],"prefix":"10.3390","volume":"18","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-6149-9840","authenticated-orcid":false,"given":"Isabel","family":"Cunha","sequence":"first","affiliation":[{"name":"CIIMAR\/CIMAR\u2014Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leix\u00f5es, Av. General Norton de Matos, s\/n, 4450-238 Matosinhos, Portugal"}]},{"given":"Rita","family":"Biltes","sequence":"additional","affiliation":[{"name":"CIIMAR\/CIMAR\u2014Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leix\u00f5es, Av. General Norton de Matos, s\/n, 4450-238 Matosinhos, Portugal"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9936-7336","authenticated-orcid":false,"given":"MGF","family":"Sales","sequence":"additional","affiliation":[{"name":"ISEP\u2014Biomark, Sensors Research, School of Engineering, Polytechnic of Porto, Rua Dr. Ant\u00f3nio Bernardino de Almeida, 431, 4249-015 Porto, Portugal"},{"name":"CEB\/Centro de Engenharia Biol\u00f3gica, Minho University, Campus Gualtar, 4710-057 Braga, Portugal"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3585-2417","authenticated-orcid":false,"given":"Vitor","family":"Vasconcelos","sequence":"additional","affiliation":[{"name":"CIIMAR\/CIMAR\u2014Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leix\u00f5es, Av. General Norton de Matos, s\/n, 4450-238 Matosinhos, Portugal"},{"name":"FCUP\u2014Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal"}]}],"member":"1968","published-online":{"date-parts":[[2018,7,20]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"704","DOI":"10.1007\/BF02804901","article-title":"Harmful algal blooms and eutrophication: Nutrient sources, compositions, and consequences","volume":"25","author":"Anderson","year":"2002","journal-title":"Estuaries"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1016\/j.toxicon.2015.10.007","article-title":"Assessment of emerging biotoxins (pinnatoxin G and spirolides) at Europe\u2019s first marine reserve: Lough hyne","volume":"108","author":"Mccarthy","year":"2015","journal-title":"Toxicon"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"620","DOI":"10.1016\/j.marpolbul.2006.08.006","article-title":"Harmful microalgae blooms (HAB): Problematic and conditions that induce them","volume":"53","year":"2006","journal-title":"Mar. Pollut. Bull."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"601","DOI":"10.1016\/j.hal.2007.02.003","article-title":"Reflections on the ballast water dispersal\u2014Harmful algal bloom paradigm","volume":"6","author":"Smayda","year":"2007","journal-title":"Harmful Algae"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"4350","DOI":"10.3390\/md11114350","article-title":"Phylogeny and biogeography of cyanobacteria and their produced toxins","volume":"11","author":"Moreira","year":"2013","journal-title":"Mar. Drugs"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"8073","DOI":"10.1007\/s00253-014-5951-9","article-title":"Methods to detect cyanobacteria and their toxins in the environment","volume":"98","author":"Moreira","year":"2014","journal-title":"Appl. Microbiol. Biotechnol."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"859","DOI":"10.3390\/toxins7030859","article-title":"Emergent toxins in North Atlantic temperate waters: A challenge for monitoring programs and legislation","volume":"7","author":"Silva","year":"2015","journal-title":"Toxins"},{"key":"ref_8","first-page":"149","article-title":"Global changes and the new challenges in the research on cyanotoxin risk evaluation","volume":"34","author":"Vasconcelos","year":"2015","journal-title":"Limnetica"},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"2333","DOI":"10.1351\/pac199971122333","article-title":"Electrochemical biosensors: Recommended definitions and classification","volume":"71","author":"Toth","year":"1999","journal-title":"Pure Appl. Chem."},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Justino, C., Duarte, A., and Rocha-Santos, T. (2017). Recent progress in biosensors for environmental monitoring: A review. Sensors, 17.","DOI":"10.3390\/s17122918"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"818","DOI":"10.1038\/346818a0","article-title":"In vitro selection of RNA molecules that bind specific ligands","volume":"346","author":"Ellington","year":"1990","journal-title":"Nature"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"505","DOI":"10.1126\/science.2200121","article-title":"Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase","volume":"249","author":"Tuerk","year":"1990","journal-title":"Science"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1016\/j.bioeng.2007.06.001","article-title":"SELEX\u2014A (r)evolutionary method to generate high-affinity nucleic acid ligands","volume":"24","author":"Stoltenburg","year":"2007","journal-title":"Biomol. Eng."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"739","DOI":"10.1016\/0022-2836(91)90509-5","article-title":"Selexion: Systematic evolution of ligands by exponential enrichment with integrated optimization by non-linear analysis","volume":"222","author":"Irvine","year":"1991","journal-title":"J. Mol. Biol."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1016\/S0172-2190(03)00035-8","article-title":"Aptamers and SELEX: The technology","volume":"25","author":"Sampson","year":"2003","journal-title":"World Pat. Inf."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"4126","DOI":"10.2174\/092986711797189565","article-title":"Improving the stability of aptamers by chemical modification","volume":"18","author":"Wang","year":"2011","journal-title":"Curr. Med. Chem."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"4159","DOI":"10.2174\/092986711797189646","article-title":"Aptamers: Selection, modification and application to nervous system diseases","volume":"18","author":"Yang","year":"2011","journal-title":"Curr. Med. Chem."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"1132","DOI":"10.1021\/ac303023d","article-title":"Affinity improvement of a VEGF aptamer by in silico maturation for a sensitive VEGF-detection system","volume":"85","author":"Nonaka","year":"2013","journal-title":"Anal. Chem."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"497","DOI":"10.1038\/75910","article-title":"Tertiary core rearrangements in a tight binding transfer RNA aptamer","volume":"7","author":"Bullock","year":"2000","journal-title":"Nat. Struct. Biol."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"1155","DOI":"10.1093\/nar\/gkq823","article-title":"Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer","volume":"39","author":"Pasternak","year":"2011","journal-title":"Nucl. Acids Res."},{"key":"ref_21","unstructured":"Gorenstein, D.G., He, W., Volk, D.E., Elizondo-Riojas, M.-A., Durland, R., Engelhardt, J., and Columbia, W. (2018). Methods of X-aptamer Generation and Compositions Thereof. (9,988,623), U.S. Patent."},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Lokesh, G.L., Wang, H., Lam, C.H., Thiviyanathan, V., Ward, N., Gorenstein, D.G., and Volk, D.E. (2017). X-Aptamer Selection and Validation, Humana Press.","DOI":"10.1007\/978-1-4939-7138-1_10"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"387","DOI":"10.1016\/j.jhazmat.2012.02.012","article-title":"Immobilized smart RNA on graphene oxide nanosheets to specifically recognize and adsorb trace peptide toxins in drinking water","volume":"213\u2013214","author":"Hu","year":"2012","journal-title":"J. Hazard. Mater."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.bioelechem.2009.04.007","article-title":"Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules","volume":"77","author":"Cheng","year":"2009","journal-title":"Bioelectrochemistry"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jab.2013.02.001","article-title":"Advances in biosensors: Principle, architecture and applications","volume":"12","author":"Perumal","year":"2014","journal-title":"J. Appl. Biomed."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"161","DOI":"10.12737\/5476","article-title":"Biosensors: Design, classification, and applications in the food industry","volume":"2","author":"Korotkaya","year":"2014","journal-title":"Foods Raw Mater."},{"key":"ref_27","first-page":"121","article-title":"Electrochemical biosensors: Recommended definitions and classification","volume":"16","author":"Toth","year":"2001","journal-title":"Biosens. Bioelectron."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"10697","DOI":"10.1021\/es301686k","article-title":"Selection, characterization, and biosensing application of high affinity congener-specific microcystin-targeting aptamers","volume":"46","author":"Ng","year":"2012","journal-title":"Environ. Sci. Technol."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"371","DOI":"10.1016\/j.talanta.2012.10.081","article-title":"Determination of microcystin-LR in water by a label-free aptamer based electrochemical impedance biosensor","volume":"103","author":"Lin","year":"2013","journal-title":"Talanta"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"9196","DOI":"10.1021\/ac502157g","article-title":"In vitro selection, characterization, and biosensing application of high-affinity cylindrospermopsin-targeting aptamers","volume":"86","author":"Elshafey","year":"2014","journal-title":"Anal. Chem."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/j.bios.2015.01.002","article-title":"DNA aptamers selection and characterization for development of label-free impedimetric aptasensor for neurotoxin anatoxin-a","volume":"68","author":"Elshafey","year":"2015","journal-title":"Biosens. Bioelectron."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"242","DOI":"10.1016\/j.bios.2016.02.072","article-title":"Fabricating photoelectrochemical aptasensor for selectively monitoring microcystin-LR residues in fish based on visible light-responsive BiOBr nanoflakes\/N-doped graphene photoelectrode","volume":"81","author":"Du","year":"2016","journal-title":"Biosens. Bioelectron."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"5570","DOI":"10.1039\/C5AN00704F","article-title":"A label-free electrochemical impedance aptasensor for cylindrospermopsin detection based on thionine\u2013graphene nanocomposites","volume":"140","author":"Zhao","year":"2015","journal-title":"Analyst"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"9622","DOI":"10.1021\/acs.analchem.6b02368","article-title":"Building a three-dimensional nano-bio interface for aptasensing: An analytical methodology based on steric hindrance initiated signal amplification effect","volume":"88","author":"Du","year":"2016","journal-title":"Anal. Chem."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/j.talanta.2017.01.053","article-title":"A novel fluorescent aptasensor for ultrasensitive detection of microcystin-LR based on single-walled carbon nanotubes and dapoxyl","volume":"166","author":"Taghdisi","year":"2017","journal-title":"Talanta"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"7551","DOI":"10.1021\/ac501335k","article-title":"Label-free voltammetric aptasensor for the sensitive detection of microcystin-LR using graphene-modified electrodes","volume":"86","author":"Eissa","year":"2014","journal-title":"Anal. Chem."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1016\/j.bios.2015.01.055","article-title":"Aptamer-based competitive electrochemical biosensor for brevetoxin-2","volume":"69","author":"Eissa","year":"2015","journal-title":"Biosens. Bioelectron."},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Bilibana, M.P., Williams, A.R., Rassie, C., Sunday, C.E., Makelane, H., Wilson, L., Ntshongontshi, N., Jijana, A.N., Masikini, M., and Baker, P.G.L. (2016). Electrochemical aptatoxisensor responses on nanocomposites containing electro-deposited silver nanoparticles on poly(Propyleneimine) dendrimer for the detection of microcystin-LR in freshwater. Sensors, 16.","DOI":"10.3390\/s16111901"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"423","DOI":"10.1021\/cr068105t","article-title":"Optical biosensors","volume":"108","author":"Borisov","year":"2008","journal-title":"Chem. Rev."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1042\/EBC20150010","article-title":"Optical biosensors","volume":"60","author":"Damborsky","year":"2016","journal-title":"Essays Biochem."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"13928","DOI":"10.3390\/s131013928","article-title":"Recent advances in optical biosensors for environmental monitoring and early warning","volume":"13","author":"Long","year":"2013","journal-title":"Sensors"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"10008","DOI":"10.1021\/ac4031303","article-title":"Efficient reaction based colorimetric probe for sensitive detection, quantification, and on-site analysis of nitrite ions in natural water resources","volume":"85","author":"Adarsh","year":"2013","journal-title":"Anal. Chem."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1016\/j.bios.2015.08.037","article-title":"Biosensors and bioelectronics on smartphone for portable biochemical detection","volume":"75","author":"Zhang","year":"2016","journal-title":"Biosens. Bioelectron."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1016\/j.trac.2015.10.019","article-title":"Smartphone-based biosensors: A critical review and perspectives","volume":"79","author":"Roda","year":"2016","journal-title":"TrAC Trends Anal. Chem."},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Geng, Z., Zhang, X., Fan, Z., Lv, X., Su, Y., and Chen, H. (2017). Recent progress in optical biosensors based on smartphone platforms. Sensors, 17.","DOI":"10.3390\/s17112449"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"686","DOI":"10.1016\/j.bios.2016.09.021","article-title":"A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics","volume":"87","author":"Wang","year":"2017","journal-title":"Biosens. Bioelectron."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"4541","DOI":"10.3390\/s100504541","article-title":"Design strategies for aptamer-based biosensors","volume":"10","author":"Han","year":"2010","journal-title":"Sensors"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"369","DOI":"10.1080\/10587250108024762","article-title":"Usage of a DNA aptamer as a ligand targeting microcystin","volume":"371","author":"Nakamura","year":"2001","journal-title":"Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"474","DOI":"10.1016\/j.jhazmat.2015.11.016","article-title":"A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples","volume":"304","author":"Li","year":"2016","journal-title":"J. Hazard. Mater."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"11794","DOI":"10.1021\/ac402220k","article-title":"Selection and identification of DNA aptamers against okadaic acid for biosensing application","volume":"85","author":"Eissa","year":"2013","journal-title":"Anal. Chem."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1007\/s10544-017-0162-7","article-title":"Label-free okadaic acid detection using growth of gold nanoparticles in sensor gaps as a conductive tag","volume":"19","author":"Pan","year":"2017","journal-title":"Biomed. Microdevices"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1002\/elan.201500501","article-title":"Photoelectrochemical aptasensor for the sensitive detection of microcystin-LR based on graphene functionalized vertically-aligned TiO2 nanotubes","volume":"28","author":"Liu","year":"2016","journal-title":"Electroanalysis"},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/j.bios.2016.09.110","article-title":"Upconversion nanoparticles grafted molybdenum disulfide nanosheets platform for microcystin-LR sensing","volume":"90","author":"Lv","year":"2017","journal-title":"Biosens. Bioelectron."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"337","DOI":"10.17113\/ftb.53.03.15.3911","article-title":"Facile and cost-effective detection of saxitoxin exploiting aptamer structural switching","volume":"53","author":"Alfaro","year":"2015","journal-title":"Food Technol. Biotechnol."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"938","DOI":"10.1016\/j.bios.2016.01.032","article-title":"Gonyautoxin 1\/4 aptamers with high-affinity and high-specificity: From efficient selection to aptasensor application","volume":"79","author":"Gao","year":"2016","journal-title":"Biosens. Bioelectron."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"22547","DOI":"10.3390\/s150922547","article-title":"Aptameric recognition-modulated electroactivity of poly(4-styrenesolfonic acid)-doped polyaniline films for single-shot detection of tetrodotoxin","volume":"15","author":"Fomo","year":"2015","journal-title":"Sensors"},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"277","DOI":"10.1016\/j.talanta.2017.08.043","article-title":"Facilely self-assembled magnetic nanoparticles\/aptamer\/carbon dots nanocomposites for highly sensitive up-conversion fluorescence turn-on detection of tetrodotoxin","volume":"176","author":"Jin","year":"2018","journal-title":"Talanta"},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"475","DOI":"10.1016\/j.bios.2015.01.037","article-title":"Colorimetric detection of microcystin-LR based on disassembly of orient-aggregated gold nanoparticle dimers","volume":"68","author":"Wang","year":"2015","journal-title":"Biosens. Bioelectron."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"1303","DOI":"10.1007\/s00216-014-8378-3","article-title":"Simultaneous detection of microcysin-LR and okadaic acid using a dual fluorescence resonance energy transfer aptasensor","volume":"407","author":"Wu","year":"2015","journal-title":"Anal. Bioanal. Chem."},{"key":"ref_60","doi-asserted-by":"crossref","unstructured":"Gu, H., Duan, N., Wu, S., Hao, L., Xia, Y., Ma, X., and Wang, Z. (2016). Graphene oxide-assisted non-immobilized SELEX of okdaic acid aptamer and the analytical application of aptasensor. Sci. Rep., 6.","DOI":"10.1038\/srep21665"},{"key":"ref_61","unstructured":"Jackson, G.W., Strych, U., Frank, E., Willson, R.C., Ballerstadt, R., and McNichols, R.J. (2009, January 3\u20137). Portable FRET sensing of proteins, hormones, and toxins using DNA aptamers and quantum dots. Proceedings of the Nanotechnology 2009: Life Sciences, Medicine, Diagnostics, Bio Materials and Composites, Houston, TX, USA."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"952","DOI":"10.1016\/j.bios.2016.09.085","article-title":"Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin","volume":"89","author":"Gao","year":"2017","journal-title":"Biosens. Bioelectron."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"1161","DOI":"10.1351\/PAC-REP-09-08-16","article-title":"Electrochemical nucleic acid-based biosensors: Concepts, terms, and methodology (IUPAC Technical Report)","volume":"82","author":"Labuda","year":"2010","journal-title":"Pure Appl. Chem."},{"key":"ref_64","unstructured":"United States Environmental Protection Agency (2006). Toxicological Review of Cyanobacterial Toxins: Anatoxin-A (External Review Draft)."},{"key":"ref_65","first-page":"369","article-title":"In vitro selection of specific aptamers against microcystin-LR","volume":"38","author":"Gu","year":"2004","journal-title":"Zhonghua Yu Fang Yi Xue Za Zhi"},{"key":"ref_66","doi-asserted-by":"crossref","unstructured":"Tian, R.-Y., Lin, C., Yu, S.-Y., Gong, S., Hu, P., Li, Y.-S., Wu, Z.-C., Gao, Y., Zhou, Y., and Liu, Z.-S. (2016). Preparation of a specific ssDNA aptamer for brevetoxin-2 using SELEX. J. Anal. Methods Chem., 2016.","DOI":"10.1155\/2016\/9241860"},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.toxicon.2012.10.015","article-title":"First report of the use of a saxitoxin\u2013protein conjugate to develop a DNA aptamer to a small molecule toxin","volume":"61","author":"Handy","year":"2013","journal-title":"Toxicon"},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.toxicon.2015.04.017","article-title":"A saxitoxin-binding aptamer with higher affinity and inhibitory activity optimized by rational site-directed mutagenesis and truncation","volume":"101","author":"Zheng","year":"2015","journal-title":"Toxicon"},{"key":"ref_69","first-page":"347","article-title":"Screening and structure analysis of the aptamer against tetrodotoxin","volume":"2","author":"Shao","year":"2012","journal-title":"J. Chin. Inst. Food Sci. Technol."},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"2013","DOI":"10.1126\/science.281.5385.2013","article-title":"Semiconductor nanocrystals as fluorescent biological labels","volume":"281","author":"Bruchez","year":"1998","journal-title":"Science"},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"2016","DOI":"10.1126\/science.281.5385.2016","article-title":"Quantum dot bioconjugates for ultrasensitive nonisotopic detection","volume":"281","author":"Chan","year":"1998","journal-title":"Science"},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1177\/096032719901800306","article-title":"The toxicity of cyanobacterial toxins in the mouse: II anatoxin-a","volume":"18","author":"Fawell","year":"1999","journal-title":"Hum. Exp. Toxicol."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1002\/tox.10104","article-title":"Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male Swiss albino mice: Determination of no observed adverse effect level for deriving a drinking water guideline value","volume":"18","author":"Humpage","year":"2003","journal-title":"Environ. Toxicol."},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"1705","DOI":"10.1007\/s00216-010-3709-5","article-title":"A review of cyanobacteria and cyanotoxins removal\/inactivation in drinking water treatment","volume":"397","author":"Westrick","year":"2010","journal-title":"Anal. Bioanal. Chem."},{"key":"ref_75","doi-asserted-by":"crossref","unstructured":"Catherine, A., Bernard, C., Spoof, L., and Bruno, M. (2017). Microcystins and nodularins. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis, John Wiley & Sons, Ltd.","DOI":"10.1002\/9781119068761.ch11"},{"key":"ref_76","doi-asserted-by":"crossref","unstructured":"Botes, D.P., Wessels, P.L., Kruger, H., Runnegar, M.T.C., Santikarn, S., Smith, R.J., Barna, J.C.J., and Williams, D.H. (1985). Structural studies on cyanoginosins-LR, -YR, -YA, and -YM, peptide toxins from Microcystis aeruginosa. J. Chem. Soc. Perkin Trans., 1.","DOI":"10.1039\/p19850002747"},{"key":"ref_77","doi-asserted-by":"crossref","unstructured":"Botana, L.M. (2008). Hepatotoxins: Context and chemical determination. Freshwater Toxins, Pharmacology, Physiology, and Detection, CRC Press.","DOI":"10.1201\/9781420007541"},{"key":"ref_78","unstructured":"World Health Organization (1998). Guidelines for Drinking-Water Quality, World Health Organization. [2nd ed.]."},{"key":"ref_79","unstructured":"World Health Organization (2003). Cyanobacterial Toxins: Microcystin-LR in Drinking Water, World Health Organization. Background Document for Development of WHO Guidelines for Drinking-Water Quality."},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"973","DOI":"10.1016\/j.toxicon.2009.05.030","article-title":"Rapid detection of microcystins in cells and water","volume":"55","author":"Lawton","year":"2010","journal-title":"Toxicon"},{"key":"ref_81","first-page":"369","article-title":"In vitro selection of specific aptamers against microcystin-LR","volume":"38","author":"Gu","year":"2004","journal-title":"Zhonghua Yu Fang Yi Xue Za Zhi"},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1021\/cr020357g","article-title":"Upconversion and anti-stokes processes with f and d ions in Solids","volume":"104","author":"Auzel","year":"2004","journal-title":"Chem. Rev."},{"key":"ref_83","doi-asserted-by":"crossref","first-page":"6263","DOI":"10.1021\/ac301534w","article-title":"Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins","volume":"84","author":"Wu","year":"2012","journal-title":"Anal. Chem."},{"key":"ref_84","doi-asserted-by":"crossref","first-page":"386","DOI":"10.1016\/j.bios.2014.09.030","article-title":"A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity","volume":"64","author":"Wang","year":"2015","journal-title":"Biosens. Bioelectron."},{"key":"ref_85","doi-asserted-by":"crossref","first-page":"1593","DOI":"10.1021\/es103422j","article-title":"Unique ability of BiOBr to decarboxylate d -Glu and d -MeAsp in the photocatalytic degradation of microcystin-LR in water","volume":"45","author":"Yanfen","year":"2011","journal-title":"Environ. Sci. Technol."},{"key":"ref_86","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.bios.2015.03.021","article-title":"A signal-on electrochemiluminescence biosensor for detecting Con A using phenoxy dextran-graphite-like carbon nitride as signal probe","volume":"70","author":"Ou","year":"2015","journal-title":"Biosens. Bioelectron."},{"key":"ref_87","doi-asserted-by":"crossref","first-page":"1608","DOI":"10.1021\/ac403281g","article-title":"A homogeneous signal-on strategy for the detection of rpoB genes of Mycobacterium tuberculosis based on electrochemiluminescent graphene oxide and ferrocene quenching","volume":"86","author":"Li","year":"2014","journal-title":"Anal. Chem."},{"key":"ref_88","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1038\/pj.2010.109","article-title":"Dendrimer-like star-branched polymers: Novel structurally well-defined hyperbranched polymers","volume":"43","author":"Hirao","year":"2011","journal-title":"Polym. J."},{"key":"ref_89","doi-asserted-by":"crossref","first-page":"4278","DOI":"10.1021\/ac404070m","article-title":"Sensitive electrochemical aptamer biosensor for dynamic cell surface N-glycan evaluation featuring multivalent recognition and signal amplification on a dendrimer-graphene electrode interface","volume":"86","author":"Chen","year":"2014","journal-title":"Anal. Chem."},{"key":"ref_90","doi-asserted-by":"crossref","first-page":"474","DOI":"10.1016\/j.bios.2012.11.003","article-title":"Dendrimer functionalized reduced graphene oxide as nanocarrier for sensitive pseudobienzyme electrochemical aptasensor","volume":"42","author":"Yuan","year":"2013","journal-title":"Biosens. Bioelectron."},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1016\/j.apcata.2005.05.049","article-title":"Nanocomposite catalysts: Dendrimer encapsulated nanoparticles immobilized in sol-gel silica","volume":"292","author":"Beakley","year":"2005","journal-title":"Appl. Catal. A Gen."},{"key":"ref_92","doi-asserted-by":"crossref","first-page":"7343","DOI":"10.3390\/s90907343","article-title":"Nanomaterial-assisted signal enhancement of hybridization for DNA biosensors: A review","volume":"9","author":"Liu","year":"2009","journal-title":"Sensors"},{"key":"ref_93","doi-asserted-by":"crossref","first-page":"1686","DOI":"10.1002\/cbic.200400080","article-title":"Effect of silver nanoparticles on the electron transfer reactivity and the catalytic activity of myoglobin","volume":"5","author":"Gan","year":"2004","journal-title":"ChemBioChem"},{"key":"ref_94","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1038\/nnano.2010.279","article-title":"Single-layer MoS2 transistors","volume":"6","author":"Radisavljevic","year":"2011","journal-title":"Nat. Nanotechnol."},{"key":"ref_95","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1021\/nn2024557","article-title":"Single-layer MoS2phototransistors","volume":"6","author":"Yin","year":"2012","journal-title":"ACS Nano"},{"key":"ref_96","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1002\/smll.201201161","article-title":"Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities","volume":"9","author":"Zhou","year":"2013","journal-title":"Small"},{"key":"ref_97","doi-asserted-by":"crossref","first-page":"5998","DOI":"10.1021\/ja4019572","article-title":"Single-layer MoS2 -based nanoprobes for homogeneous detection of biomolecules","volume":"135","author":"Zhu","year":"2013","journal-title":"J. Am. Chem. Soc."},{"key":"ref_98","unstructured":"European Food Safety Authority (2009). Marine biotoxins in shellfish\u2014Saxitoxin group\u2014Scientific opinion of the panel on contaminants in the food chain. EFSA J., 1019, 1\u201376."},{"key":"ref_99","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.ab.2007.06.031","article-title":"Extraction and analysis of lipophilic brevetoxins from the red tide dinoflagellate Karenia brevis","volume":"369","author":"Twiner","year":"2007","journal-title":"Anal. Biochem."},{"key":"ref_100","doi-asserted-by":"crossref","first-page":"5337","DOI":"10.3390\/toxins7124885","article-title":"New invertebrate vectors of okadaic acid from the North Atlantic waters\u2014Portugal (Azores and Madeira) and Morocco","volume":"7","author":"Silva","year":"2015","journal-title":"Toxins"},{"key":"ref_101","doi-asserted-by":"crossref","first-page":"392","DOI":"10.1016\/j.bios.2014.09.026","article-title":"Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay","volume":"64","author":"Toh","year":"2015","journal-title":"Biosens. Bioelectron."},{"key":"ref_102","doi-asserted-by":"crossref","first-page":"791","DOI":"10.2174\/138620709789104915","article-title":"Label-free detection of biomolecular interactions using BioLayer interferometry for kinetic characterization","volume":"12","author":"Concepcion","year":"2009","journal-title":"Comb. Chem. High Throughput Screen."},{"key":"ref_103","doi-asserted-by":"crossref","first-page":"308","DOI":"10.3390\/md6020308","article-title":"Non-traditional vectors for paralytic shellfish poisoning","volume":"6","author":"Deeds","year":"2008","journal-title":"Mar. Drugs"},{"key":"ref_104","doi-asserted-by":"crossref","first-page":"1936","DOI":"10.3390\/md11061936","article-title":"New invertebrate vectors for PST, spirolides and okadaic acid in the North Atlantic","volume":"11","author":"Silva","year":"2013","journal-title":"Mar. Drugs"},{"key":"ref_105","doi-asserted-by":"crossref","first-page":"14760","DOI":"10.3390\/molecules181214760","article-title":"G-quadruplexes as sensing probes","volume":"18","author":"Kudr","year":"2013","journal-title":"Molecules"},{"key":"ref_106","doi-asserted-by":"crossref","first-page":"3533","DOI":"10.1021\/jf400880r","article-title":"Selection and identification of a DNA aptamer that mimics saxitoxin in antibody binding","volume":"61","author":"Hu","year":"2013","journal-title":"J. Agric. Food Chem."},{"key":"ref_107","first-page":"2011","article-title":"Intriguing differences in the gas-phase dissociation behavior of protonated and deprotonated gonyautoxin epimers","volume":"22","author":"Pinto","year":"2011","journal-title":"J. Am. Soc. Mass Spectrom."},{"key":"ref_108","doi-asserted-by":"crossref","unstructured":"Silva, M., Rey, V., Botana, A., Vasconcelos, V., and Botana, L. (2016). Determination of gonyautoxin-4 in echinoderms and gastropod matrices by conversion to neosaxitoxin using 2-mercaptoethanol and post-column oxidation liquid chromatography with fluorescence detection. Toxins, 8.","DOI":"10.3390\/toxins8010011"},{"key":"ref_109","doi-asserted-by":"crossref","first-page":"2071","DOI":"10.1039\/C2CC16473F","article-title":"Immobilization-free screening of aptamers assisted by graphene oxide","volume":"48","author":"Park","year":"2012","journal-title":"Chem. Commun."},{"key":"ref_110","doi-asserted-by":"crossref","first-page":"186","DOI":"10.1016\/j.toxicon.2016.06.003","article-title":"Bacterial diversity and tetrodotoxin analysis in the viscera of the gastropods from Portuguese coast","volume":"119","author":"Pratheepa","year":"2016","journal-title":"Toxicon"},{"key":"ref_111","doi-asserted-by":"crossref","first-page":"712","DOI":"10.3390\/md10040712","article-title":"New gastropod vectors and tetrodotoxin potential expansion in temperate waters of the Atlantic Ocean","volume":"10","author":"Silva","year":"2012","journal-title":"Mar. Drugs"}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/18\/7\/2367\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,11]],"date-time":"2024-06-11T20:01:52Z","timestamp":1718136112000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/18\/7\/2367"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,7,20]]},"references-count":111,"journal-issue":{"issue":"7","published-online":{"date-parts":[[2018,7]]}},"alternative-id":["s18072367"],"URL":"https:\/\/doi.org\/10.3390\/s18072367","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2018,7,20]]}}}