{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T15:51:56Z","timestamp":1726761116056},"reference-count":51,"publisher":"MDPI AG","issue":"7","license":[{"start":{"date-parts":[[2018,6,27]],"date-time":"2018-06-27T00:00:00Z","timestamp":1530057600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100004937","name":"Bundesministerium f\u00fcr Forschung und Technologie","doi-asserted-by":"publisher","award":["03V0122"],"id":[{"id":"10.13039\/501100004937","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Sensitive trace gas detection plays an important role in current challenges occurring in areas such as industrial process control and environmental monitoring. In particular, for medical breath analysis and for the detection of illegal substances, e.g., drugs and explosives, a selective and sensitive detection of trace gases in real-time is required. We report on a compact and transportable multi-component system (RES-Q-Trace) for molecular trace gas detection based on cavity-enhanced techniques in the mid-infrared (MIR). The RES-Q-Trace system can operate four independent continuous wave quantum or interband cascade lasers each combined with an optical cavity. Twice the method of off-axis cavity-enhanced absorption spectroscopy (OA-CEAS) was used, twice the method of optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS), respectively. Multi-functional software has been implemented (i) for the general system control; (ii) to drive the four different laser sources and (iii) to analyze the detector signals for concentration determination of several molecular species. For the validation of the versatility and the performance of the RES-Q-Trace instrument the species NO, N2O, CH4, C2H4 and C3H6O, with relevance in the fields of breath gas analysis and the detection of explosives have been monitored in the MIR with detection limits at atmospheric pressure in the ppb and ppt range.<\/jats:p>","DOI":"10.3390\/s18072058","type":"journal-article","created":{"date-parts":[[2018,6,27]],"date-time":"2018-06-27T15:02:05Z","timestamp":1530111725000},"page":"2058","source":"Crossref","is-referenced-by-count":12,"title":["RES-Q-Trace: A Mobile CEAS-Based Demonstrator for Multi-Component Trace Gas Detection in the MIR"],"prefix":"10.3390","volume":"18","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5879-2210","authenticated-orcid":false,"given":"Norbert","family":"Lang","sequence":"first","affiliation":[{"name":"Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany"}]},{"given":"Uwe","family":"Macherius","sequence":"additional","affiliation":[{"name":"Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4625-7314","authenticated-orcid":false,"given":"Henrik","family":"Zimmermann","sequence":"additional","affiliation":[{"name":"Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany"}]},{"given":"Sven","family":"Glitsch","sequence":"additional","affiliation":[{"name":"Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany"}]},{"given":"Mathias","family":"Wiese","sequence":"additional","affiliation":[{"name":"Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany"}]},{"given":"J\u00fcrgen","family":"R\u00f6pcke","sequence":"additional","affiliation":[{"name":"Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8925-2607","authenticated-orcid":false,"given":"Jean-Pierre H.","family":"Van Helden","sequence":"additional","affiliation":[{"name":"Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany"}]}],"member":"1968","published-online":{"date-parts":[[2018,6,27]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Wang, C., and Sahay, P. (2009). Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits. Sensors, 9.","DOI":"10.3390\/s91008230"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"367","DOI":"10.1007\/s00340-002-0991-8","article-title":"Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6\u20138 \u00b5m) optical parametric oscillator","volume":"75","author":"Todd","year":"2002","journal-title":"Appl. Phys. B"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.cplett.2009.12.073","article-title":"Quantum cascade lasers in chemical physics","volume":"487","author":"Curl","year":"2010","journal-title":"Chem. Phys. Lett."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"523","DOI":"10.1080\/05704928.2012.757232","article-title":"Quantum Cascade Laser Spectrometry Techniques: A New Trend in Atmospheric Chemistry","volume":"48","author":"Li","year":"2013","journal-title":"Appl. Spectrosc. Rev."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"799","DOI":"10.1007\/s00340-004-1659-3","article-title":"Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy","volume":"79","author":"Horstjann","year":"2004","journal-title":"Appl. Phys. B"},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"R\u00f6pcke, J., Davies, P.B., Hamann, S., Hannemann, M., Lang, N., and van Helden, J.H. (2016). Applying Quantum Cascade Laser Spectroscopy in Plasma Diagnostics. Photonics, 3.","DOI":"10.3390\/photonics3030045"},{"key":"ref_7","first-page":"1123","article-title":"Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis","volume":"49","author":"Risby","year":"2010","journal-title":"Opt. Eng."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"063102","DOI":"10.1063\/1.3427357","article-title":"A quantum cascade laser cw cavity ringdown spectrometer coupled to a supersonic expansion source","volume":"81","author":"Brumfield","year":"2010","journal-title":"Rev. Sci. Instrum."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"769","DOI":"10.1007\/s00340-005-1965-4","article-title":"Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications","volume":"81","author":"Wysocki","year":"2005","journal-title":"Appl. Phys. B"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"093102","DOI":"10.1063\/1.3633952","article-title":"TRIPLE Q: A three channel quantum cascade laser absorption spectrometer for fast multiple species concentration measurements","volume":"82","author":"Welzel","year":"2011","journal-title":"Rev. Sci. Instrum."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1109\/JSEN.2009.2035764","article-title":"Multicomponent Breath Analysis With Infrared Absorption Using Room-Temperature Quantum Cascade Lasers","volume":"10","author":"Shorter","year":"2010","journal-title":"IEEE Sens. J."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"8202","DOI":"10.1364\/AO.46.008202","article-title":"Dual interband cascade laser based trace-gas sensor for environmental monitoring","volume":"46","author":"Wysocki","year":"2007","journal-title":"Appl. Opt."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"1512","DOI":"10.1364\/OE.23.001512","article-title":"Simultaneous measurement of NO and NO2 by dual-wavelength quantum cascade laser spectroscopy","volume":"23","author":"Jagerska","year":"2015","journal-title":"Opt. Express"},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Berden, G., and Engeln, R. (2009). Cavity Ring-Down Spectroscopy: Techniques and Applications, Wiley-Blackwell. [1st ed.].","DOI":"10.1002\/9781444308259"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"391","DOI":"10.1007\/s00340-006-2310-2","article-title":"Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser","volume":"85","author":"Miller","year":"2006","journal-title":"Appl. Phys. B"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1007\/978-3-642-40003-2_3","article-title":"Quantum cascade laser based chemical sensing using optically resonant cavities","volume":"Volume 179","author":"Gagliardi","year":"2014","journal-title":"Cavity-Enhanced Spectroscopy and Sensing"},{"key":"ref_17","first-page":"131114","article-title":"Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser","volume":"104","author":"Lang","year":"2013","journal-title":"Appl. Phys. Lett."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"879","DOI":"10.1007\/s00340-010-4259-4","article-title":"A quantum cascade laser-based optical feedback cavity-enhanced absorption spectrometer for the simultaneous measurement of CH4 and N2O in air","volume":"102","author":"Hamilton","year":"2011","journal-title":"Appl. Phys. B"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1007\/s00340-013-5340-6","article-title":"Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit","volume":"110","author":"Fasci","year":"2013","journal-title":"Appl. Phys. B"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"2475","DOI":"10.1364\/OL.38.002475","article-title":"Linear cavity optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser","volume":"38","author":"Bergin","year":"2013","journal-title":"Opt. Lett."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"221106","DOI":"10.1063\/1.4922149","article-title":"Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 \u00b5m interband cascade laser","volume":"106","author":"Manfred","year":"2015","journal-title":"Appl. Phys. Lett."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"A536","DOI":"10.1364\/OE.24.00A536","article-title":"Sensitive CH4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy","volume":"24","author":"Lang","year":"2016","journal-title":"Opt. Express"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"1027","DOI":"10.1007\/s00340-005-1828-z","article-title":"Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking","volume":"80","author":"Morville","year":"2005","journal-title":"Appl. Phys. B"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1007\/978-3-642-40003-2_5","article-title":"Cavity enhanced absorption spectroscopy with optical feedback","volume":"Volume 179","author":"Gagliardi","year":"2014","journal-title":"Cavity-Enhanced Spectroscopy and Sensing"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"445","DOI":"10.1007\/s00340-006-2365-0","article-title":"Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide","volume":"85","author":"McCurdy","year":"2006","journal-title":"Appl. Phys. B"},{"key":"ref_26","unstructured":"National Research Council of the National Academies (2004). Existing and Potential Standoff Explosives Detection Techniques, The National Academies Press."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1007\/s00340-007-2899-9","article-title":"Non-contact detection of explosives by means of a tunable diode laser spectroscopy","volume":"90","author":"Nadezhdinskii","year":"2008","journal-title":"Appl. Phys. B"},{"key":"ref_28","first-page":"199","article-title":"Use of Breath Hydrogen and Methane as Markers of Colonic Fermentation in Epidemiologic Studies: Circadian Patterns of Excretion","volume":"98","author":"Wilkens","year":"1992","journal-title":"Environ. Health Perspect."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"027101","DOI":"10.1088\/1752-7155\/5\/2\/027101","article-title":"Influence of age and sex in exhaled breath samples investigated by means of infrared laser absorption spectroscopy","volume":"5","author":"Hannemann","year":"2011","journal-title":"J. Breath Res."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"1761","DOI":"10.1063\/1.123680","article-title":"On-line laser photoacoustic detection of ethene in exhaled air as biomarker of ultraviolet radiation damage of the human skin","volume":"74","author":"Harren","year":"1999","journal-title":"Appl. Phys. Lett."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"011001","DOI":"10.1088\/1752-7155\/1\/1\/011001","article-title":"Acetone, ammonia and hydrogen cyanide in exhaled breath of several volunteers aged 4\u201383 years","volume":"1","author":"Spanel","year":"2007","journal-title":"J. Breath Res."},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Oxley, J.C., Smith, J.L., Shinde, K., and Moran, J. (2005). Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique. Propellants Explos. Pyrotech., 30.","DOI":"10.1002\/prep.200400094"},{"key":"ref_33","doi-asserted-by":"crossref","unstructured":"Dunayevskiy, I., Tsekoun, A., Prasanna, M., Go, R., and Patel, C.K.N. (2007). High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone. Appl. Opt., 46.","DOI":"10.1364\/AO.46.006397"},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Gagliardi, G., and Loock, H.-P. (2014). Cavity-Enhanced Spectroscopy and Sensing, Springer. [1st ed.].","DOI":"10.1007\/978-3-642-40003-2"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"4904","DOI":"10.1364\/AO.40.004904","article-title":"Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment","volume":"40","author":"Paul","year":"2001","journal-title":"Appl. Opt."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1039\/b408909j","article-title":"Cavity ring-down and cavity enhanced spectroscopy using diode lasers","volume":"101","author":"Mazurenka","year":"2005","journal-title":"Annu. Rep. Prog. Chem. Sect. C"},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Berden, G., and Engeln, R. (2009). Cavity Enhanced Techniques Using Continous Wave Lasers. Cavity Ring-Down Spectroscopy: Techniques and Applications, Wiley-Blackwell.","DOI":"10.1002\/9781444308259"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"027985","DOI":"10.1364\/OE.22.027985","article-title":"Sensitivity enhancement in off-axis integrated cavity output spectroscopy","volume":"22","author":"Centeno","year":"2014","journal-title":"Opt. Express"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1039\/B811793D","article-title":"Optical feedback cavity enhanced absorption spectroscopy with diode lasers","volume":"134","author":"Baran","year":"2009","journal-title":"Analyst"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1007\/s00340-011-4705-y","article-title":"Frequency stabilization of blue extended cavity diode lasers by external cavity optical feedback","volume":"106","author":"Horstjann","year":"2012","journal-title":"Appl. Phys. B"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1016\/j.jqsrt.2013.07.002","article-title":"The HITRAN Database 2012","volume":"130","author":"Rothman","year":"2013","journal-title":"J. Quant. Spectrosc. Radiat. Transf."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"1452","DOI":"10.1366\/0003702042641281","article-title":"Gas-phase databases for quantitative infrared spectroscopy","volume":"58","author":"Sharpe","year":"2004","journal-title":"Appl. Spectrosc."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"859","DOI":"10.1007\/s003400100562","article-title":"Spectroscopic detection of biological NO with a quantum cascade laser","volume":"72","author":"Menzel","year":"2001","journal-title":"Appl. Phys. B"},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1007\/s00340-006-2354-3","article-title":"Sub-ppb NO2 detection by optical feedback cavity-enhanced absorption spectroscopy","volume":"85","author":"Courtillot","year":"2006","journal-title":"Appl. Phys. B"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"11442","DOI":"10.1364\/OE.14.011442","article-title":"Looking into the volcano with a MIR-IR DFB diode laser and Cavity Enhanced Absorption Spectroscopy","volume":"14","author":"Kassi","year":"2006","journal-title":"Opt. Express"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"5090","DOI":"10.1021\/jp301038r","article-title":"Noise-immune cavity-enhanced optical heterodyne detection of HO2 in the near-infrared range","volume":"116","author":"Bell","year":"2012","journal-title":"J. Phys. Chem. A"},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"3437","DOI":"10.1016\/j.saa.2003.11.048","article-title":"Quad quantum cascade laser spectrometer with dual gas cells for the simultaneous analysis of mainstream and sidestream cigarette smoke","volume":"60","author":"Baren","year":"2004","journal-title":"Spectrochim. Acta Part A"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"419","DOI":"10.1007\/s00340-008-3125-0","article-title":"Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO","volume":"92","author":"Schiller","year":"2008","journal-title":"Appl. Phys. B"},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"244","DOI":"10.1007\/s00340-017-6820-x","article-title":"The SPIRIT airborne instrument: A three-channel infrared absorption spectrometer with quantum cascade lasers for in situ atmospheric trace-gas measurements","volume":"123","author":"Catoire","year":"2017","journal-title":"Appl. Phys. B"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1007\/s00340-016-6502-0","article-title":"Optical-feedback cavity- enhanced absorption spectroscopy with an interband cascade laser: application to SO2 trace analysis","volume":"122","author":"Richard","year":"2016","journal-title":"Appl. Phys. B"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"902","DOI":"10.1021\/acs.analchem.6b04030","article-title":"ICL-Based OF-CEAS: A Sensitive Tool for Analytical Chemistry","volume":"89","author":"Manfred","year":"2016","journal-title":"Anal. Chem."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/18\/7\/2058\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,11]],"date-time":"2024-06-11T11:28:37Z","timestamp":1718105317000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/18\/7\/2058"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,6,27]]},"references-count":51,"journal-issue":{"issue":"7","published-online":{"date-parts":[[2018,7]]}},"alternative-id":["s18072058"],"URL":"https:\/\/doi.org\/10.3390\/s18072058","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,6,27]]}}}