{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T17:39:55Z","timestamp":1726076395580},"reference-count":65,"publisher":"MDPI AG","issue":"1","license":[{"start":{"date-parts":[[2018,1,14]],"date-time":"2018-01-14T00:00:00Z","timestamp":1515888000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Smartphones are playing an increasing role in the sciences, owing to the ubiquitous proliferation of these devices, their relatively low cost, increasing processing power and their suitability for integrated data acquisition and processing in a \u2018lab in a phone\u2019 capacity. There is furthermore the potential to deploy these units as nodes within Internet of Things architectures, enabling massive networked data capture. Hitherto, considerable attention has been focused on imaging applications of these devices. However, within just the last few years, another possibility has emerged: to use smartphones as a means of capturing spectra, mostly by coupling various classes of fore-optics to these units with data capture achieved using the smartphone camera. These highly novel approaches have the potential to become widely adopted across a broad range of scientific e.g., biomedical, chemical and agricultural application areas. In this review, we detail the exciting recent development of smartphone spectrometer hardware, in addition to covering applications to which these units have been deployed, hitherto. The paper also points forward to the potentially highly influential impacts that such units could have on the sciences in the coming decades.<\/jats:p>","DOI":"10.3390\/s18010223","type":"journal-article","created":{"date-parts":[[2018,1,15]],"date-time":"2018-01-15T17:30:36Z","timestamp":1516037436000},"page":"223","source":"Crossref","is-referenced-by-count":117,"title":["Smartphone Spectrometers"],"prefix":"10.3390","volume":"18","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0234-9981","authenticated-orcid":false,"given":"Andrew","family":"McGonigle","sequence":"first","affiliation":[{"name":"Department of Geography, University of Sheffield, Sheffield S10 2TN, UK"},{"name":"School of Geosciences, The University of Sydney, Sydney 2006, Australia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3448-6067","authenticated-orcid":false,"given":"Thomas","family":"Wilkes","sequence":"additional","affiliation":[{"name":"Department of Geography, University of Sheffield, Sheffield S10 2TN, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6028-308X","authenticated-orcid":false,"given":"Tom","family":"Pering","sequence":"additional","affiliation":[{"name":"Department of Geography, University of Sheffield, Sheffield S10 2TN, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4242-1204","authenticated-orcid":false,"given":"Jon","family":"Willmott","sequence":"additional","affiliation":[{"name":"Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 4DE, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9270-363X","authenticated-orcid":false,"given":"Joseph","family":"Cook","sequence":"additional","affiliation":[{"name":"Department of Geography, University of Sheffield, Sheffield S10 2TN, UK"}]},{"given":"Forrest","family":"Mims","sequence":"additional","affiliation":[{"name":"Geronimo Creek Observatory, Seguin, TX 78155, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8430-8907","authenticated-orcid":false,"given":"Alfio","family":"Parisi","sequence":"additional","affiliation":[{"name":"Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia"}]}],"member":"1968","published-online":{"date-parts":[[2018,1,14]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Breslauer, D.N., Maamari, R.N., Switz, N.A., Lam, W.A., and Fletcher, D.A. (2009). Mobile phone based clinical microscopy for global health applications. PLoS ONE, 4.","DOI":"10.1371\/journal.pone.0006320"},{"key":"ref_2","first-page":"7100414","article-title":"Mobile phone-based microscopy, sensing and diagnostics","volume":"22","author":"Wei","year":"2016","journal-title":"IEEE J. Sel. Top. Quantum Electron."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"930","DOI":"10.1001\/jamaophthalmol.2015.1468","article-title":"Development and Validation of a Smartphone-Based Visual Acuity Test (Peek Acuity) for Clinical Practice and Community-Based Fieldwork","volume":"133","author":"Bastawrous","year":"2015","journal-title":"JAMA Opthamol."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1001\/jamaophthalmol.2015.4625","article-title":"Clinical validation of a smartphone-based adapter for optic disc imaging in Kenya","volume":"134","author":"Bastawrous","year":"2016","journal-title":"JAMA Opthamol."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"561","DOI":"10.1016\/j.snb.2013.10.024","article-title":"Mobile-phone based colorimeter for monitoring chlorine concentrations in water","volume":"191","author":"Sumriddetchkajorn","year":"2014","journal-title":"Sens. Actuator B Chem."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"360","DOI":"10.1016\/j.watres.2014.12.005","article-title":"Tools for water quality monitoring and mapping using paper-based sensors and cell phones","volume":"70","author":"Sicard","year":"2015","journal-title":"Water Res."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"248","DOI":"10.1016\/j.bios.2014.08.027","article-title":"A smartphone-based colorimeter reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets","volume":"67","author":"Vashist","year":"2015","journal-title":"Biosens. Bioelectron."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.bios.2015.08.020","article-title":"A portable system for on-site quantification of formaldehyde in air based on G-quadruplex halves coupled with a smartphone reader","volume":"75","author":"Yang","year":"2016","journal-title":"Biosens. Bioelectron."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1016\/j.compag.2013.10.002","article-title":"Using the mobile phone as Munsell soil-colour sensor: An experiment under controlled illumination conditions","volume":"99","author":"Melgosa","year":"2013","journal-title":"Comput. Electron. Agric."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"7055","DOI":"10.3390\/s110707055","article-title":"Measurement of Fluorescence in a Rhodamine-123 Doped Self-Assembled \u201cGiant\u201d Mesostructured Silica Sphere Using a Smartphone as Optical Hardware","volume":"11","author":"Canning","year":"2011","journal-title":"Sensors"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1953","DOI":"10.1039\/C7AN00535K","article-title":"Time-resolved and temperature tuneable measurements of fluorescent intensity using a smartphone fluorimeter","volume":"142","author":"Hossain","year":"2017","journal-title":"Analyst"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1016\/j.bios.2017.05.048","article-title":"A smartphone-based chloridometer for point-of-care diagnostics of cystic fibrosis","volume":"97","author":"Zhang","year":"2017","journal-title":"Biosens. Bioelectron."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"1650","DOI":"10.1109\/TBME.2016.2601014","article-title":"Evaluation of Mobile Phone Performance for Near-Infrared Fluorescence Imaging","volume":"64","author":"Ghassemi","year":"2017","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"3237","DOI":"10.1039\/C7AY01118K","article-title":"A simple design atomic emission spectrometer combined with multivariate image analysis for the determination of sodium content in urine","volume":"9","author":"Debus","year":"2017","journal-title":"Anal. Methods"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"5156","DOI":"10.1364\/OL.40.005156","article-title":"Smartphone laser beam spatial profiler","volume":"22","author":"Hossain","year":"2015","journal-title":"Opt. Lett."},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Hassannejad, H., Matrella, G., Ciampolini, P., De Munari, I., Mordonini, M., and Cagnoni, S. (2017). A new approach to image-based estimation of food volume. Algorithms, 10.","DOI":"10.3390\/a10020066"},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Anderson, K., Griffiths, D., DeBell, L., Hancock, S., Duffy, J.P., Shutler, J.D., Reinhardt, W.J., and Griffiths, A. (2016). A grassroots remote sensing toolkit using live coding, smartphones, kites and lightweight drones. PLoS ONE, 11.","DOI":"10.1371\/journal.pone.0151564"},{"key":"ref_18","doi-asserted-by":"crossref","unstructured":"Campos-Taberner, M., Garc\u00eda-Haro, F.J., Confalonieri, R., Moreno, A., S\u00e1nchez-Ruiz, S., Gilabert, M.A., Camachi, F., Boschetti, M., and Busetto, L. (2016). Multitemporal Monitoring of Plant Area Index in the Valencia Rice District with PocketLAI. Remote Sens., 8.","DOI":"10.3390\/rs8030202"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1080\/10739149.2015.1055577","article-title":"Characterisation of cloud cover with a smartphone camera","volume":"44","author":"Parisi","year":"2016","journal-title":"Instrum. Sci. Technol."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1080\/10739149.2014.1002039","article-title":"Evaluation of a Smartphone Sensor to Broadband and Narrowband Ultraviolet A Radiation","volume":"43","author":"Igoe","year":"2015","journal-title":"Instrum. Sci. Technol."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"618","DOI":"10.1080\/10739149.2017.1298042","article-title":"Detection of ultraviolet B radiation with internal smartphone sensors","volume":"45","author":"Turner","year":"2017","journal-title":"Instrum. Sci. Technol."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1016\/j.scitotenv.2017.02.175","article-title":"Characterisation of a smartphone image sensor response to direct solar 305 nm irradiation at high air masses","volume":"587\u2013588","author":"Igoe","year":"2017","journal-title":"Sci. Total Environ."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1111\/j.1751-1097.2012.01216.x","article-title":"Characterisation of the UVA response of a smart phone","volume":"89","author":"Igoe","year":"2013","journal-title":"Photochem. Photobiol."},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Wilkes, T.C., McGonigle, A.J.S., Pering, T.D., Taggart, A.J., White, B.S., Bryant, R.G., and Willmott, J.R. (2016). Ultraviolet Imaging with Low Cost Smartphone Sensors: Development and Application of a Raspberry Pi-Based UV Camera. Sensors, 16.","DOI":"10.3390\/s16101649"},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Wilkes, T.C., Pering, T.D., McGonigle, A.J.S., Tamburello, G., and Willmott, J.R. (2017). A Low-Cost Smartphone Sensor-Based UV Camera for Volcanic SO2 Emission Measurements. Remote Sens., 9.","DOI":"10.3390\/rs9010027"},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Zhang, C., Anzalone, N.C., Faria, R.P., and Pearce, J.M. (2013). Open-source 3D-printable optics equipment. PLoS ONE, 8.","DOI":"10.1371\/journal.pone.0059840"},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Smith, Z.J., Chu, K., Espenson, A.R., Rahimzadeh, M., Gryshuk, A., Molinaro, M., Dwyre, D.M., Lane, S., Matthews, D., and Wachsmann-Hogiu, S. (2011). Cell-phone-based platform for biomedical device development and educational applications. PLoS ONE, 6.","DOI":"10.1371\/journal.pone.0017150"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"1084","DOI":"10.1016\/j.snb.2016.07.149","article-title":"A handheld smartphone-controlled spectrophotometer based on hue to wavelength conversion for molecular absorption and emission measurements","volume":"238","author":"Sampaio","year":"2017","journal-title":"Sens. Actuators B Chem."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1039\/C6AY03073D","article-title":"Smartphone-based detection of dyes in water for environmental sustainability","volume":"9","author":"Bayram","year":"2017","journal-title":"Anal. Methods"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"2124","DOI":"10.1039\/c3lc40991k","article-title":"Label-free biodetection using a smartphone","volume":"13","author":"Gallegos","year":"2013","journal-title":"Lab Chip"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"568","DOI":"10.1109\/LPT.2013.2297700","article-title":"Evanescent wave coupled spectroscopic sensing using smartphone","volume":"26","author":"Dutta","year":"2014","journal-title":"IEEE Photon. Technol. Lett."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"3792","DOI":"10.1364\/BOE.5.003792","article-title":"Smartphone instrument for portable enzyme-linked immunosorbent assays","volume":"5","author":"Long","year":"2014","journal-title":"Biomed. Opt. Express"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"8805","DOI":"10.1021\/ac502080t","article-title":"Smartphone fluorescence spectroscopy","volume":"86","author":"Yu","year":"2014","journal-title":"Anal. Chem."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"366","DOI":"10.1021\/acssensors.5b00204","article-title":"Smartphone optisensing platform using a DVD grating to detect neurotoxins","volume":"1","author":"Wang","year":"2016","journal-title":"ACS Sens."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"686","DOI":"10.1016\/j.bios.2016.09.021","article-title":"A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics","volume":"87","author":"Wang","year":"2017","journal-title":"Biosens. Bioelectron."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"246","DOI":"10.1039\/C5LC01226K","article-title":"G-Fresnel smartphone spectrometer","volume":"16","author":"Zhang","year":"2016","journal-title":"Lab Chip"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"7351","DOI":"10.1002\/2014GL061462","article-title":"Mapping atmospheric aerosols with a citizen science network of smartphone spectropolarimeters","volume":"41","author":"Snik","year":"2014","journal-title":"Geophys. Res. Lett."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"3233","DOI":"10.1039\/C5AN02508G","article-title":"Smartphone spectrometer for colorimetric biosensing","volume":"141","author":"Wang","year":"2016","journal-title":"Analyst"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"1737","DOI":"10.1364\/OL.40.001737","article-title":"Combined \u201cdual\u201d absorption and fluorescence smartphone spectrometers","volume":"40","author":"Hossain","year":"2015","journal-title":"Opt. Lett."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"2237","DOI":"10.1364\/OL.41.002237","article-title":"Optical fibre smartphone spectrometer","volume":"41","author":"Hossain","year":"2016","journal-title":"Opt. Lett."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"4323","DOI":"10.1364\/OL.42.004323","article-title":"Low-cost 3D printed 1 nm resolution smartphone sensor-based spectrometer: Instrument design and application in ultraviolet spectroscopy","volume":"42","author":"Wilkes","year":"2017","journal-title":"Opt. Lett."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"1559","DOI":"10.3390\/s8031559","article-title":"Ground based ultraviolet remote sensing of volcanic gas plumes","volume":"8","author":"Kantzas","year":"2008","journal-title":"Sensors"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1016\/S0377-0273(02)00356-6","article-title":"A miniaturized ultraviolet spectrometer for remote sensing of SO2 fluxes: A new tool for volcano surveillance","volume":"119","author":"Galle","year":"2002","journal-title":"J. Volcanol. Geotherm. Res."},{"key":"ref_44","doi-asserted-by":"crossref","unstructured":"Rateni, G., Dario, P., and Cavallo, F. (2017). Smartphone based food diagnostic technologies: A review. Sensors, 17.","DOI":"10.3390\/s17061453"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.aca.2014.08.006","article-title":"A smartphone metabolomics platform and its application to the assessment of cisplatin-induced kidney toxicity","volume":"845","author":"Kwon","year":"2014","journal-title":"Anal. Chim. Acta"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1002\/pca.2617","article-title":"Application of a smartphone metabolomics platform to the authentication of Schisandra sensesis","volume":"27","author":"Kwon","year":"2016","journal-title":"Phytochem. Anal."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"32504","DOI":"10.1038\/srep32504","article-title":"Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness ripeness","volume":"6","author":"Das","year":"2016","journal-title":"Sci. Rep."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1255\/jnirs.1191","article-title":"Development of a handheld spectrometer based on a linear variable filter and a complementary metal-oxide-semiconductor detector for measuring the internal quality of fruit","volume":"24","author":"Yu","year":"2016","journal-title":"J. Near Infrared Spectrosc."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"419","DOI":"10.1109\/TED.2005.843880","article-title":"Silicon based micro-Fourier spectrometer","volume":"52","author":"Knipp","year":"2005","journal-title":"IEEE Trans. Electron Devices"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"S145","DOI":"10.1088\/0960-1317\/15\/7\/021","article-title":"MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range","volume":"15","author":"Wolffenbuttel","year":"2005","journal-title":"J. Micromech. Microeng."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1038\/nature14576","article-title":"A colloidal quantum dot spectrometer","volume":"523","author":"Bao","year":"2015","journal-title":"Nature"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1364\/OE.20.000489","article-title":"Design and implementation of a sub-nm resolution microspectrometer based on a linear-variable Optical Filter","volume":"20","author":"Emadi","year":"2012","journal-title":"Opt. Express"},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"632","DOI":"10.1364\/OL.32.000632","article-title":"Concept of a high-resolution miniature spectrometer using an integrated filter array","volume":"32","author":"Wang","year":"2007","journal-title":"Opt. Lett."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"746","DOI":"10.1038\/nphoton.2013.190","article-title":"Compact spectrometer based on a disordered photonic chip","volume":"7","author":"Redding","year":"2013","journal-title":"Nat. Photon."},{"key":"ref_55","unstructured":"(2017, November 27). FrinGOe. Available online: https:\/\/fringoe.com."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1111\/php.12185","article-title":"Smartphone-based android app for determining UVA aerosol optical depth and direct solar irradiances","volume":"90","author":"Igoe","year":"2014","journal-title":"Photochem. Photobiol."},{"key":"ref_57","unstructured":"Edwards, A., Debbonaire, A.R., Sattler, B., Mur, L.A.J., and Hodson, A.J. (2016). Extreme metagenomics using nanopore DNA sequencing: A field report from Svalbard, 78 N. bioRxiv, 073965."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"L06303","DOI":"10.1029\/2007GL032508","article-title":"Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes","volume":"35","author":"McGonigle","year":"2008","journal-title":"Geophys. Res. Lett."},{"key":"ref_59","doi-asserted-by":"crossref","unstructured":"Villa, T.F., Gonzalez, F., Miljievic, B., Ristovski, Z.D., and Morawska, L. (2016). An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives. Sensors, 16.","DOI":"10.3390\/s16071072"},{"key":"ref_60","unstructured":"(2017, November 27). Lighting Passport. Available online: https:\/\/www.lightingpassport.com."},{"key":"ref_61","unstructured":"(2017, November 27). Scio-Phone. Available online: https:\/\/www.phone.consumerphysics.com."},{"key":"ref_62","unstructured":"(2017, November 27). Eigen Imaging. Available online: http:\/\/www.eigenimaging.com\/smartphone-spectrometer."},{"key":"ref_63","unstructured":"(2017, November 27). Stratio Technology. Available online: http:\/\/www.stratiotechnology.com."},{"key":"ref_64","unstructured":"(2017, November 27). Public Lab. Available online: https:\/\/publiclab.org\/wiki\/smartphone-spectrometer."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"5427","DOI":"10.1364\/BOE.8.005427","article-title":"Pencil-line imaging spectrometer for bio-samples sensing","volume":"8","author":"Cai","year":"2017","journal-title":"Biomed. Opt. Express"}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/18\/1\/223\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,9]],"date-time":"2024-06-09T14:50:30Z","timestamp":1717944630000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/18\/1\/223"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,1,14]]},"references-count":65,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2018,1]]}},"alternative-id":["s18010223"],"URL":"https:\/\/doi.org\/10.3390\/s18010223","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,1,14]]}}}