{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,11]],"date-time":"2024-08-11T17:08:45Z","timestamp":1723396125574},"reference-count":42,"publisher":"MDPI AG","issue":"8","license":[{"start":{"date-parts":[[2017,7,28]],"date-time":"2017-07-28T00:00:00Z","timestamp":1501200000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Blind cavefishes are known to detect objects through hydrodynamic vision enabled by arrays of biological flow sensors called neuromasts. This work demonstrates the development of a MEMS artificial neuromast sensor that features a 3D polymer hair cell that extends into the ambient flow. The hair cell is monolithically fabricated at the center of a 2 \u03bcm thick silicon membrane that is photo-patterned with a full-bridge bias circuit. Ambient flow variations exert a drag force on the hair cell, which causes a displacement of the sensing membrane. This in turn leads to the resistance imbalance in the bridge circuit generating a voltage output. Inspired by the biological neuromast, a biomimetic synthetic hydrogel cupula is incorporated on the hair cell. The morphology, swelling behavior, porosity and mechanical properties of the hyaluronic acid hydrogel are characterized through rheology and nanoindentation techniques. The sensitivity enhancement in the sensor output due to the material and mechanical contributions of the micro-porous hydrogel cupula is investigated through experiments.<\/jats:p>","DOI":"10.3390\/s17081728","type":"journal-article","created":{"date-parts":[[2017,7,28]],"date-time":"2017-07-28T14:14:34Z","timestamp":1501251274000},"page":"1728","source":"Crossref","is-referenced-by-count":25,"title":["Cupula-Inspired Hyaluronic Acid-Based Hydrogel Encapsulation to Form Biomimetic MEMS Flow Sensors"],"prefix":"10.3390","volume":"17","author":[{"given":"Ajay","family":"Kottapalli","sequence":"first","affiliation":[{"name":"Center for Environmental Sensing and Modeling (CENSAM) IRG, Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, Create Tower, Singapore 138602, Singapore"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8676-6810","authenticated-orcid":false,"given":"Meghali","family":"Bora","sequence":"additional","affiliation":[{"name":"Center for Environmental Sensing and Modeling (CENSAM) IRG, Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, Create Tower, Singapore 138602, Singapore"}]},{"given":"Elgar","family":"Kanhere","sequence":"additional","affiliation":[{"name":"School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3157-7796","authenticated-orcid":false,"given":"Mohsen","family":"Asadnia","sequence":"additional","affiliation":[{"name":"Department of Engineering, Macquarie University, Sydney NSW 2109, Australia"}]},{"given":"Jianmin","family":"Miao","sequence":"additional","affiliation":[{"name":"School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4960-7060","authenticated-orcid":false,"given":"Michael","family":"Triantafyllou","sequence":"additional","affiliation":[{"name":"Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA 02139, USA"}]}],"member":"1968","published-online":{"date-parts":[[2017,7,28]]},"reference":[{"key":"ref_1","first-page":"1445","article-title":"Biomimetics: Lessons from nature\u2014An overview","volume":"367","author":"Bhushan","year":"2007","journal-title":"Philos. Trans. A Math. Phys. Eng. Sci."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1007\/s00221-005-2343-5","article-title":"Tactile directional sensitivity and postural control","volume":"166","author":"Wasling","year":"2005","journal-title":"Exp. Brain Res."},{"key":"ref_3","unstructured":"Barth, F.G. (2002). A Spiders World: Senses and Behavior, Springer."},{"key":"ref_4","unstructured":"Terashima, S., and Goris, R.C. (1999). Infrared Receptors and the Trigeminal Sensory System, Harwood."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1038\/28303","article-title":"Seal whiskers detect water movements","volume":"394","author":"Dehnhardt","year":"1998","journal-title":"Nature"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"960","DOI":"10.1038\/40135","article-title":"The lateral-line can mediate rheotaxis in fish","volume":"389","author":"Montgomery","year":"1997","journal-title":"Nature"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1023\/A:1011873111454","article-title":"The mechanosensory lateral line system of the hypogean form of Astyanax fasciatus","volume":"62","author":"Montgomery","year":"2001","journal-title":"Environ. Biol. Fishes"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1023\/A:1012491007495","article-title":"Smart Skins: Information processing by lateral line flow sensors","volume":"11","author":"Coombs","year":"2011","journal-title":"Auton. Robot."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1159\/000115853","article-title":"Morphological differences in neuromasts of the blind cave fish Astyanax hubbsi and the sighted river fish Astyanax mexicanus","volume":"35","author":"Teyke","year":"1990","journal-title":"Brain Behav. Evol."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1113\/jphysiol.1952.sp004695","article-title":"The microphone activity of the lateral-line","volume":"116","author":"Jielof","year":"1952","journal-title":"J. Physiol."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1002\/jmor.1052070105","article-title":"Topography and mechanics of the cupula in the fish lateral-line. I. Variation of cupular structure and composition in the three dimensions","volume":"207","author":"Kelly","year":"1991","journal-title":"J. Morphol."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"2527","DOI":"10.1002\/adfm.200900606","article-title":"Bioinspired material approaches for sensing","volume":"19","author":"McConney","year":"2009","journal-title":"Adv. Funct. Mater."},{"key":"ref_13","unstructured":"Engel, J.M., Chen, J., Chen, N., Pandya, S., and Liu, C. (November, January 31). Development and characterization of an artificial hair cell based on polyurethane elastomer and force sensitive resistors. Proceedings of the IEEE Sensors Conference, Irvine, CA, USA."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"115030","DOI":"10.1088\/0964-1726\/21\/11\/115030","article-title":"A flexible liquid crystal polymer MEMS pressure sensor array for fish-like underwater sensing","volume":"21","author":"Kottapalli","year":"2012","journal-title":"Smart Mater. Struct."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"1189","DOI":"10.1049\/mnl.2012.0604","article-title":"Polymer MEMS pressure sensor arrays for fish-like underwater sensing applications","volume":"7","author":"Kottapalli","year":"2012","journal-title":"IET Micro Nano Lett."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"085006","DOI":"10.1088\/0960-1317\/21\/8\/085006","article-title":"A liquid crystal polymer membrane MEMS sensor for flow rate and flow direction sensing applications","volume":"13","author":"Kottapalli","year":"2011","journal-title":"J. Micromech. Microeng."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1177\/1045389X14521702","article-title":"Soft polymer membrane micro-sensor arrays inspired by the mechanosensory lateral line on the blind cavefish","volume":"26","author":"Kottapalli","year":"2015","journal-title":"J. Intell. Mater. Syst. Struct."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"999","DOI":"10.1109\/JMEMS.2007.902436","article-title":"Design and characterization of artificial haircell sensor for flow sensing with ultrahigh velocity and angular sensitivity","volume":"16","author":"Chen","year":"2007","journal-title":"J. Microelectromech. Syst."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"2903","DOI":"10.1002\/adma.200701141","article-title":"Hydrogel-encapsulated microfabricated hair cells mimicking fish cupula neuromast","volume":"19","author":"Peleshenko","year":"2007","journal-title":"Adv. Mater."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"292","DOI":"10.1039\/B808839J","article-title":"Biologically inspired design of hydrogel-capped hair sensors for enhanced underwater flow detection","volume":"5","author":"McConney","year":"2009","journal-title":"Soft Matter"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"046011","DOI":"10.1088\/1748-3182\/9\/4\/046011","article-title":"Touch at a distance sensing: Lateral-Line inspired MEMS flow sensors","volume":"9","author":"Kottapalli","year":"2014","journal-title":"Bioinspir. Biomim."},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Kottapalli, A.G.P., Asadnia, M., Miao, J.M., and Triantafyllou, M.S. (2013, January 22\u201324). Electrospun nanofibrils encapsulated in hydrogel cupula for biomimetic MEMS flow sensor development. Proceedings of the 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan.","DOI":"10.1109\/MEMSYS.2013.6474167"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"19336","DOI":"10.1038\/srep19336","article-title":"Nanofibril scaffold assisted MEMS artificial hydrogel neuromasts for enhanced sensitivity flow sensing","volume":"6","author":"Kottapalli","year":"2016","journal-title":"Sci. Rep."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"32955","DOI":"10.1038\/srep32955","article-title":"From Biological Cilia to Artificial Flow Sensors: Biomimetic Soft Polymer Nanosensors with High Sensing Performance","volume":"6","author":"Asadnia","year":"2016","journal-title":"Sci. Rep."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"3918","DOI":"10.1109\/JSEN.2013.2259227","article-title":"Flexible and surface mountable piezoelectric sensor arrays for underwater sensing in marine vehicles","volume":"13","author":"Asadnia","year":"2013","journal-title":"IEEE Sens. J."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"015017","DOI":"10.1088\/0960-1317\/24\/1\/015017","article-title":"High temperature characterization of PZT(0.52\/0.48) thin-film pressure sensors","volume":"24","author":"Asadnia","year":"2014","journal-title":"J. Micromech. Microeng."},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Kottapalli, A.G.P., Asadnia, M., Hans, H., Miao, J.M., and Triantafyllou, M.S. (2014, January 18\u201322). Harbor seal whisker inspired flow sensor to reduce vortex induced vibrations. Proceedings of the 28th International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal.","DOI":"10.1109\/MEMSYS.2015.7051102"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"S132","DOI":"10.1088\/0960-1317\/15\/7\/019","article-title":"Artificial sensory hairs based on the flow sensitive receptor hairs of the crickets","volume":"15","author":"Dijkstra","year":"2005","journal-title":"J. Micromech. Microeng."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"276","DOI":"10.3762\/bjnano.2.32","article-title":"Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals","volume":"2","author":"Klein","year":"2011","journal-title":"Beilstein J. Nanotechnol."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1080\/19475411.2011.650233","article-title":"An artificial lateral line system using IPMC sensor arrays","volume":"3","author":"Abdulsadda","year":"2012","journal-title":"Int. J. Smart Nano Mater."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"365502","DOI":"10.1088\/0957-4484\/27\/36\/365502","article-title":"A nano-microstructured artificial-hair-cell-type sensor based on topologically graded 3D carbon nanotube bundles","volume":"27","author":"Yilmazoglu","year":"2016","journal-title":"Nanotechnology"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"516","DOI":"10.1016\/j.mee.2012.07.072","article-title":"Parylene coated bioinspired artificial hair cell for liquid flow sensing","volume":"98","author":"Qualtieri","year":"2012","journal-title":"Microelectron. Eng."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"18891","DOI":"10.1073\/pnas.0609274103","article-title":"Distant touch hydrodynamic imaging with an artificial lateral line","volume":"103","author":"Yang","year":"2006","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"023701","DOI":"10.1063\/1.3610470","article-title":"Artificial lateral line canal for hydrodynamic detection","volume":"99","author":"Yang","year":"2011","journal-title":"Appl. Phys. Lett."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"035006","DOI":"10.1088\/1748-3190\/11\/3\/035006","article-title":"A bio-inspired real-time capable artificial lateral line system for freestream flow measurements","volume":"11","author":"Abels","year":"2016","journal-title":"Bioinspir. Biomimet."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"113001","DOI":"10.1088\/0964-1726\/21\/11\/113001","article-title":"Hair flow sensors: From bio-inspiration to bio-mimicking\u2014A review","volume":"21","author":"Tao","year":"2012","journal-title":"Smart Mater Struct."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/j.mee.2014.10.011","article-title":"Biomimetics of underwater hair cell sensing","volume":"132","author":"Rizzi","year":"2015","journal-title":"Microelectron. Eng."},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Liu, G., Wang, A., Wang, X., and Liu, P. (2016). A review of artificial lateral line in sensor fabrication and bionic applications for robot fish. Appl. Bionics Biomech., 2016.","DOI":"10.1155\/2016\/4732703"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"1101","DOI":"10.1088\/0960-1317\/14\/7\/033","article-title":"The design of metal strain gauges on diaphragms","volume":"14","author":"Schomburg","year":"2004","journal-title":"J. Micromech. Microeng."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1002\/1097-4636(200101)54:1<115::AID-JBM14>3.0.CO;2-Q","article-title":"Photocrosslinkable polysaccharides for in situ hydrogel formation","volume":"54","author":"Smeds","year":"2000","journal-title":"J. Biomed. Mater Res."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"578","DOI":"10.1002\/bit.10605","article-title":"Photocrosslinked Hyaluronic Acid Hydrogels: Natural, Biodegradable Tissue Engineering Scaffolds","volume":"82","author":"Baier","year":"2003","journal-title":"Biotechnol. Bioeng."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"5284","DOI":"10.1016\/j.polymer.2008.09.039","article-title":"Hydrogel microstructures combined with electrospun fibers and photopatterning for shape and modulus control","volume":"49","author":"Anderson","year":"2008","journal-title":"Polymer"}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/17\/8\/1728\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,8]],"date-time":"2024-06-08T05:16:56Z","timestamp":1717823816000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/17\/8\/1728"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,7,28]]},"references-count":42,"journal-issue":{"issue":"8","published-online":{"date-parts":[[2017,8]]}},"alternative-id":["s17081728"],"URL":"https:\/\/doi.org\/10.3390\/s17081728","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2017,7,28]]}}}