{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:07:31Z","timestamp":1732036051230},"reference-count":53,"publisher":"MDPI AG","issue":"5","license":[{"start":{"date-parts":[[2016,5,5]],"date-time":"2016-05-05T00:00:00Z","timestamp":1462406400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100003621","name":"Ministry of Science, ICT and Future Planning","doi-asserted-by":"publisher","award":["NRF-2015R1C1A1A01055250","NRF-2013R1A1A1059719"],"id":[{"id":"10.13039\/501100003621","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"We have developed a simple and selective method for the electrochemical detection of hydrazine (HZ) using poly(dopamine) (pDA)-modified indium tin oxide (ITO) electrodes. Modification with pDA was easily achieved by submerging the ITO electrode in a DA solution for 30 min. The electrocatalytic oxidation of HZ on the pDA-modified ITO electrode was measured by cyclic voltammetry. In buffer solution, the concentration range for linear HZ detection was 100 \u00b5M\u201310 mM, and the detection limit was 1 \u00b5M. The proposed method was finally used to determine HZ in tap water to simulate the analysis of real samples. This method showed good recovery (94%\u2013115%) and was not affected by the other species present in the tap water samples.<\/jats:p>","DOI":"10.3390\/s16050647","type":"journal-article","created":{"date-parts":[[2016,5,6]],"date-time":"2016-05-06T14:19:23Z","timestamp":1462544363000},"page":"647","source":"Crossref","is-referenced-by-count":24,"title":["Electrochemical Detection of Hydrazine Using Poly(dopamine)-Modified Electrodes"],"prefix":"10.3390","volume":"16","author":[{"given":"Ji","family":"Lee","sequence":"first","affiliation":[{"name":"Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea"}]},{"given":"Truc","family":"Nguyen","sequence":"additional","affiliation":[{"name":"Department of Chemistry, Sookmyung Women\u2019s University, Seoul 04310, Korea"}]},{"given":"Jun","family":"Park","sequence":"additional","affiliation":[{"name":"Department of Chemistry Education and Institute of Fusion Science, Chonbuk National University, Jeonju 54896, Korea"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9030-5809","authenticated-orcid":false,"given":"Byung-Kwon","family":"Kim","sequence":"additional","affiliation":[{"name":"Department of Chemistry, Sookmyung Women\u2019s University, Seoul 04310, Korea"}]}],"member":"1968","published-online":{"date-parts":[[2016,5,5]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"73","DOI":"10.33961\/JECST.2014.5.3.73","article-title":"Electrochemical oxidation of hydrazine in membraneless fuel cells","volume":"5","author":"Durga","year":"2014","journal-title":"J. Electrochem. Sci. Technol."},{"key":"ref_2","unstructured":"United States Environmental Protection Agency Technology Transfer Network\u2012Air Toxics Web Site, Available online: http:\/\/www.epa.gov\/ttn\/atw\/hlthef\/hydrazin.html."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1007\/BF01240376","article-title":"Determination of hydrazine and sulfite in the presence of one another","volume":"108","author":"Budkuley","year":"1992","journal-title":"Microchim. Acta"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.chroma.2004.03.075","article-title":"Highly sensitive determination of hydrazine ion by ion-exclusion chromatography with ion-exchange enhancement of conductivity detection","volume":"1039","author":"Mori","year":"2004","journal-title":"J. Chromatogr. A"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"355","DOI":"10.1016\/j.saa.2015.03.092","article-title":"Spectrophotometric determination of pico-molar level of hydrazine by using Alizarin red in water and urine samples","volume":"148","author":"Arulraj","year":"2015","journal-title":"Spectrochim. Acta A"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"1375","DOI":"10.1039\/b203172h","article-title":"Flow-injection electrogenerated chemiluminescence detection of hydrazine based on its in-situ electrochemical modification at a pre-anodized platinum electrode","volume":"127","author":"Zheng","year":"2002","journal-title":"Analyst"},{"key":"ref_7","first-page":"3726","article-title":"A kinetic-potentiometric method for the simultaneous determination of hydrazine and acetylhydrazine","volume":"21","author":"Karimi","year":"2009","journal-title":"Asian J. Chem."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"1231","DOI":"10.2116\/analsci.15.1231","article-title":"Experimental optimization of selective hydrazine detection in flow injection analysis using a carbon paste electrode modified with copper porphyrin occluded into zeolite cavity","volume":"15","author":"Guerra","year":"1999","journal-title":"Anal. Sci."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"348","DOI":"10.1016\/j.jhazmat.2006.10.038","article-title":"Amperometric determination of hydrazine at manganese hexacyanoferrate modified graphite-wax composite electrode","volume":"144","author":"Jayasri","year":"2007","journal-title":"J. Hazard Mater."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"631","DOI":"10.1016\/j.elecom.2008.12.061","article-title":"Copper oxide nanoarray based on the substrate of Cu applied for the chemical sensor of hydrazine detection","volume":"11","author":"Wang","year":"2009","journal-title":"Electrochem. Commun."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s00604-010-0304-6","article-title":"A novel hydrazine electrochemical sensor based on the high specific surface area grapheme","volume":"169","author":"Wang","year":"2010","journal-title":"Microchim. Acta"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/j.bios.2012.07.061","article-title":"CoOOH nanosheet electrodes: Simple fabrication for sensitive electrochemical sensing of hydrogen peroxide and hydrazine","volume":"39","author":"Lee","year":"2013","journal-title":"Biosens. Bioelectron."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1016\/j.jelechem.2009.05.008","article-title":"Nanoporous gold particles modified titanium electrode for hydrazine oxidation","volume":"633","author":"Yi","year":"2009","journal-title":"J. Electroanal. Chem."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1016\/j.snb.2010.10.040","article-title":"A sensitive hydrazine electrochemical sensor based on electrodeposition of gold nanoparticles on choline film modified glassy carbon electrode","volume":"153","author":"Li","year":"2011","journal-title":"Sens. Actuators. B: Chem."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"246","DOI":"10.1016\/j.snb.2010.10.039","article-title":"Electrocatalytic determination of hydrazine by a glassy carbon electrode modified with PEDOP\/MWCNTs\u2013Pd nanoparticles","volume":"153","author":"Kim","year":"2011","journal-title":"Sens. Actuators B"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.electacta.2012.02.091","article-title":"Ultra-high sensitive hydrazine chemical sensor based on low-temperature grown ZnO nanoparticles","volume":"69","author":"Mehtaa","year":"2012","journal-title":"Electrochim. Acta"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/j.talanta.2013.04.038","article-title":"Gold nanoparticle-modified graphite pencil electrode for the high-sensitivity detection of hydrazine","volume":"115","author":"Aziz","year":"2013","journal-title":"Talanta"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"12272","DOI":"10.1021\/ac503446q","article-title":"Palladium nanoparticles decorated on reduced graphene oxide rotating disk electrodes toward ultrasensitive hydrazine detection: Effects of particle size and hydrodynamic diffusion","volume":"86","author":"Krittayavathananon","year":"2014","journal-title":"Anal. Chem."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"304","DOI":"10.1016\/j.talanta.2013.12.031","article-title":"Well-dispersed Pt nanoparticles on polydopamine-coated ordered mesoporous carbons and their electrocatalytic application","volume":"120","author":"Yan","year":"2014","journal-title":"Talanta"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.talanta.2014.02.031","article-title":"Highly selective amperometric sensor for the trace level detection of hydrazine at bismuth nanoparticles decorated graphene nanosheets modified electrode","volume":"124","author":"Devasenathipathy","year":"2014","journal-title":"Talanta"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1007\/s10661-015-4309-9","article-title":"Electrochemical determination of hydrazine using a ZrO2 nanoparticles-modified carbon paste electrode","volume":"187","author":"Mohammadi","year":"2015","journal-title":"Environ. Monit. Assess"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"874","DOI":"10.3390\/s6080874","article-title":"Anodic oxidation and amperometric sensing of hydrazine at a glassy carbon electrode modified with cobalt (II) Phthalocyanine\u2013cobalt (II) Tetraphenylporphyrin(CoPc-(CoTPP)4) supramolecular complex","volume":"6","author":"Ozoemena","year":"2006","journal-title":"Sensors"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"B157","DOI":"10.1149\/2.095406jes","article-title":"A sensitive hydrazine electrochemical sensor based on zinc oxide nano-wires","volume":"161","author":"Zhao","year":"2014","journal-title":"J. Electrochem. Soc."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1016\/S0731-7085(98)00130-7","article-title":"Detection of hydrazine, methylhydrazine and isoniazid by capillary electrophoresis with a 4-pyridyl hydroquinone self-assembled microdisk platinum electrode","volume":"19","author":"You","year":"1999","journal-title":"J. Pharm. Biomed. Anal."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1027","DOI":"10.2116\/analsci.31.1027","article-title":"Electrocatalytic behavior of hemoglobin oxidation of hydrazine based on ZnO nano-rods with carbon nanofiber modified electrode","volume":"31","author":"Wu","year":"2015","journal-title":"Anal. Sci."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"434","DOI":"10.1016\/j.apsusc.2015.12.165","article-title":"Controllable synthesis of branched hierarchical ZnO nanorod arrays for highly sensitive hydrazine detection","volume":"364","author":"Hu","year":"2016","journal-title":"Appl. Sur. Sci."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"2004","DOI":"10.1016\/j.electacta.2009.11.022","article-title":"Electrochemical growth of flowerlike gold nanoparticles on polydopamine modified ITO glass for SERS application","volume":"55","author":"Ye","year":"2010","journal-title":"Electrochim. Acta"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"551","DOI":"10.1016\/j.snb.2015.04.082","article-title":"Poly-dopamine thin film for voltammetric sensing of atenolol","volume":"216","author":"Amiri","year":"2015","journal-title":"Sens. Actuators B: Chem."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"1720","DOI":"10.1021\/jp511179s","article-title":"Improving the electrochemical performance of Si nanoparticle anode material by synergistic strategies of polydopamine and graphene oxide coatings","volume":"119","author":"Fang","year":"2015","journal-title":"J. Phys. Chem. C"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1007\/s12678-014-0219-9","article-title":"Preparation and electrocatalytic properties of polydopamine functionalized reduced graphene oxide-silver nanocomposites","volume":"6","author":"Fu","year":"2015","journal-title":"Electrocatalysis-Us"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1016\/j.jelechem.2014.12.007","article-title":"A polydopamine derivative monolayer on gold electrode for electrochemical catalysis of H2O2","volume":"739","author":"Zhang","year":"2015","journal-title":"J. Electroanal. Chem."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"2031","DOI":"10.1080\/00032719.2015.1010120","article-title":"Electrochemical behavior of a polydopamine nanofilm","volume":"48","author":"Yang","year":"2015","journal-title":"Anal. Lett."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"426","DOI":"10.1126\/science.1147241","article-title":"Mussel-inspired surface chemistry for multifunctional coatings","volume":"318","author":"Lee","year":"2007","journal-title":"Science"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"993","DOI":"10.1002\/elan.201100632","article-title":"Dopamine detection using the selective and spontaneous formation of electrocatalytic poly(dopamine) films on indium-tin oxide electrodes","volume":"24","author":"Kim","year":"2012","journal-title":"Electroanalysis"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/j.jelechem.2013.09.001","article-title":"Electrochemical detection of dopamine using a bare indium-tin oxide electrode and scan rate control","volume":"708","author":"Kim","year":"2013","journal-title":"J. Electroanal. Chem."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"2235","DOI":"10.1002\/elan.201000148","article-title":"Electrochemical immunosensing chip using selective surface modification, capillary-driven microfluidic control, and signal amplification by redox cycling","volume":"22","author":"Kim","year":"2010","journal-title":"Electroanalysis"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"1159","DOI":"10.1002\/elan.201400650","article-title":"Electrochemical sensing performances for uric acid detection on various amine adlayers used in immobilizing reduced graphene oxide","volume":"27","author":"Park","year":"2015","journal-title":"Electroanalysis"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"1430","DOI":"10.1039\/c0py00215a","article-title":"Oxidant-induced dopamine polymerization for multifunctional coatings","volume":"1","author":"Wei","year":"2010","journal-title":"Polym. Chem."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"501","DOI":"10.1111\/j.1476-5381.1976.tb10377.x","article-title":"The ionization of phenolic amines, including apomorphine, dopamine and catecholamines and an assessment of zwitterion constants","volume":"57","author":"Armstrong","year":"1976","journal-title":"Br. J. Pharmac."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"432","DOI":"10.1016\/j.msec.2015.08.035","article-title":"Nanostructured SnO2 encapsulated guar-gum hybrid nanocomposites for electrocatalytic determination of hydrazine","volume":"58","author":"Malik","year":"2016","journal-title":"Mater. Sci. Eng. C Mater. Biol. Appl."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"377","DOI":"10.1016\/j.talanta.2012.08.001","article-title":"Highly sensitive hydrazine chemical sensor fabricated by modified electrode of vertically aligned zinc oxide nanorods","volume":"100","author":"Ameen","year":"2012","journal-title":"Talanta"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"6248","DOI":"10.1016\/j.electacta.2007.04.019","article-title":"Electrocatalytic oxidation of hydrazine at overoxidized polypyrrole film modified glassy carbon electrode","volume":"52","author":"Majidi","year":"2007","journal-title":"Electrochim. Acta"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"22935","DOI":"10.1039\/C5RA00884K","article-title":"Hydrothermal synthesis of zinc oxide-reduced graphene oxide nanocomposites for an electrochemical hydrazine sensor","volume":"5","author":"Ding","year":"2015","journal-title":"RSC Adv."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"73875","DOI":"10.1039\/C5RA15588F","article-title":"Improving the electrochemical properties of polyamide 6\/polyaniline electrospun nanofibers by surface modification with ZnO nanoparticles","volume":"5","author":"Andre","year":"2015","journal-title":"RSC Adv."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"1164","DOI":"10.1016\/j.talanta.2010.06.036","article-title":"Direct electrochemistry of cytochrome c immobilized on a novel macroporous gold film coated with a self-assembled 11-mercaptoundecanoic acid monolayer","volume":"82","author":"Li","year":"2010","journal-title":"Talanta"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"186","DOI":"10.1016\/j.electacta.2014.06.132","article-title":"Ultrathin zinc oxide nanofilm on zinc substrate for high performance electrochemical sensors","volume":"144","author":"Zhang","year":"2014","journal-title":"Electrochim. Acta"},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"362","DOI":"10.1016\/j.matlet.2015.07.031","article-title":"Porous Mn2O3 nanorods synthesized from thermal decomposition of coordination polymer and used in hydrazine electrochemical sensing","volume":"159","author":"Zhou","year":"2015","journal-title":"Mater. Lett."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"419","DOI":"10.1007\/s10118-013-1230-y","article-title":"Poly(thiophene-3-acetic acid)-palladium nanoparticle composite modified electrodes for supersensitive determination of hydrazine","volume":"31","author":"Zhang","year":"2013","journal-title":"Chin. J. Polym. Sci."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"2951","DOI":"10.1007\/s10008-015-2907-7","article-title":"Multi-layer PEDOT:PSS\/Pd composite electrodes for hydrazine oxidation","volume":"19","author":"Tolstopjatova","year":"2015","journal-title":"J. Solid State Electrochem."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"593","DOI":"10.1016\/j.electacta.2014.01.148","article-title":"Palladium nanoparticles decorated gaur gum based hybrid material for electrocatalytic hydrazine determination","volume":"125","author":"Rastogi","year":"2014","journal-title":"Electrochim. Acta"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"610","DOI":"10.1016\/j.snb.2014.02.061","article-title":"Hydrazine oxidation at gold nanoparticles and poly(bromocresol purple) carbon nanotube modified glassy carbon electrode","volume":"196","author":"Kocak","year":"2014","journal-title":"Sens. Actuators B: Chem."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"343","DOI":"10.1016\/j.snb.2014.12.131","article-title":"Electrochemical fabrication of conducting polymer of Ni-porphyrin as nano-structured electrocatalyst for hydrazine oxidation","volume":"210","author":"Kazemi","year":"2015","journal-title":"Sens. Actuators B: Chem."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"21905","DOI":"10.3390\/s141121905","article-title":"Cobalt phthalocyanine modified electrodes utilised in electroanalysis: Nano-structured modified electrodes vs. bulk modified screen-printed electrodes","volume":"14","author":"Foster","year":"2014","journal-title":"Sensors"}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/16\/5\/647\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,4]],"date-time":"2024-06-04T21:56:45Z","timestamp":1717538205000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/16\/5\/647"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,5,5]]},"references-count":53,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2016,5]]}},"alternative-id":["s16050647"],"URL":"https:\/\/doi.org\/10.3390\/s16050647","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2016,5,5]]}}}