{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T16:38:51Z","timestamp":1732034331761},"reference-count":198,"publisher":"MDPI AG","issue":"12","license":[{"start":{"date-parts":[[2012,11,26]],"date-time":"2012-11-26T00:00:00Z","timestamp":1353888000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/3.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"More and more terrestrial observational networks are being established to monitor climatic, hydrological and land-use changes in different regions of the World. In these networks, time series of states and fluxes are recorded in an automated manner, often with a high temporal resolution. These data are important for the understanding of water, energy, and\/or matter fluxes, as well as their biological and physical drivers and interactions with and within the terrestrial system. Similarly, the number and accuracy of variables, which can be observed by spaceborne sensors, are increasing. Data assimilation (DA) methods utilize these observations in terrestrial models in order to increase process knowledge as well as to improve forecasts for the system being studied. The widely implemented automation in observing environmental states and fluxes makes an operational computation more and more feasible, and it opens the perspective of short-time forecasts of the state of terrestrial systems. In this paper, we review the state of the art with respect to DA focusing on the joint assimilation of observational data precedents from different spatial scales and different data types. An introduction is given to different DA methods, such as the Ensemble Kalman Filter (EnKF), Particle Filter (PF) and variational methods (3\/4D-VAR). In this review, we distinguish between four major DA approaches: (1) univariate single-scale DA (UVSS), which is the approach used in the majority of published DA applications, (2) univariate multiscale DA (UVMS) referring to a methodology which acknowledges that at least some of the assimilated data are measured at a different scale than the computational grid scale, (3) multivariate single-scale DA (MVSS) dealing with the assimilation of at least two different data types, and (4) combined multivariate multiscale DA (MVMS). Finally, we conclude with a discussion on the advantages and disadvantages of the assimilation of multiple data types in a simulation model. Existing approaches can be used to simultaneously update several model states and model parameters if applicable. In other words, the basic principles for multivariate data assimilation are already available. We argue that a better understanding of the measurement errors for different observation types, improved estimates of observation bias and improved multiscale assimilation methods for data which scale nonlinearly is important to properly weight them in multiscale multivariate data assimilation. In this context, improved cross-validation of different data types, and increased ground truth verification of remote sensing products are required.<\/jats:p>","DOI":"10.3390\/s121216291","type":"journal-article","created":{"date-parts":[[2012,11,26]],"date-time":"2012-11-26T16:24:24Z","timestamp":1353947064000},"page":"16291-16333","source":"Crossref","is-referenced-by-count":84,"title":["Multivariate and Multiscale Data Assimilation in Terrestrial Systems: A Review"],"prefix":"10.3390","volume":"12","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0812-8570","authenticated-orcid":false,"given":"Carsten","family":"Montzka","sequence":"first","affiliation":[{"name":"Forschungszentrum J\u00fclich GmbH, Institute of Bio- and Geosciences: Agrosphere (IBG 3), J\u00fclich 52425, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1290-9313","authenticated-orcid":false,"given":"Valentijn","family":"Pauwels","sequence":"additional","affiliation":[{"name":"Department of Civil Engineering, Monash University, Clayton, Victoria 3800, Australia"}]},{"given":"Harrie-Jan","family":"Franssen","sequence":"additional","affiliation":[{"name":"Forschungszentrum J\u00fclich GmbH, Institute of Bio- and Geosciences: Agrosphere (IBG 3), J\u00fclich 52425, Germany"}]},{"given":"Xujun","family":"Han","sequence":"additional","affiliation":[{"name":"Forschungszentrum J\u00fclich GmbH, Institute of Bio- and Geosciences: Agrosphere (IBG 3), J\u00fclich 52425, Germany"},{"name":"Cold and Arid Regions Environment Engineering Research Institute (CAREERI), CAS, Lanzhou 730000, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8051-8517","authenticated-orcid":false,"given":"Harry","family":"Vereecken","sequence":"additional","affiliation":[{"name":"Forschungszentrum J\u00fclich GmbH, Institute of Bio- and Geosciences: Agrosphere (IBG 3), J\u00fclich 52425, Germany"}]}],"member":"1968","published-online":{"date-parts":[[2012,11,26]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"1411","DOI":"10.1016\/j.advwatres.2008.01.001","article-title":"Data assimilation methods in the earth sciences","volume":"31","author":"Reichle","year":"2008","journal-title":"Adv. Water Resour"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/j.cosust.2010.05.005","article-title":"The current state of carbon-cycle data assimilation","volume":"2","author":"Rayner","year":"2010","journal-title":"Curr. Opin. Env. Sustain"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"G01021","DOI":"10.1029\/2007JG000563","article-title":"Improvements to the community land model and their impact on the hydrological cycle","volume":"113","author":"Oleson","year":"2008","journal-title":"J. Geophys. Res"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"2986","DOI":"10.3390\/s8052986","article-title":"Hydrologic remote sensing and land surface data assimilation","volume":"8","author":"Moradkhani","year":"2008","journal-title":"Sensors"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"257","DOI":"10.2151\/jmsj1965.75.1B_257","article-title":"An introduction to estimation theory","volume":"75","author":"Cohn","year":"1997","journal-title":"J. Meteorol. Soc. Jpn"},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Camporese, M., Paniconi, C., Putti, M., and Orlandini, S. (2010). Surface-subsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data. Water Resour. Res., 46.","DOI":"10.1029\/2008WR007536"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.advwatres.2004.09.002","article-title":"Dual state-parameter estimation of hydrological models using ensemble kalman filter","volume":"28","author":"Moradkhani","year":"2005","journal-title":"Adv. Water Resour"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"2415","DOI":"10.1175\/1520-0477(2001)082<2415:FANTTS>2.3.CO;2","article-title":"Fluxnet: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities","volume":"82","author":"Baldocchi","year":"2001","journal-title":"Bull. Am. Meteorol. Soc"},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"2073","DOI":"10.1175\/2007JTECHA930.1","article-title":"The usda natural resources conservation service soil climate analysis network (scan)","volume":"24","author":"Schaefer","year":"2007","journal-title":"J. Atmos. Ocean. Technol"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"2145","DOI":"10.1029\/1999WR900090","article-title":"Characteristics of the western united states snowpack from snowpack telemetry (snotel) data","volume":"35","author":"Serreze","year":"1999","journal-title":"Water Resour. Res"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"955","DOI":"10.2136\/vzj2010.0139","article-title":"A network of terrestrial environmental observatories in germany","volume":"10","author":"Zacharias","year":"2011","journal-title":"Vadose Zone J"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/S0034-4257(02)00074-3","article-title":"Global products of vegetation leaf area and fraction absorbed par from year one of modis data","volume":"83","author":"Myneni","year":"2002","journal-title":"Remote Sens. Environ"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"5161","DOI":"10.1080\/0143116031000102502","article-title":"Surface temperature and water vapour retrieval from modis data","volume":"24","author":"Sobrino","year":"2003","journal-title":"Int. J. Remote Sens"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"1729","DOI":"10.1109\/36.942551","article-title":"Soil moisture retrieval from space: The soil moisture and ocean salinity (smos) mission","volume":"39","author":"Kerr","year":"2001","journal-title":"IEEE Trans. Geosci. Remote Sens"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1016\/j.rse.2006.01.002","article-title":"Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations","volume":"101","author":"Pulliainen","year":"2006","journal-title":"Remote Sens. Environ"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"10143","DOI":"10.1029\/94JC00572","article-title":"Sequential data assimilation with a nonlinear quasi-geostrophic model using monte-carlo methods to forecast error statistics","volume":"99","author":"Evensen","year":"1994","journal-title":"J. Geophys. Res. Oceans"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1109\/78.978374","article-title":"A tutorial on particle filters for online nonlinear\/non-gaussian bayesian tracking","volume":"50","author":"Arulampalam","year":"2002","journal-title":"IEEE Trans. Signal Process"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1049\/ip-f-2.1993.0015","article-title":"Novel-approach to nonlinear non-gaussian bayesian state estimation","volume":"140","author":"Gordon","year":"1993","journal-title":"IEE Proc. F Radar Signal Process"},{"key":"ref_19","first-page":"1367","article-title":"A strategy for operational implementation of 4d-var, using an incremental approach","volume":"120","author":"Courtier","year":"1994","journal-title":"Q. J. R. Meteorol. Soc"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"1301","DOI":"10.1029\/2002WR001545","article-title":"Three-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: Simplified kalman filter covariance forecasting and field application","volume":"38","author":"Walker","year":"2002","journal-title":"Water Resour. Res"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"410","DOI":"10.1016\/j.jhydrol.2011.01.020","article-title":"Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter","volume":"399","author":"Montzka","year":"2011","journal-title":"J. Hydrol"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1016\/S0022-1694(01)00440-1","article-title":"The importance of the spatial patterns of remotely sensed soil moisture in the improvement of discharge predictions for small-scale basins through data assimilation","volume":"251","author":"Pauwels","year":"2001","journal-title":"J. Hydrol"},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Sorooshian, S., Hsu, K.-L., Coppola, E., Tomassetti, B., Verdecchia, M., and Visconti, G. (2008). Hydrological Modelling and the Water Cycle\u2014Coupling the Atmospheric and Hydrological Models, Springer.","DOI":"10.1007\/978-3-540-77843-1"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/j.jhydrol.2009.01.019","article-title":"Automatic state updating for operational streamflow forecasting via variational data assimilation","volume":"367","author":"Seo","year":"2009","journal-title":"J. Hydrol"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"548","DOI":"10.1175\/JHM504.1","article-title":"Real-time data assimilation for operational ensemble streamflow forecasting","volume":"7","author":"Vrugt","year":"2006","journal-title":"J. Hydrometeorol"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"2401","DOI":"10.1002\/qj.49712555904","article-title":"The representation of soil moisture freezing and its impact on the stable boundary layer","volume":"125","author":"Viterbo","year":"1999","journal-title":"Q. J. R. Meteorol. Soc"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"351","DOI":"10.1016\/j.advwatres.2010.12.009","article-title":"Radiance data assimilation for operational snow and streamflow forecasting","volume":"34","author":"DeChant","year":"2011","journal-title":"Adv. Water Resour"},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Franssen, H.J.H., and Kinzelbach, W. (2008). Real-time groundwater flow modeling with the ensemble kalman filter: Joint estimation of states and parameters and the filter inbreeding problem. Water Resour. Res, 44.","DOI":"10.1029\/2007WR006505"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"545","DOI":"10.5194\/hess-14-545-2010","article-title":"Coupled hydrogeophysical parameter estimation using a sequential bayesian approach","volume":"14","author":"Rings","year":"2010","journal-title":"Hydrol. Earth Syst. Sci"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"837","DOI":"10.2136\/vzj2009.0018","article-title":"Comparison of data assimilation techniques for a coupled model of surface and subsurface flow","volume":"8","author":"Camporese","year":"2009","journal-title":"Vadose Zone J"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1320","DOI":"10.1016\/j.rse.2007.03.028","article-title":"Retrieving soil temperature profile by assimilating modis lst products with ensemble kalman filter","volume":"112","author":"Huang","year":"2008","journal-title":"Remote Sens. Environ"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/S1161-0301(98)00031-8","article-title":"Calibration of the sucros emergence and early growth module for sugar beet using optical remote sensing data assimilation","volume":"9","author":"Guerif","year":"1998","journal-title":"Eur. J. Agron"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"1381","DOI":"10.1016\/j.rse.2007.02.041","article-title":"Assimilation of spot\/vegetation ndvi data into a sahelian vegetation dynamics model","volume":"112","author":"Jarlan","year":"2008","journal-title":"Remote Sens. Environ"},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Appel, F., Bach, H., Ohl, N., and Mauser, W. (2007, January 23\u201328). Provision of snow water equivalent from satellite data and the hydrological model promet using data assimilation techniques. Barcelona, Spain.","DOI":"10.1109\/IGARSS.2007.4423779"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"1467","DOI":"10.1016\/j.agrformet.2008.04.013","article-title":"Estimating transpiration and the sensitivity of carbon uptake to water availability in a subalpine forest using a simple ecosystem process model informed by measured net co2 and h2o fluxes","volume":"148","author":"Moore","year":"2008","journal-title":"Agric. For. Meteorol"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"515","DOI":"10.5194\/npg-11-515-2004","article-title":"A mechanistic modelling and data assimilation approach to estimate the carbon\/chlorophyll and carbon\/nitrogen ratios in a coupled hydrodynamical-biological model","volume":"11","author":"Faugeras","year":"2004","journal-title":"Nonlinear Process. Geophys"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1016\/j.ecolmodel.2005.01.017","article-title":"An adjoint data assimilation approach for estimating parameters in a three-dimensional ecosystem model","volume":"186","author":"Zhao","year":"2005","journal-title":"Ecol. Model"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"593","DOI":"10.1016\/S0092-8240(05)80759-1","article-title":"A data assimilation technique applied to a predator-prey model","volume":"57","author":"Lawson","year":"1995","journal-title":"Bull. Math. Biol"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"1241","DOI":"10.1175\/2010MWR3403.1","article-title":"Adaptive ensemble covariance localization in ensemble 4d-var state estimation","volume":"139","author":"Bishop","year":"2011","journal-title":"Mon. Weather Rev"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1115\/1.3662552","article-title":"A new approach to linear filtering and prediction problems","volume":"82","author":"Kalman","year":"1960","journal-title":"J. Basic Eng"},{"key":"ref_41","unstructured":"Hoeben, R., and Troch, P.A. (2000, January 24\u201328). Assimilation of active microwave measurements for soil moisture profile retrieval under laboratory conditions. Honolulu, HI, USA."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"1719","DOI":"10.1175\/1520-0493(1998)126<1719:ASITEK>2.0.CO;2","article-title":"Analysis scheme in the ensemble kalman filter","volume":"126","author":"Burgers","year":"1998","journal-title":"Mon. Weather Rev"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"728","DOI":"10.1175\/1525-7541(2002)003<0728:EVEKFF>2.0.CO;2","article-title":"Extended versus ensemble kalman filtering for land data assimilation","volume":"3","author":"Reichle","year":"2002","journal-title":"J. Hydrometeorol"},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"805","DOI":"10.5589\/m04-043","article-title":"Estimating soil moisture at the watershed scale with satellite-based radar and land surface models","volume":"30","author":"Moran","year":"2004","journal-title":"Can. J. Remote Sens"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"1434","DOI":"10.1016\/j.rse.2007.07.008","article-title":"An evaluation of the nonlinear\/non-gaussian filters for the sequential data assimilation","volume":"112","author":"Han","year":"2008","journal-title":"Remote Sens. Environ"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"755","DOI":"10.5194\/hess-10-755-2006","article-title":"Estimating spatial mean root-zone soil moisture from point-scale observations","volume":"10","author":"Teuling","year":"2006","journal-title":"Hydrol. Earth Syst. Sci"},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"421","DOI":"10.1175\/JHM499.1","article-title":"Impact of incorrect model error assumptions on the sequential assimilation of remotely sensed surface soil moisture","volume":"7","author":"Crow","year":"2006","journal-title":"J. Hydrometeorol"},{"key":"ref_48","doi-asserted-by":"crossref","unstructured":"Moradkhani, H., Hsu, K.L., Gupta, H., and Sorooshian, S. (2005). Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter. Water Resour. Res., 41.","DOI":"10.1029\/2004WR003604"},{"key":"ref_49","doi-asserted-by":"crossref","unstructured":"Weerts, A.H., and El Serafy, G.Y.H. (2006). Particle filtering and ensemble kalman filtering for state updating with hydrological conceptual rainfall-runoff models. Water Resour. Res., 42.","DOI":"10.1029\/2005WR004093"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"374","DOI":"10.1002\/fld.2020","article-title":"Comparison of sequential data assimilation methods for the kuramoto-sivashinsky equation","volume":"62","author":"Jardak","year":"2010","journal-title":"Int. J. Numer. Method Fluids"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.advwatres.2012.06.009","article-title":"Ensemble kalman filter versus particle filter for a physically-based coupled surface-subsurface model","volume":"47","author":"Pasetto","year":"2012","journal-title":"Adv. Water Resour"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1007\/s00477-010-0445-5","article-title":"Snow water equivalent prediction using bayesian data assimilation methods","volume":"25","author":"Leisenring","year":"2011","journal-title":"Stoch. Environ. Res. Risk Assess"},{"key":"ref_53","doi-asserted-by":"crossref","unstructured":"DeChant, C.M., and Moradkhani, H. (2012). Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting. Water Resour. Res, in press.","DOI":"10.1029\/2011WR011011"},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"1747","DOI":"10.1175\/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2","article-title":"The national-meteorological-centers spectral statistical-interpolation analysis system","volume":"120","author":"Parrish","year":"1992","journal-title":"Mon. Weather Rev"},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"3167","DOI":"10.1256\/qj.02.131","article-title":"Modelling of error covariances by 4d-var data assimilation","volume":"129","author":"Lorenc","year":"2003","journal-title":"Q. J. R. Meteorol. Soc"},{"key":"ref_56","doi-asserted-by":"crossref","unstructured":"Pauwels, V.R.N., and de Lannoy, G.J.M. (2009). Ensemble-based assimilation of discharge into rainfall-runoff models: A comparison of approaches to mapping observational information to state space. Water Resour. Res, 45.","DOI":"10.1029\/2008WR007590"},{"key":"ref_57","unstructured":"Evensen, G. (2007). Data Assimilation: The Ensemble Kalman Filter, Springer."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"1913","DOI":"10.1175\/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2","article-title":"Ensemble data assimilation without perturbed observations","volume":"130","author":"Whitaker","year":"2002","journal-title":"Mon. Weather Rev"},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"1852","DOI":"10.1175\/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2","article-title":"An ensemble kalman smoother for nonlinear dynamics","volume":"128","author":"Evensen","year":"2000","journal-title":"Mon. Weather Rev"},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"2898","DOI":"10.1175\/1520-0493(1996)124<2898:DAAIMI>2.0.CO;2","article-title":"Data assimilation and inverse methods in terms of a probabilistic formulation","volume":"124","author":"Evensen","year":"1996","journal-title":"Mon. Weather Rev"},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"1342","DOI":"10.1175\/1520-0493(1997)125<1342:ADAFSN>2.0.CO;2","article-title":"Advanced data assimilation for strongly nonlinear dynamics","volume":"125","author":"Evensen","year":"1997","journal-title":"Mon. Weather Rev"},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1175\/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2","article-title":"Hydrologic data assimilation with the ensemble kalman filter","volume":"130","author":"Reichle","year":"2002","journal-title":"Mon. Weather Rev"},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/S0309-1708(02)00088-X","article-title":"The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble kalman filtering: A case study based on estar measurements during sgp97","volume":"26","author":"Crow","year":"2003","journal-title":"Adv. Water Resour"},{"key":"ref_64","doi-asserted-by":"crossref","unstructured":"Margulis, S.A., McLaughlin, D., Entekhabi, D., and Dunne, S. (2002). Land data assimilation and estimation of soil moisture using measurements from the southern great plains 1997 field experiment. Water Resour. Res, 38.","DOI":"10.1029\/2001WR001114"},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"872","DOI":"10.1016\/j.advwatres.2005.08.004","article-title":"Assimilating remotely sensed snow observations into a macroscale hydrology model","volume":"29","author":"Andreadis","year":"2006","journal-title":"Adv. Water Resour"},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"1","DOI":"10.5194\/hess-13-1-2009","article-title":"A new data assimilation approach for improving runoff prediction using remotely-sensed soil moisture retrievals","volume":"13","author":"Crow","year":"2009","journal-title":"Hydrol. Earth Syst. Sci"},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"535","DOI":"10.1175\/2007JHM951.1","article-title":"Assimilation of grace terrestrial water storage data into a land surface model: Results for the mississippi river basin","volume":"9","author":"Zaitchik","year":"2008","journal-title":"J. Hydrometeorol"},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.jag.2006.05.003","article-title":"A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling","volume":"9","author":"Dorigo","year":"2007","journal-title":"Int. J. Appl. Earth Obs. Geoinformation"},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"1309","DOI":"10.1016\/j.advwatres.2008.06.005","article-title":"Hydrological data assimilation with the ensemble kalman filter: Use of streamflow observations to update states in a distributed hydrological model","volume":"31","author":"Clark","year":"2008","journal-title":"Adv. Water Res"},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"393","DOI":"10.2118\/117274-PA","article-title":"The ensemble kalman filter in reservoir engineering-a review","volume":"14","author":"Aanonsen","year":"2009","journal-title":"SPE J"},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"282","DOI":"10.2118\/95789-PA","article-title":"Incorporating 4d seismic data in reservoir simulation models using ensemble kalman filter","volume":"12","author":"Skjervheim","year":"2007","journal-title":"SPE J"},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"W12508","DOI":"10.1029\/2011WR010528","article-title":"Assessment of local hydraulic properties from electrical resistivity tomography monitoring of a three-dimensional synthetic tracer test experiment","volume":"47","author":"Camporese","year":"2011","journal-title":"Water Resour. Res"},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1109\/MCS.2009.932223","article-title":"The ensemble kalman filter for combined state and parameter estimation monte carlo techniques for data assimilation in large systems","volume":"29","author":"Evensen","year":"2009","journal-title":"IEEE Control Syst. Mag"},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"1107","DOI":"10.1016\/j.advwatres.2005.09.007","article-title":"Data assimilation for transient flow in geologic formations via ensemble kalman filter","volume":"29","author":"Chen","year":"2006","journal-title":"Adv. Water Resour"},{"key":"ref_75","doi-asserted-by":"crossref","unstructured":"Vrugt, J.A., Diks, C.G.H., Gupta, H.V., Bouten, W., and Verstraten, J.M. (2005). Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation. Water Resour. Res., 41.","DOI":"10.1029\/2004WR003059"},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"W10534","DOI":"10.1029\/2011WR011743","article-title":"Identification of time-variant river bed properties with the ensemble kalman filter","volume":"48","author":"Kurtz","year":"2012","journal-title":"Water Resour. Res"},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"156","DOI":"10.2118\/111571-PA","article-title":"Some practical issues on real-time reservoir model updating using ensemble kalman filter","volume":"12","author":"Wen","year":"2007","journal-title":"SPE J"},{"key":"ref_78","doi-asserted-by":"crossref","first-page":"431","DOI":"10.2118\/92991-PA","article-title":"Real-time reservoir model updating using ensemble kalman filter with confirming option","volume":"11","author":"Wen","year":"2006","journal-title":"SPE J"},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"438","DOI":"10.2118\/108438-PA","article-title":"An iterative ensemble kalman filter for multiphase fluid flow data assimilation","volume":"12","author":"Gu","year":"2007","journal-title":"SPE J"},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"1016","DOI":"10.1109\/TGRS.2006.890561","article-title":"Impact of multiresolution active and passive microwave measurements on soil moisture estimation using the ensemble kalman smoother","volume":"45","author":"Dunne","year":"2007","journal-title":"IEEE Trans. Geosci. Remote Sens"},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"W01407","DOI":"10.1029\/2005WR004334","article-title":"Land surface state and flux estimation using the ensemble kalman smoother during the southern great plains 1997 field experiment","volume":"42","author":"Dunne","year":"2006","journal-title":"Water Resour. Res"},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"W08521","DOI":"10.1029\/2011WR011542","article-title":"Surface heat flux estimation with the ensemble kalman smoother: Joint estimation of state and parameters","volume":"48","author":"Bateni","year":"2012","journal-title":"Water Resour. Res"},{"key":"ref_83","doi-asserted-by":"crossref","first-page":"375","DOI":"10.5194\/hess-16-375-2012","article-title":"The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter","volume":"16","author":"Plaza","year":"2012","journal-title":"Hydrol. Earth Syst. Sci"},{"key":"ref_84","doi-asserted-by":"crossref","first-page":"613","DOI":"10.1109\/78.905890","article-title":"Particle filters for state estimation of jump markov linear systems","volume":"49","author":"Doucet","year":"2001","journal-title":"IEEE Trans. Signal Process"},{"key":"ref_85","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1016\/S0927-6513(96)00025-9","article-title":"Monte carlo simulations on adsorptions of benzene and xylenes in sodium-y zeolites","volume":"7","author":"Kitagawa","year":"1996","journal-title":"Microporous Mater"},{"key":"ref_86","doi-asserted-by":"crossref","first-page":"4089","DOI":"10.1175\/2009MWR2835.1","article-title":"Particle filtering in geophysical systems","volume":"137","year":"2009","journal-title":"Mon. Weather Rev"},{"key":"ref_87","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1080\/01621459.1994.10476469","article-title":"Sequential imputations and bayesian missing data problems","volume":"89","author":"Kong","year":"1994","journal-title":"J. Am. Stat. Assoc"},{"key":"ref_88","doi-asserted-by":"crossref","first-page":"1032","DOI":"10.1080\/01621459.1998.10473765","article-title":"Sequential monte carlo methods for dynamic systems","volume":"93","author":"Liu","year":"1998","journal-title":"J. Am. Stat Assoc"},{"key":"ref_89","doi-asserted-by":"crossref","first-page":"2997","DOI":"10.1175\/2010MWR3164.1","article-title":"Beyond gaussian statistical modeling in geophysical data assimilation","volume":"138","author":"Bocquet","year":"2010","journal-title":"Mon. Weather Rev"},{"key":"ref_90","doi-asserted-by":"crossref","unstructured":"Ng, G.H.C., McLaughlin, D., Entekhabi, D., and Scanlon, B. (2009). Using data assimilation to identify diffuse recharge mechanisms from chemical and physical data in the unsaturated zone. Water Resour. Res, 45.","DOI":"10.1029\/2009WR007831"},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"1282","DOI":"10.1016\/j.rse.2007.02.039","article-title":"Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation","volume":"112","author":"Pan","year":"2008","journal-title":"Remote Sens. Environ"},{"key":"ref_92","doi-asserted-by":"crossref","unstructured":"Qin, J., Liang, S.L., Yang, K., Kaihotsu, I., Liu, R.G., and Koike, T. (2009). Simultaneous estimation of both soil moisture and model parameters using particle filtering method through the assimilation of microwave signal. J. Geophys. Res. Atmos, 114.","DOI":"10.1029\/2008JD011358"},{"key":"ref_93","doi-asserted-by":"crossref","first-page":"3155","DOI":"10.1016\/j.sigpro.2007.06.011","article-title":"Analysis of parallelizable resampling algorithms for particle filtering","volume":"87","author":"Miguez","year":"2007","journal-title":"Signal Process"},{"key":"ref_94","doi-asserted-by":"crossref","first-page":"2577","DOI":"10.1175\/1520-0477(1997)078<2577:WIAAM>2.0.CO;2","article-title":"What is an adjoint model?","volume":"78","author":"Errico","year":"1997","journal-title":"Bull. Am. Meteorol. Soc"},{"key":"ref_95","doi-asserted-by":"crossref","first-page":"3735","DOI":"10.1029\/1999WR900258","article-title":"Estimating root zone soil moisture from surface soil moisture data and soil-vegetation-atmosphere transfer modeling","volume":"35","author":"Wigneron","year":"1999","journal-title":"Water Resour. Res"},{"key":"ref_96","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/j.jhydrol.2003.10.003","article-title":"Using a multiobjective approach to retrieve information on surface properties used in a svat model","volume":"287","author":"Demarty","year":"2004","journal-title":"J. Hydrol"},{"key":"ref_97","doi-asserted-by":"crossref","unstructured":"Demarty, J., Ottle, C., Braud, I., Olioso, A., Frangi, J.P., Gupta, H.V., and Bastidas, L.A. (2005). Constraining a physically based soil-vegetation-atmosphere transfer model with surface water content and thermal infrared brightness temperature measurements using a multiobjective approach. Water Resour. Res, 41.","DOI":"10.1029\/2004WR003695"},{"key":"ref_98","doi-asserted-by":"crossref","first-page":"331","DOI":"10.2151\/jmsj.85B.331","article-title":"Recent progress of data assimilation methods in meteorology","volume":"85B","author":"Tsuyuki","year":"2007","journal-title":"J. Meteorol. Soc. Jpn"},{"key":"ref_99","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1088\/0266-5611\/22\/1\/014","article-title":"Variational assimilation of lagrangian data in oceanography","volume":"22","author":"Nodet","year":"2006","journal-title":"Inverse Probl"},{"key":"ref_100","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1029\/WR022i002p00199","article-title":"Estimation of aquifer parameters under transient and steady-state conditions .1. Maximum-likelihood method incorporating prior information","volume":"22","author":"Carrera","year":"1986","journal-title":"Water Resour. Res"},{"key":"ref_101","doi-asserted-by":"crossref","first-page":"1708","DOI":"10.1109\/36.942549","article-title":"Variational data assimilation of microwave radiobrightness observations for land surface hydrology applications","volume":"39","author":"Reichle","year":"2001","journal-title":"IEEE Trans. Geosci. Remote Sens"},{"key":"ref_102","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1061\/(ASCE)0733-9429(1999)125:3(309)","article-title":"Estimation of roughness profile in trapezoidal open channels","volume":"125","author":"Atanov","year":"1999","journal-title":"J. Hydraul. Eng"},{"key":"ref_103","doi-asserted-by":"crossref","first-page":"280","DOI":"10.1046\/j.1365-246X.2003.01823.x","article-title":"Mantle circulation models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography","volume":"152","author":"Bunge","year":"2003","journal-title":"Geophys. J. Int"},{"key":"ref_104","doi-asserted-by":"crossref","unstructured":"Yang, Z.Q., and Hamrick, J.M. (2003). Variational inverse parameter estimation in a cohesive sediment transport model: An adjoint approach. J. Geophys. Res. Oceans, 108.","DOI":"10.1029\/2002JC001423"},{"key":"ref_105","doi-asserted-by":"crossref","first-page":"377","DOI":"10.1007\/s10795-005-8143-z","article-title":"Future directions for advanced evapotranspiration modeling: Assimilation of remote sensing data into crop simulation models and svat models","volume":"19","author":"Olioso","year":"2005","journal-title":"Irrigation Drainage Syst"},{"key":"ref_106","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1175\/1525-7541(2004)005<0145:EOSTFT>2.0.CO;2","article-title":"Estimation of surface turbulent fluxes through assimilation of radiometric surface temperature sequences","volume":"5","author":"Caparrini","year":"2004","journal-title":"J. Hydrometeorol"},{"key":"ref_107","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1175\/1525-7541(2004)005<0213:AMSOOF>2.0.CO;2","article-title":"A microwave satellite observational operator for variational data assimilation of soil moisture","volume":"5","author":"Jones","year":"2004","journal-title":"J. Hydrometeorol"},{"key":"ref_108","doi-asserted-by":"crossref","unstructured":"Pathmathevan, M., Koike, T., Li, X., and Fujii, H. (2003). A simplified land data assimilation scheme and its application to soil moisture experiments in 2002 (smex02). Water Resour. Res, 39.","DOI":"10.1029\/2003WR002124"},{"key":"ref_109","doi-asserted-by":"crossref","first-page":"229","DOI":"10.2151\/jmsj.85A.229","article-title":"Auto-calibration system developed to assimilate amsr-e data into a land surface model for estimating soil moisture and the surface energy budget","volume":"85A","author":"Yang","year":"2007","journal-title":"J. Meteorol. Soc. Jpn"},{"key":"ref_110","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1175\/JHM571.1","article-title":"From near-surface to root-zone soil moisture using different assimilation techniques","volume":"8","author":"Sabater","year":"2007","journal-title":"J. Hydrometeorol"},{"key":"ref_111","doi-asserted-by":"crossref","first-page":"393","DOI":"10.1175\/1525-7541(2000)001<0393:FNSTRZ>2.0.CO;2","article-title":"From near-surface to root-zone soil moisture using year-round data","volume":"1","author":"Calvet","year":"2000","journal-title":"J. Hydrometeorol"},{"key":"ref_112","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1007\/3-540-28438-9_22","article-title":"Automatic differentiation: A tool for variational data assimilation and adjoint sensitivity analysis for flood modeling","volume":"50","author":"Castaings","year":"2006","journal-title":"Lect. Notes Comput. Sci. Eng"},{"key":"ref_113","first-page":"1331","article-title":"Environmental data assimilation: Methods and challenges","volume":"55","author":"McLaughlin","year":"2004","journal-title":"Dev. Water Sci"},{"key":"ref_114","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1016\/j.advwatres.2010.12.005","article-title":"Dual state-parameter estimation of root zone soil moisture by optimal parameter estimation and extended kalman filter data assimilation","volume":"34","author":"Lu","year":"2011","journal-title":"Adv. Water Resour"},{"key":"ref_115","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/S0309-1708(02)00103-3","article-title":"Multi-scale assimilation of surface soil moisture data for robust root zone moisture predictions","volume":"26","author":"Montaldo","year":"2003","journal-title":"Adv. Water Resour"},{"key":"ref_116","doi-asserted-by":"crossref","first-page":"3158","DOI":"10.1002\/hyp.8034","article-title":"Multi-scale assimilation of root zone soil water predictions","volume":"25","author":"Lu","year":"2011","journal-title":"Hydrol. Process"},{"key":"ref_117","doi-asserted-by":"crossref","unstructured":"Wang, S.G., Liang, X., and Nan, Z.T. (2011). How much improvement can precipitation data fusion achieve with a multiscale kalman smoother-based framework?. Water Resour. Res, 47.","DOI":"10.1029\/2010WR009953"},{"key":"ref_118","doi-asserted-by":"crossref","first-page":"794","DOI":"10.1175\/2009JHM1088.1","article-title":"A multiscale ensemble filtering system for hydrologic data assimilation. Part I: Implementation and synthetic experiment","volume":"10","author":"Pan","year":"2009","journal-title":"J. Hydrometeorol"},{"key":"ref_119","doi-asserted-by":"crossref","first-page":"1","DOI":"10.2136\/vzj2006.0055","article-title":"Upscaling hydraulic properties and soil water flow processes in heterogeneous soils: A review","volume":"6","author":"Vereecken","year":"2007","journal-title":"Vadose Zone J"},{"key":"ref_120","doi-asserted-by":"crossref","first-page":"675","DOI":"10.1109\/TGRS.2007.914804","article-title":"Earth-viewing l-band radiometer sensing of sea surface scattered celestial sky radiation\u2014Part ii: Application to smos","volume":"46","author":"Reul","year":"2008","journal-title":"IEEE Trans. Geosci. Remote Sens"},{"key":"ref_121","doi-asserted-by":"crossref","first-page":"1013","DOI":"10.1175\/BAMS-84-8-1013","article-title":"The common land model","volume":"84","author":"Dai","year":"2003","journal-title":"Bull. Am. Meteorol. Soc"},{"key":"ref_122","doi-asserted-by":"crossref","first-page":"1336","DOI":"10.1109\/TGRS.2008.916475","article-title":"Model-based satellite image fusion","volume":"46","author":"Aanaes","year":"2008","journal-title":"IEEE Trans. Geosci. Remote Sens"},{"key":"ref_123","doi-asserted-by":"crossref","unstructured":"Canty, M.J. (2010). Image Analysis, Classification, and Change Detection in Remote Sensing, CRC Press.","DOI":"10.1201\/9781420087147"},{"key":"ref_124","first-page":"459","article-title":"The use of intensity-hue-saturation transformations for merging spot panchromatic and multispectral image data","volume":"56","author":"Carper","year":"1990","journal-title":"Photogramm. Eng. Remote Sensing"},{"key":"ref_125","first-page":"1075","article-title":"Multispectral imagery band sharpening study","volume":"62","author":"Vrabel","year":"1996","journal-title":"Photogramm. Eng. Remote Sensing"},{"key":"ref_126","first-page":"301","article-title":"Merging multiresolution spot hrv and landsat tm data","volume":"53","author":"Welch","year":"1987","journal-title":"Photogramm. Eng. Remote Sensing"},{"key":"ref_127","first-page":"529","article-title":"Special issue on wavelet transforms and multiresolution signal analysis\u2014Introduction","volume":"38","author":"Daubechies","year":"1992","journal-title":"IEEE Trans. Inf. Theory"},{"key":"ref_128","doi-asserted-by":"crossref","first-page":"2300","DOI":"10.1109\/TGRS.2002.803623","article-title":"Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis","volume":"40","author":"Aiazzi","year":"2002","journal-title":"IEEE Trans. Geosci. Remote Sens"},{"key":"ref_129","first-page":"49","article-title":"Fusion of high spatial and spectral resolution images: The arsis concept and its implementation","volume":"66","author":"Ranchin","year":"2000","journal-title":"Photogramm. Eng. Remote Sensing"},{"key":"ref_130","doi-asserted-by":"crossref","first-page":"1504","DOI":"10.1109\/TGRS.2010.2089526","article-title":"An algorithm for merging smap radiometer and radar data for high-resolution soil-moisture retrieval","volume":"49","author":"Das","year":"2011","journal-title":"IEEE Trans. Geosci. Remote Sens"},{"key":"ref_131","doi-asserted-by":"crossref","first-page":"704","DOI":"10.1109\/JPROC.2010.2043918","article-title":"The soil moisture active passive (smap) mission","volume":"98","author":"Entekhabi","year":"2010","journal-title":"Proc. IEEE"},{"key":"ref_132","doi-asserted-by":"crossref","unstructured":"Draper, C.S., Reichle, R.H., de Lannoy, G.J.M., and Liu, Q. (2012). Assimilation of passive and active microwave soil moisture retrievals. Geophys. Res. Lett, 39.","DOI":"10.1029\/2011GL050655"},{"key":"ref_133","doi-asserted-by":"crossref","first-page":"1275","DOI":"10.1016\/S0309-1708(02)00055-6","article-title":"An integrated approach to hydrologic data assimilation: Interpolation, smoothing, and filtering","volume":"25","author":"McLaughlin","year":"2002","journal-title":"Adv. Water Resour"},{"key":"ref_134","doi-asserted-by":"crossref","unstructured":"Li, L.P., Zhou, H.Y., Franssen, H.J.H., and Gomez-Hernandez, J.J. (2012). Modeling transient groundwater flow by coupling ensemble kalman filtering and upscaling. Water Resour. Res, 48.","DOI":"10.1029\/2010WR010214"},{"key":"ref_135","doi-asserted-by":"crossref","first-page":"1308","DOI":"10.1175\/JHM552.1","article-title":"Assimilation of disaggregated microwave soil moisture into a hydrologic model using coarse-scale meteorological data","volume":"7","author":"Merlin","year":"2006","journal-title":"J. Hydrometeorol"},{"key":"ref_136","doi-asserted-by":"crossref","unstructured":"Parada, L.M., and Liang, X. (2004). Optimal multiscale kalman filter for assimilation of near-surface soil moisture into land surface models. J. Geophys. Res. Atmos, 109.","DOI":"10.1029\/2004JD004745"},{"key":"ref_137","doi-asserted-by":"crossref","first-page":"464","DOI":"10.1109\/9.280746","article-title":"Multiscale recursive estimation, data fusion, and regularization","volume":"39","author":"Chou","year":"1994","journal-title":"IEEE Trans. Autom. Control"},{"key":"ref_138","doi-asserted-by":"crossref","first-page":"14415","DOI":"10.1029\/94JD00483","article-title":"A simple hydrologically based model of land surface water and energy fluxes for general circulation models","volume":"99","author":"Liang","year":"1994","journal-title":"J. Geophys. Res"},{"key":"ref_139","doi-asserted-by":"crossref","first-page":"431","DOI":"10.1109\/89.242489","article-title":"Ml estimation of a stochastic linear system with the em algorithm and its application to speech recognition","volume":"1","author":"Digalakis","year":"1993","journal-title":"IEEE Trans. Speech Audio Proc"},{"key":"ref_140","doi-asserted-by":"crossref","first-page":"2183","DOI":"10.1080\/014311699212182","article-title":"Thermal microwave emission depth and soil moisture remote sensing","volume":"20","author":"Nedeltchev","year":"1999","journal-title":"Int. J. Remote Sens"},{"key":"ref_141","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1023\/A:1011184728562","article-title":"Computationally efficient stochastic realization for internal multiscale autoregressive models","volume":"12","author":"Frakt","year":"2001","journal-title":"Multidimens. Syst. Signal Proc"},{"key":"ref_142","doi-asserted-by":"crossref","first-page":"678","DOI":"10.1175\/2007MWR2064.1","article-title":"An ensemble multiscale filter for large nonlinear data assimilation problems","volume":"136","author":"Zhou","year":"2008","journal-title":"Mon. Weather Rev"},{"key":"ref_143","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1109\/JSTARS.2010.2040585","article-title":"Impact of accuracy, spatial availability, and revisit time of satellite-derived surface soil moisture in a multiscale ensemble data assimilation system","volume":"3","author":"Pan","year":"2010","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens"},{"key":"ref_144","doi-asserted-by":"crossref","first-page":"2091","DOI":"10.1109\/36.957272","article-title":"Using area-average remotely sensed surface soil moisture in multipatch land data assimilation systems","volume":"39","author":"Burke","year":"2001","journal-title":"IEEE Trans. Geosci. Remote Sens"},{"key":"ref_145","doi-asserted-by":"crossref","unstructured":"Montzka, C., Grant, J., Moradkhani, H., Franssen, H.-J.H., Weiherm\u00fcller, L., Drusch, M., and Vereecken, H. (2012). Estimation of radiative transfer parameters from l-band passive microwave brightness temperatures using advanced data assimilation. Vadose Zone J, submitted for publication.","DOI":"10.2136\/vzj2012.0040"},{"key":"ref_146","doi-asserted-by":"crossref","first-page":"1468","DOI":"10.1109\/TGRS.2011.2170177","article-title":"Validation of smos brightness temperatures during the hobe airborne campaign, western denmark","volume":"50","author":"Bircher","year":"2012","journal-title":"IEEE Trans. Geosci. Remote Sens"},{"key":"ref_147","first-page":"1","article-title":"Brightness temperature and soil moisture validation at different scales during the smos validation campaign in the rur and erft catchments, germany","volume":"99","author":"Montzka","year":"2012","journal-title":"IEEE Trans. Geosci. Remote Sens"},{"key":"ref_148","doi-asserted-by":"crossref","unstructured":"Hill, T.C., Quaife, T., and Williams, M. (2011). A data assimilation method for using low-resolution earth observation data in heterogeneous ecosystems. J. Geophys. Res. Atmos, 116.","DOI":"10.1029\/2010JD015268"},{"key":"ref_149","doi-asserted-by":"crossref","first-page":"439","DOI":"10.1016\/j.jmarsys.2007.01.007","article-title":"Bayesian statistical data assimilation for ecosystem models using markov chain monte carlo","volume":"68","author":"Dowd","year":"2007","journal-title":"J. Mar. Syst"},{"key":"ref_150","doi-asserted-by":"crossref","first-page":"4303","DOI":"10.1029\/96JD02948","article-title":"A soil-vegetation-atmosphere transfer scheme for modeling spatially variable water and energy balance processes","volume":"102","author":"Zion","year":"1997","journal-title":"J. Geophys. Res"},{"key":"ref_151","doi-asserted-by":"crossref","unstructured":"Nowak, W. (2009). Best unbiased ensemble linearization and the quasi-linear kalman ensemble generator. Water Resour. Res, 45.","DOI":"10.1029\/2008WR007328"},{"key":"ref_152","doi-asserted-by":"crossref","first-page":"547","DOI":"10.1007\/s10040-010-0679-9","article-title":"Groundwater parameter estimation using the ensemble kalman filter with localization","volume":"19","author":"Nan","year":"2011","journal-title":"Hydrogeol. J"},{"key":"ref_153","doi-asserted-by":"crossref","first-page":"844","DOI":"10.1016\/j.advwatres.2011.04.014","article-title":"An approach to handling non-gaussianity of parameters and state variables in ensemble kalman filtering","volume":"34","author":"Zhou","year":"2011","journal-title":"Adv. Water Resour"},{"key":"ref_154","doi-asserted-by":"crossref","first-page":"975","DOI":"10.1016\/j.advwatres.2008.03.006","article-title":"Investigation of flow and transport processes at the made site using ensemble kalman filter","volume":"31","author":"Liu","year":"2008","journal-title":"Adv. Water Resour"},{"key":"ref_155","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1016\/j.jhydrol.2012.01.037","article-title":"Jointly mapping hydraulic conductivity and porosity by assimilating concentration data via ensemble kalman filter","volume":"428","author":"Li","year":"2012","journal-title":"J. Hydrol"},{"key":"ref_156","doi-asserted-by":"crossref","unstructured":"Sch\u00f6niger, A., Nowak, W., and Franssen, H.J.H. (2012). Parameter estimation by ensemble kalman filters with transformed data: Approach and application to hydraulic tomography. Water Resour. Res, 48.","DOI":"10.1029\/2011WR010462"},{"key":"ref_157","doi-asserted-by":"crossref","unstructured":"Camporese, M., Paniconi, C., Putti, M., and Salandin, P. (2009). Ensemble kalman filter data assimilation for a process-based catchment scale model of surface and subsurface flow. Water Resour. Res, 45.","DOI":"10.1029\/2008WR007031"},{"key":"ref_158","doi-asserted-by":"crossref","first-page":"3357","DOI":"10.1029\/94WR02046","article-title":"A comparison of picard and newton iteration in the numerical-solution of multidimensional variably saturated flow problems","volume":"30","author":"Paniconi","year":"1994","journal-title":"Water Resour. Res"},{"key":"ref_159","doi-asserted-by":"crossref","first-page":"1601","DOI":"10.1029\/92WR02333","article-title":"A detailed model for simulation of catchment scale subsurface hydrologic processes","volume":"29","author":"Paniconi","year":"1993","journal-title":"Water Resour. Res"},{"key":"ref_160","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1061\/(ASCE)1084-0699(1996)1:3(103)","article-title":"Diffusion wave modeling of distributed catchment dynamics","volume":"1","author":"Orlandini","year":"1996","journal-title":"J. Hydrol. Eng"},{"key":"ref_161","doi-asserted-by":"crossref","first-page":"1971","DOI":"10.1029\/98WR00257","article-title":"Parameterization of stream channel geometry in the distributed modeling of catchment dynamics","volume":"34","author":"Orlandini","year":"1998","journal-title":"Water Resour. Res"},{"key":"ref_162","doi-asserted-by":"crossref","unstructured":"Bailey, R., and Ba\u00f9, D. (2010). Ensemble smoother assimilation of hydraulic head and return flow data to estimate hydraulic conductivity distribution. Water Resour. Res, 46.","DOI":"10.1029\/2010WR009147"},{"key":"ref_163","doi-asserted-by":"crossref","first-page":"287","DOI":"10.5194\/hess-16-287-2012","article-title":"Estimating geostatistically parameters and spatially variable hydraulic conductivity within a catchment system using an ensemble smoother","volume":"16","author":"Bailey","year":"2012","journal-title":"Hydrol. Earth Syst. Sci"},{"key":"ref_164","doi-asserted-by":"crossref","first-page":"627","DOI":"10.1175\/1525-7541(2003)004<0627:RVAOHA>2.0.CO;2","article-title":"Real-time variational assimilation of hydrologic and hydrometeorological data into operational hydrologic forecasting","volume":"4","author":"Seo","year":"2003","journal-title":"J. Hydrometeorol"},{"key":"ref_165","unstructured":"Burnash, R.J.C., Ferral, R.L., and McGuire, R.A. (1973). A Generalized Streamflow Simulation System\u2014Conceptual Modeling for Digital Computers, Joint Federal-State River Forecast Center. National Weather Service, NOAA, and the State of California Depart of Water Resources Tech. Rep.,."},{"key":"ref_166","doi-asserted-by":"crossref","first-page":"297","DOI":"10.1016\/j.jhydrol.2003.12.039","article-title":"Hydrology laboratory research modeling system (hl-rms) of the us national weather service","volume":"291","author":"Koren","year":"2004","journal-title":"J. Hydrol"},{"key":"ref_167","doi-asserted-by":"crossref","first-page":"1597","DOI":"10.1016\/j.advwatres.2011.08.012","article-title":"Assimilation of streamflow and in situ soil moisture data into operational distributed hydrologic models: Effects of uncertainties in the data and initial model soil moisture states","volume":"34","author":"Lee","year":"2011","journal-title":"Adv. Water Resour"},{"key":"ref_168","doi-asserted-by":"crossref","first-page":"678","DOI":"10.1016\/j.advwatres.2010.03.012","article-title":"Data assimilation for distributed hydrological catchment modeling via ensemble kalman filter","volume":"33","author":"Xie","year":"2010","journal-title":"Adv. Water Resour"},{"key":"ref_169","doi-asserted-by":"crossref","first-page":"1211","DOI":"10.13031\/2013.23637","article-title":"The soil and water assessment tool: Historical development, applications, and future research directions","volume":"50","author":"Gassman","year":"2007","journal-title":"Trans. ASABE"},{"key":"ref_170","unstructured":"Luzio, M.D., Srinivasan, R., Arnold, J.G., and Neitsch, S.L. (2002). Arcview Interface for Swat2000: User\u2019s Guide, Blackland Research Center, Texas Agricultural Experiment Station."},{"key":"ref_171","unstructured":"Neitsch, S.L., Arnold, J.G., Kiniry, J.R., and Williams, J.R. (2001). Soil and Water Assessment Tool, Theoretical Documentation: Version 2000, Temple: Blackland Research Center, Texas Agricultural Experiment Station."},{"key":"ref_172","doi-asserted-by":"crossref","first-page":"631","DOI":"10.1016\/S0309-1708(00)00043-9","article-title":"One-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: A comparison of retrieval algorithms","volume":"24","author":"Walker","year":"2002","journal-title":"Adv. Water Resour"},{"key":"ref_173","doi-asserted-by":"crossref","first-page":"692","DOI":"10.1016\/j.advwatres.2005.07.011","article-title":"Real-time forecasting of water table depth and soil moisture profiles","volume":"29","author":"Visser","year":"2006","journal-title":"Adv. Water Resour"},{"key":"ref_174","doi-asserted-by":"crossref","first-page":"1109","DOI":"10.1175\/2009JHM1043.1","article-title":"On the efficacy of combining thermal and microwave satellite data as observational constraints for root-zone soil moisture estimation","volume":"10","author":"Barrett","year":"2009","journal-title":"J. Hydrometeorol"},{"key":"ref_175","doi-asserted-by":"crossref","unstructured":"Han, X., Hendricks Franssen, H.J., Li, X., Zhang, Y., Montzka, C., and Vereecken, H. (2012). Joint assimilation of surface temperature and l-band microwave brightness temperature in land data assimilation. Vadose Zone J., accepted for publication.","DOI":"10.2136\/vzj2012.0072"},{"key":"ref_176","doi-asserted-by":"crossref","unstructured":"Pauwels, V.R.N., Verhoest, N.E.C., de Lannoy, G.J.M., Guissard, V., Lucau, C., and Defourny, P. (2007). Optimization of a coupled hydrology-crop growth model through the assimilation of observed soil moisture and leaf area index values using an ensemble kalman filter. Water Resour. Res, 43.","DOI":"10.1029\/2006WR004942"},{"key":"ref_177","doi-asserted-by":"crossref","first-page":"3061","DOI":"10.1029\/94WR01498","article-title":"Multiscale modeling of spatially-variable water and energy-balance processes","volume":"30","author":"Famiglietti","year":"1994","journal-title":"Water Resour. Res"},{"key":"ref_178","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1111\/j.1475-2743.1989.tb00755.x","article-title":"Wofost\u2014A simulation-model of crop production","volume":"5","author":"Vandiepen","year":"1989","journal-title":"Soil Use Manage"},{"key":"ref_179","doi-asserted-by":"crossref","first-page":"1362","DOI":"10.1016\/j.agrformet.2008.04.003","article-title":"Joint assimilation of surface soil moisture and lai observations into a land surface model","volume":"148","author":"Sabater","year":"2008","journal-title":"Agric. For. Meteorol"},{"key":"ref_180","doi-asserted-by":"crossref","first-page":"1109","DOI":"10.5194\/hess-14-1109-2010","article-title":"Monitoring of water and carbon fluxes using a land data assimilation system: A case study for southwestern france","volume":"14","author":"Albergel","year":"2010","journal-title":"Hydrol. Earth Syst. Sci"},{"key":"ref_181","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/S0168-1923(98)00091-4","article-title":"An interactive vegetation svat model tested against data from six contrasting sites","volume":"92","author":"Calvet","year":"1998","journal-title":"Agric. For. Meteorol"},{"key":"ref_182","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/j.agrformet.2004.01.007","article-title":"Modelling forest transpiration and co2 fluxes\u2014Response to soil moisture stress","volume":"124","author":"Calvet","year":"2004","journal-title":"Agric. For. Meteorol"},{"key":"ref_183","doi-asserted-by":"crossref","first-page":"397","DOI":"10.5194\/acp-8-397-2008","article-title":"Past and future scenarios of the effect of carbon dioxide on plant growth and transpiration for three vegetation types of southwestern france","volume":"8","author":"Calvet","year":"2008","journal-title":"Atmos. Chem. Phys"},{"key":"ref_184","doi-asserted-by":"crossref","first-page":"D18102","DOI":"10.1029\/2005JD006691","article-title":"Ability of the land surface model isba-a-gs to simulate leaf area index at the global scale: Comparison with satellites products","volume":"111","author":"Gibelin","year":"2006","journal-title":"J. Geophys. Res. Atmos"},{"key":"ref_185","doi-asserted-by":"crossref","unstructured":"Draper, C.S., Mahfouf, J.F., and Walker, J.P. (2011). Root zone soil moisture from the assimilation of screen-level variables and remotely sensed soil moisture. J. Geophys. Res. Atmos, 116.","DOI":"10.1029\/2010JD013829"},{"key":"ref_186","doi-asserted-by":"crossref","first-page":"534","DOI":"10.1175\/JHM495.1","article-title":"Data assimilation for estimating the terrestrial water budget using a constrained ensemble kalman filter","volume":"7","author":"Pan","year":"2006","journal-title":"J. Hydrometeorol"},{"key":"ref_187","doi-asserted-by":"crossref","first-page":"21403","DOI":"10.1029\/96JD01448","article-title":"One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model","volume":"101","author":"Liang","year":"1996","journal-title":"J. Geophys. Res. Atmos"},{"key":"ref_188","doi-asserted-by":"crossref","first-page":"9581","DOI":"10.1029\/98JD02307","article-title":"Modeling ground heat flux in land surface parameterization schemes","volume":"104","author":"Liang","year":"1999","journal-title":"J. Geophys. Res. Atmos"},{"key":"ref_189","doi-asserted-by":"crossref","first-page":"443","DOI":"10.1175\/JHM502.1","article-title":"Feasibility test of multifrequency radiometric data assimilation to estimate snow water equivalents","volume":"7","author":"Durand","year":"2006","journal-title":"J. Hydrometeorol"},{"key":"ref_190","doi-asserted-by":"crossref","first-page":"369","DOI":"10.5194\/hess-10-369-2006","article-title":"A bayesian spatial assimilation scheme for snow coverage observations in a gridded snow model","volume":"10","author":"Kolberg","year":"2006","journal-title":"Hydrol. Earth Syst. Sci"},{"key":"ref_191","doi-asserted-by":"crossref","first-page":"D02105","DOI":"10.1029\/2007JD008662","article-title":"Effects of uncertainty magnitude and accuracy on assimilation of multiscale measurements for snowpack characterization","volume":"113","author":"Durand","year":"2008","journal-title":"J. Geophys. Res. Atmos"},{"key":"ref_192","doi-asserted-by":"crossref","unstructured":"De Lannoy, G.J.M., Reichle, R.H., Arsenault, K.R., Houser, P.R., Kumar, S., Verhoest, N.E.C., and Pauwels, V.R.N. (2012). Multiscale assimilation of advanced microwave scanning radiometer-eos snow water equivalent and moderate resolution imaging spectroradiometer snow cover fraction observations in northern colorado. Water Resour. Res, 48.","DOI":"10.1029\/2011WR010588"},{"key":"ref_193","doi-asserted-by":"crossref","unstructured":"Su, H., Yang, Z.L., Dickinson, R.E., Wilson, C.R., and Niu, G.Y. (2010). Multisensor snow data assimilation at the continental scale: The value of gravity recovery and climate experiment terrestrial water storage information. J. Geophys. Res. Atmos, 115.","DOI":"10.1029\/2009JD013035"},{"key":"ref_194","doi-asserted-by":"crossref","first-page":"1225","DOI":"10.1175\/2007JHM819.1","article-title":"A land data assimilation system for soil moisture and temperature: An information content study","volume":"8","author":"Balsamo","year":"2007","journal-title":"J. Hydrometeorol"},{"key":"ref_195","doi-asserted-by":"crossref","first-page":"1971","DOI":"10.5194\/bg-8-1971-2011","article-title":"Assimilation of soil wetness index and leaf area index into the isba-a-gs land surface model: Grassland case study","volume":"8","author":"Barbu","year":"2011","journal-title":"Biogeosciences"},{"key":"ref_196","doi-asserted-by":"crossref","first-page":"3935","DOI":"10.1016\/j.rse.2008.06.012","article-title":"Towards deterministic downscaling of smos soil moisture using modis derived soil evaporative efficiency","volume":"112","author":"Merlin","year":"2008","journal-title":"Remote Sens. Environ"},{"key":"ref_197","doi-asserted-by":"crossref","first-page":"2305","DOI":"10.1016\/j.rse.2010.05.007","article-title":"An improved algorithm for disaggregating microwave-derived soil moisture based on red, near-infrared and thermal-infrared data","volume":"114","author":"Merlin","year":"2010","journal-title":"Remote Sens. Environ"},{"key":"ref_198","doi-asserted-by":"crossref","first-page":"446","DOI":"10.1109\/TGRS.2011.2161318","article-title":"Improving spatial soil moisture representation through integration of amsr-e and modis products","volume":"50","author":"Kim","year":"2012","journal-title":"IEEE Trans. Geosci. Remote Sens"}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/12\/12\/16291\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,31]],"date-time":"2024-05-31T08:01:12Z","timestamp":1717142472000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/12\/12\/16291"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2012,11,26]]},"references-count":198,"journal-issue":{"issue":"12","published-online":{"date-parts":[[2012,12]]}},"alternative-id":["s121216291"],"URL":"https:\/\/doi.org\/10.3390\/s121216291","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2012,11,26]]}}}