{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T18:34:06Z","timestamp":1723055646832},"reference-count":40,"publisher":"MDPI AG","issue":"7","license":[{"start":{"date-parts":[[2010,6,30]],"date-time":"2010-06-30T00:00:00Z","timestamp":1277856000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/3.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550nm (\u03c4550) and the surface reflectance (\u03c1) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves \u03c4550 with a minimization algorithm, then Module B retrieves the surface reflectance \u03c1 for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, \u03c4550 and \u03c1, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the \u03c4550 retrieved by Module A (r2 = 0.75, RMSD = 0.08) and the \u03c1 retrieved by Module B (r2 \u2264 0.9, RMSD \u2264 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness.<\/jats:p>","DOI":"10.3390\/s100706421","type":"journal-article","created":{"date-parts":[[2010,6,30]],"date-time":"2010-06-30T15:31:32Z","timestamp":1277911892000},"page":"6421-6438","source":"Crossref","is-referenced-by-count":28,"title":["Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land"],"prefix":"10.3390","volume":"10","author":[{"given":"Cristiana","family":"Bassani","sequence":"first","affiliation":[{"name":"Institute for Atmospheric Pollution (IIA), Italian National Research Council (CNR), Division Airborne Laboratory for Environmental Research (LARA), Research Area of Roma-2 in Tor Vergata, Via Fosso del Cavaliere 100, 00133 Rome, Italy"}]},{"given":"Rosa Maria","family":"Cavalli","sequence":"additional","affiliation":[{"name":"Institute for Atmospheric Pollution (IIA), Italian National Research Council (CNR), Division Airborne Laboratory for Environmental Research (LARA), Research Area of Roma-2 in Tor Vergata, Via Fosso del Cavaliere 100, 00133 Rome, Italy"}]},{"given":"Stefano","family":"Pignatti","sequence":"additional","affiliation":[{"name":"Institute of Methodologies for Environmental Analysis (IMAA), Italian National Research Council (CNR), C.da S. Loja, 85050 Tito (Potenza), Italy"}]}],"member":"1968","published-online":{"date-parts":[[2010,6,30]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"S17","DOI":"10.1016\/j.rse.2007.12.015","article-title":"Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean","volume":"113","author":"Gao","year":"2009","journal-title":"Remote Sens. Environ"},{"key":"ref_2","doi-asserted-by":"crossref","unstructured":"Liang, S (2004). Quantitative Remote Sensing of Land Surfaces, John Wiley & Sons.","DOI":"10.1002\/047172372X"},{"key":"ref_3","first-page":"2193","article-title":"A spectral based recognition of the urban environment using the visible and near-infrared spectral region (0.4 \u2013 1.1 \u03bcm). A case study over Tel-Aviv","volume":"22","author":"Levin","year":"2001","journal-title":"Int. J. Remote Sens"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1016\/j.rse.2007.01.014","article-title":"Deterioration status of asbestos-cement roofing sheets assessed by analyzing hyperspectral data","volume":"109","author":"Bassani","year":"2007","journal-title":"Remote Sens. Environ"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.rse.2006.12.005","article-title":"Spectral calibration and atmospheric correction of ultra-fine spectral and spatial resolution remote sensing data. Application to CASI-1500 data","volume":"109","author":"Guanter","year":"2007","journal-title":"Remote Sens. Environ"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"17131","DOI":"10.1029\/97JD00201","article-title":"Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation","volume":"102","author":"Vermote","year":"1997","journal-title":"J. Geophys. Res"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/S0034-4257(02)00089-5","article-title":"Atmospheric correction of MODIS data in the visible to middle infrared: first results","volume":"83","author":"Vermote","year":"2002","journal-title":"Remote Sens. Environ"},{"key":"ref_8","unstructured":"Conel, JE, Green, RO, Vane, G, Bruegge, CJ, and Alley, RE (1987, January 2\u20134). AIS-2 radiometry and a comparison of methods for the recovery of ground reflectance. Pasadena, CA, USA."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"2215","DOI":"10.1364\/AO.47.002215","article-title":"Radiative transfer codes for atmospheric correction and aerosol retrieval: Intercomparison study","volume":"47","author":"Kotchenova","year":"2008","journal-title":"Appl. Optics"},{"key":"ref_10","unstructured":"Berk, A, Bernsten, LS, and Robertson, DC (1989). MODTRAN: A Moderate resolution model for LOWTRAN7, Air Force Geophysics Laboratory. Report GL-TR-89-0122."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"675","DOI":"10.1109\/36.581987","article-title":"Second simulation of the satellite signal in the solar spectrum, 6S: An overview","volume":"35","author":"Vermote","year":"1997","journal-title":"IEEE Trans. Geosci. Remote Sens"},{"key":"ref_12","unstructured":"Kruse, FA (\u2013, January 31). Comparison of ATREM, ACORN and FLAASH atmospheric corrections using low-altitude AVIRIS data of Boulder, CO. Pasadena, CA, USA."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"1286","DOI":"10.1109\/36.628795","article-title":"The MODIS 2.1 \u03bcm channel\u2014correlation with visible reflectance for use in remote sensing of aerosol","volume":"35","author":"Kaufman","year":"1997","journal-title":"IEEE Trans. Geosci. Remote Sens"},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Adler-Golden, SM, Matthew, MW, Berk, A, Fox, MJ, Lee, J, and Ratkowski, AJ (2008, January 7\u201311). Improvements in aerosol retrieval for atmospheric correction. Boston, MA, USA.","DOI":"10.1109\/IGARSS.2008.4779300"},{"key":"ref_15","first-page":"D23","article-title":"Atmospheric correction for the monitoring of land surfaces","volume":"113","author":"Vermote","year":"2009","journal-title":"J. Geophys. Res"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"17051","DOI":"10.1029\/96JD03988","article-title":"Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer","volume":"102","author":"Kaufman","year":"1997","journal-title":"J. Geophys. Res"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"530","DOI":"10.1016\/j.atmosenv.2007.09.050","article-title":"Improving correlations between MODIS aerosol optical thickness and ground-based PM2.5 observations through 3D spatial analyses","volume":"42","author":"Hutchison","year":"2008","journal-title":"Atmos. Env"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"2187","DOI":"10.1016\/j.atmosenv.2007.11.044","article-title":"Evaluation of MODIS aerosol optical thickness over Europe using sun photometer observations","volume":"42","author":"Schaap","year":"2008","journal-title":"Atmos. Env"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"989","DOI":"10.1016\/j.atmosenv.2007.10.017","article-title":"Relationship of visibility, aerosol optical thickness and aerosol size distribution in an ageing air mass over South-West Germany","volume":"42","author":"Baumer","year":"2008","journal-title":"Atmos. Env"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"675","DOI":"10.1109\/TGRS.2005.857915","article-title":"A method for the surface reflectance retrieval from PROBA\/CHRIS data over land: Application to ESA SPARC campaigns","volume":"43","author":"Guanter","year":"2005","journal-title":"IEEE Trans. Geosci. Remote Sens"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"2898","DOI":"10.1016\/j.rse.2008.02.001","article-title":"Coupled retrieval of aerosol optical thickness, columnar water vapor and surface reflectance maps from ENVISAT\/MERIS data over land","volume":"112","author":"Guanter","year":"2008","journal-title":"Remote Sens. Environ"},{"key":"ref_22","unstructured":"Bianchi, R, Cavalli, RM, Fiumi, L, Marino, CM, and Pignatti, S (1996, January 12\u201318). Airborne imaging spectrometry: A new approach to environmental problems. Vienna, Austria."},{"key":"ref_23","first-page":"233","article-title":"Identification of hyperspectral vegetation indices for Mediterranean pasture characterization","volume":"11","author":"Fava","year":"2009","journal-title":"Int. J. Appl. Earth Obs. Geoinf"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1016\/S0034-4257(98)00049-2","article-title":"Hyperspectral imaging and stress mapping in agriculture: A Case study on wheat in beauce (France)","volume":"66","author":"Lelong","year":"1998","journal-title":"Remote Sens. Environ"},{"key":"ref_25","unstructured":"Stanich, CG, and Osterwisch, GF Advanced operational hyperspectral scanners: MIVIS and AHS. Strasbourg, France."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0034-4257(96)00120-4","article-title":"The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400\u20132,500 nm) during a controlled decomposition process","volume":"61","author":"Inbar","year":"1997","journal-title":"Remote Sens. Environ"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"1754","DOI":"10.3390\/s90301754","article-title":"Optimal spectral domain selection for maximizing archaeological signatures: Italy case studies","volume":"9","author":"Cavalli","year":"2009","journal-title":"Sensors"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"2345","DOI":"10.1016\/j.rse.2009.06.013","article-title":"The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forest areas","volume":"113","author":"Dalponte","year":"2009","journal-title":"Remote Sens. Environ"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1093\/comjnl\/7.2.155","article-title":"An efficient method for finding the minimum of a function of several variables without calculating derivates","volume":"7","author":"Powell","year":"1964","journal-title":"Comput. J"},{"key":"ref_30","unstructured":"Press, WH, Flannery, BP, Teukolosky, SA, and Vetterling, WT (1986). Numerical Recipes, Cambridge University Press."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1016\/0034-4257(91)90082-H","article-title":"Determination of vegetation canopy parameters from optical measurements","volume":"37","author":"Kuusk","year":"1991","journal-title":"Remote Sens. Environ"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/0034-4257(94)90160-0","article-title":"Modeling bidirectional radiance measurements collected by the advanced solid-state array spectroradiometer (ASAS) over oregon transect conifer forests","volume":"47","author":"Abuelgasim","year":"1994","journal-title":"Remote Sens. Environ"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/0034-4257(95)00176-X","article-title":"A modified Hapke model for soil bidirectional reflectance","volume":"55","author":"Liang","year":"1996","journal-title":"Remote Sens. Environ"},{"key":"ref_34","unstructured":"(2000). Fieldspec User\u2019s guide, Analytical Spectral Device."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0034-4257(98)00031-5","article-title":"AERONET\u2014A federated instrument network and data archive for aerosol characterization","volume":"66","author":"Holben","year":"1998","journal-title":"Remote Sens. Environ"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"83","DOI":"10.5194\/acp-8-83-2008","article-title":"Weekly periodicities of aerosol optical thickness over Central Europe evidence of an anthropogenic direct aerosol effect","volume":"8","author":"Baumer","year":"2008","journal-title":"Atmos. Chem. Phys"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1016\/j.jqsrt.2009.02.013","article-title":"The HITRAN 2008 molecular spectroscopic database","volume":"110","author":"Rothman","year":"2009","journal-title":"J. Quant. Spectrosc. Radiat. Transfer"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1016\/S0034-4257(00)00109-7","article-title":"Cloud screening and quality control algorithms for the AERONET database","volume":"73","author":"Smirnov","year":"2000","journal-title":"Remote Sens. Environ"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"9791","DOI":"10.1029\/2000JD900040","article-title":"Accuracy assessments of aerosol optical properties retrieved from AERONET sun and sky-radiance measurements","volume":"105","author":"Dubovik","year":"2000","journal-title":"J. Geophys. Res"},{"key":"ref_40","doi-asserted-by":"crossref","unstructured":"Bassani, C, Cavalli, RM, Pignatti, S, and Santini, F (2007, January 17\u201320). Evaluation of adjacency effect for MIVIS airborne images. Florence, Italy.","DOI":"10.1117\/12.739065"}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/10\/7\/6421\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,29]],"date-time":"2024-05-29T22:01:43Z","timestamp":1717020103000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/10\/7\/6421"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2010,6,30]]},"references-count":40,"journal-issue":{"issue":"7","published-online":{"date-parts":[[2010,7]]}},"alternative-id":["s100706421"],"URL":"https:\/\/doi.org\/10.3390\/s100706421","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2010,6,30]]}}}