{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T14:47:49Z","timestamp":1740149269574,"version":"3.37.3"},"reference-count":17,"publisher":"MDPI AG","issue":"1","license":[{"start":{"date-parts":[[2009,12,30]],"date-time":"2009-12-30T00:00:00Z","timestamp":1262131200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/3.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Field inhomogeneities in Magnetic Resonance Imaging (MRI) can cause blur or image distortion as they produce off-resonance frequency at each voxel. These effects can be corrected if an accurate field map is available. Field maps can be estimated starting from the phase of multiple complex MRI data sets. In this paper we present a technique based on statistical estimation in order to reconstruct a field map exploiting two or more scans. The proposed approach implements a Bayesian estimator in conjunction with the Graph Cuts optimization method. The effectiveness of the method has been proven on simulated and real data.<\/jats:p>","DOI":"10.3390\/s100100266","type":"journal-article","created":{"date-parts":[[2009,12,31]],"date-time":"2009-12-31T07:45:58Z","timestamp":1262245558000},"page":"266-279","source":"Crossref","is-referenced-by-count":23,"title":["Field Map Reconstruction in Magnetic Resonance Imaging Using Bayesian Estimation"],"prefix":"10.3390","volume":"10","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-5964-8667","authenticated-orcid":false,"given":"Fabio","family":"Baselice","sequence":"first","affiliation":[{"name":"Dipartimento per le Tecnologie, Universit\u00e0 degli Studi di Napoli Parthenope, Naples, Italy"}]},{"given":"Giampaolo","family":"Ferraioli","sequence":"additional","affiliation":[{"name":"Dipartimento per le Tecnologie, Universit\u00e0 degli Studi di Napoli Parthenope, Naples, Italy"}]},{"given":"Aymen","family":"Shabou","sequence":"additional","affiliation":[{"name":"Institut TELECOM, TELECOM ParisTech, CNRS LTCI, Paris, France"}]}],"member":"1968","published-online":{"date-parts":[[2009,12,30]]},"reference":[{"key":"ref_1","unstructured":"Slichter, P. (1996). Principles of Magnetic Resonance, Springer. [3rd ed]."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"730","DOI":"10.1002\/jmri.20158","article-title":"Robust field map generation using a triple-echo acquisition","volume":"20","author":"Windischberger","year":"2004","journal-title":"J. Mag. Res. Imag"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1002\/mrm.1910390223","article-title":"Correction of off-resonance-related distortion in echo planar imaging using EPI-based field maps","volume":"39","author":"Reber","year":"1998","journal-title":"Magn. Reson. Med"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"1484","DOI":"10.1109\/TMI.2008.923956","article-title":"Regularized field map estimation in MRI","volume":"27","author":"Funai","year":"2008","journal-title":"IEEE Trans. Med. Imaging"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"910","DOI":"10.1002\/mrm.1910340618","article-title":"The rician distribution of noisy MRI data","volume":"34","author":"Gudbjartsson","year":"1995","journal-title":"Magn. Reson. Med"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1109\/42.712125","article-title":"Maximum Likelihood estimation of Rician distribution parameters","volume":"17","author":"Sijbers","year":"1998","journal-title":"IEEE Trans. Med. Imaging"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"R1","DOI":"10.1088\/0266-5611\/14\/4\/001","article-title":"Synthetic aperture radar interferometry","volume":"14","author":"Bamler","year":"1998","journal-title":"Inverse Problems"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"1478","DOI":"10.1109\/TIP.2002.804274","article-title":"Multifrequency InSAR height reconstruction through maximum likelihood estimation of local planes parameters","volume":"11","author":"Pascazio","year":"2002","journal-title":"IEEE Trans. Image Process"},{"key":"ref_9","unstructured":"Kay, S.M. (1993). Fundamentals of Statistical Signal Processing, Estimation Theory, Prentice-Hall."},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Li, S.Z. (2001). Markov Random Field Modeling in Image Analysis, Springer-Verlag.","DOI":"10.1007\/978-4-431-67044-5"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1588","DOI":"10.1109\/TIP.2009.2019302","article-title":"SAR image regularization with fast approximate discrete minimization","volume":"18","author":"Denis","year":"2009","journal-title":"IEEE Trans. Image Process"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/0167-2789(92)90242-F","article-title":"Nonlinear total variation based noise removal algorithms","volume":"60","author":"Rudin","year":"1992","journal-title":"Phys. D"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"721","DOI":"10.1109\/TPAMI.1984.4767596","article-title":"Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images","volume":"6","author":"Geman","year":"1984","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"1333","DOI":"10.1109\/TPAMI.2003.1233908","article-title":"Exact optimization for Markov random fields with convex priors","volume":"25","author":"Ishikawa","year":"2003","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"1222","DOI":"10.1109\/34.969114","article-title":"Fast approximate energy minimization via graph cuts","volume":"23","author":"Boykov","year":"2001","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1002\/mrm.22177","article-title":"Robust water\/fat separation in the presence of large field inhomogeneities using a graph cut algorithm","volume":"63","author":"Hernando","year":"2009","journal-title":"Magn. Reson. Med"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1016\/S0168-9274(01)00179-9","article-title":"The triangle method for finding the corner of the L-curve","volume":"43","author":"Castellanos","year":"2002","journal-title":"Appl. Numer. Math"}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/10\/1\/266\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,29]],"date-time":"2024-05-29T02:47:56Z","timestamp":1716950876000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/10\/1\/266"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2009,12,30]]},"references-count":17,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2010,1]]}},"alternative-id":["s100100266"],"URL":"https:\/\/doi.org\/10.3390\/s100100266","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2009,12,30]]}}}