{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T09:03:57Z","timestamp":1726045437639},"reference-count":57,"publisher":"MDPI AG","issue":"5","license":[{"start":{"date-parts":[[2017,4,29]],"date-time":"2017-04-29T00:00:00Z","timestamp":1493424000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"User Support Programme Space Research","award":["GO\/12-15"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Viewing and illumination geometry has a strong influence on optical measurements of natural surfaces due to their anisotropic reflectance properties. Typically, cameras on-board unmanned aerial vehicles (UAVs) are affected by this because of their relatively large field of view (FOV) and thus large range of viewing angles. In this study, we investigated the magnitude of reflectance anisotropy effects in the 500\u2013900 nm range, captured by a frame camera mounted on a UAV during a standard mapping flight. After orthorectification and georeferencing of the images collected by the camera, we calculated the viewing geometry of all observations of each georeferenced ground pixel, forming a dataset with multi-angular observations. We performed UAV flights on two days during the summer of 2016 over an experimental potato field where different zones in the field received different nitrogen fertilization treatments. These fertilization levels caused variation in potato plant growth and thereby differences in structural properties such as leaf area index (LAI) and canopy cover. We fitted the Rahman\u2013Pinty\u2013Verstraete (RPV) model through the multi-angular observations of each ground pixel to quantify, interpret, and visualize the anisotropy patterns in our study area. The \u0398 parameter of the RPV model, which controls the proportion of forward and backward scattering, showed strong correlation with canopy cover, where in general an increase in canopy cover resulted in a reduction of backward scattering intensity, indicating that reflectance anisotropy contains information on canopy structure. In this paper, we demonstrated that anisotropy data can be extracted from measurements using a frame camera, collected during a typical UAV mapping flight. Future research will focus on how to use the anisotropy signal as a source of information for estimation of physical vegetation properties.<\/jats:p>","DOI":"10.3390\/rs9050417","type":"journal-article","created":{"date-parts":[[2017,5,2]],"date-time":"2017-05-02T15:37:20Z","timestamp":1493739440000},"page":"417","source":"Crossref","is-referenced-by-count":40,"title":["Mapping Reflectance Anisotropy of a Potato Canopy Using Aerial Images Acquired with an Unmanned Aerial Vehicle"],"prefix":"10.3390","volume":"9","author":[{"given":"Peter","family":"Roosjen","sequence":"first","affiliation":[{"name":"Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2029-8820","authenticated-orcid":false,"given":"Juha","family":"Suomalainen","sequence":"additional","affiliation":[{"name":"Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands"},{"name":"Finnish Geospatial Research Institute, National Land Survey of Finland, Geodeetinrinne 1, 02430 Masala, Finland"}]},{"given":"Harm","family":"Bartholomeus","sequence":"additional","affiliation":[{"name":"Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5549-5993","authenticated-orcid":false,"given":"Lammert","family":"Kooistra","sequence":"additional","affiliation":[{"name":"Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0046-082X","authenticated-orcid":false,"given":"Jan","family":"Clevers","sequence":"additional","affiliation":[{"name":"Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands"}]}],"member":"1968","published-online":{"date-parts":[[2017,4,29]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.rse.2006.03.002","article-title":"Reflectance quantities in optical remote sensing-definitions and case studies","volume":"103","author":"Schaepman","year":"2006","journal-title":"Remote Sens. Environ."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"1364","DOI":"10.1364\/AO.22.001364","article-title":"Dynamics of directional reflectance factor distributions for vegetation canopies","volume":"22","author":"Kimes","year":"1983","journal-title":"Appl. Opt."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"222","DOI":"10.1016\/S0034-4257(98)00060-1","article-title":"Physical mechanisms in hyperspectral BRDF data of grass and watercress","volume":"66","author":"Sandmeier","year":"1998","journal-title":"Remote Sens. Environ."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/j.agrformet.2016.11.010","article-title":"Impact of water background on canopy reflectance anisotropy of a paddy rice field from multi-angle measurements","volume":"233","author":"Sun","year":"2017","journal-title":"Agric. For. Meteorol."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"S247","DOI":"10.5589\/m08-042","article-title":"Relationship of MISR RPV parameters and MODIS BRDF shape indicators to surface vegetation patterns in an australian tropical savanna","volume":"34","author":"Hill","year":"2008","journal-title":"Can. J. Remote Sens."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"362","DOI":"10.1016\/j.rse.2006.05.021","article-title":"Application to MISR land products of an RPV model inversion package using adjoint and hessian codes","volume":"107","author":"Lavergne","year":"2007","journal-title":"Remote Sens. Environ."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1007\/s10584-004-3566-3","article-title":"Canopy structure parameters derived from multi-angular remote sensing data for terrestrial carbon studies","volume":"67","author":"Widlowski","year":"2004","journal-title":"Clim. Chang."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1016\/j.rse.2005.07.005","article-title":"Leaf BRDF measurements and model for specular and diffuse components differentiation","volume":"98","author":"Bousquet","year":"2005","journal-title":"Remote Sens. Environ."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"3601","DOI":"10.1109\/TGRS.2006.881755","article-title":"Identifying crop leaf angle distribution based on two-temporal and bidirectional canopy reflectance","volume":"44","author":"Huang","year":"2006","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1080\/01431160902882520","article-title":"Correction of reflectance anisotropy: A multi-sensor approach","volume":"31","author":"Feingersh","year":"2010","journal-title":"Int. J. Remote Sens."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"20455","DOI":"10.1029\/92JD01411","article-title":"A bidirectional reflectance model of the earth\u2019s surface for the correction of remote sensing data","volume":"97","author":"Roujean","year":"1992","journal-title":"J. Geophys. Res."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/S0034-4257(02)00091-3","article-title":"First operational BRDF, albedo nadir reflectance products from modis","volume":"83","author":"Schaaf","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"474","DOI":"10.1016\/j.rse.2005.11.003","article-title":"Improving global scale land cover classifications with multi-directional polder data and a decision tree classifier","volume":"100","author":"Walthall","year":"2006","journal-title":"Remote Sens. Environ."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"2857","DOI":"10.1109\/TGRS.2008.2000741","article-title":"Hyperspectral and multiangle chris-proba images for the generation of land cover maps","volume":"46","author":"Duca","year":"2008","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.rse.2013.12.014","article-title":"Evaluation of semi-empirical BRDF models inverted against multi-angle data from a digital airborne frame camera for enhancing forest type classification","volume":"151","author":"Koukal","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"3463","DOI":"10.1080\/01431160802562230","article-title":"An empirical study on the utility of brdf model parameters and topographic parameters for mapping vegetation in a semi-arid region with misr imagery","volume":"30","author":"Su","year":"2009","journal-title":"Int. J. Remote Sens."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"192","DOI":"10.5589\/m08-024","article-title":"Space-based spectrodirectional measurements for the improved estimation of ecosystem variables","volume":"34","author":"Koetz","year":"2008","journal-title":"Can. J. Remote Sens."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"1730","DOI":"10.1109\/JSTARS.2013.2261474","article-title":"LAI retrieval using PROSAIL model and optimal angle combination of multi-angular data in wheat","volume":"6","author":"Wang","year":"2013","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.rse.2015.12.005","article-title":"A combined glas and modis estimation of the global distribution of mean forest canopy height","volume":"174","author":"Wang","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"447","DOI":"10.1016\/j.rse.2005.05.003","article-title":"Global mapping of foliage clumping index using multi-angular satellite data","volume":"97","author":"Chen","year":"2005","journal-title":"Remote Sens. Environ."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1016\/j.rse.2011.12.008","article-title":"Global clumping index map derived from the modis BRDF product","volume":"119","author":"He","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1846","DOI":"10.3390\/s7091846","article-title":"A compact laboratory spectro-goniometer (CLabSpeG) to assess the BRDF of materials. Presentation, calibration and implementation on Fagus sylvatica L. leaves","volume":"7","author":"Biliouris","year":"2007","journal-title":"Sensors"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"17358","DOI":"10.3390\/s121217358","article-title":"A laboratory goniometer system for measuring reflectance and emittance anisotropy","volume":"12","author":"Roosjen","year":"2012","journal-title":"Sensors"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"036012","DOI":"10.1117\/1.JRS.10.036012","article-title":"Flexible field goniometer system: The goniometer for outdoor portable hyperspectral earth reflectance","volume":"10","author":"Bachmann","year":"2016","journal-title":"J. Appl. Remote Sens."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"244","DOI":"10.5589\/m06-021","article-title":"A low-cost field and laboratory goniometer system for estimating hyperspectral bidirectional reflectance","volume":"32","author":"Coburn","year":"2006","journal-title":"Can. J. Remote Sens."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/0034-4257(86)90038-6","article-title":"A sphere-scanning radiometer for rapid directional measurements of sky and ground radiance","volume":"19","author":"Deering","year":"1986","journal-title":"Remote Sens. Environ."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"5179","DOI":"10.1063\/1.1626011","article-title":"Automated spectro-goniometer: A spherical robot for the field measurement of the directional reflectance of snow","volume":"74","author":"Painter","year":"2003","journal-title":"Rev. Sci. Instrum."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"978","DOI":"10.1109\/36.752216","article-title":"A field goniometer system (FIGOS) for acquisition of hyperspectral BRDF data","volume":"37","author":"Sandmeier","year":"1999","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"3891","DOI":"10.3390\/s90503891","article-title":"Polarised multiangular reflectance measurements using the finnish geodetic institute field goniospectrometer","volume":"9","author":"Suomalainen","year":"2009","journal-title":"Sensors"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"S92","DOI":"10.1016\/j.rse.2007.08.001","article-title":"Progress in field spectroscopy","volume":"113","author":"Milton","year":"2009","journal-title":"Remote Sens. Environ."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1029\/2003JD004458","article-title":"Measurements of the hemispherical-directional reflectance of snow at fine spectral and angular resolution","volume":"109","author":"Painter","year":"2004","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"2294","DOI":"10.1109\/TGRS.2005.855131","article-title":"Measurement of directional and spectral signatures of light reflectance by snow","volume":"43","author":"Peltoniemi","year":"2005","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"1553","DOI":"10.1080\/01431161.2016.1154220","article-title":"Bidirectional reflectance of coral growth-forms","volume":"37","author":"Miller","year":"2016","journal-title":"Int. J. Remote Sens."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"725","DOI":"10.3390\/rs70100725","article-title":"Angular dependency of hyperspectral measurements over wheat characterized by a novel UAV based goniometer","volume":"7","author":"Burkart","year":"2015","journal-title":"Remote Sens."},{"key":"ref_35","first-page":"229","article-title":"UAV based BRDF-measurements of agricultural surfaces with pfiffikus","volume":"38","author":"Niemeyer","year":"2011","journal-title":"Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Roosjen, P.P.J., Suomalainen, J.M., Bartholomeus, H.M., and Clevers, J.G.P.W. (2016). Hyperspectral reflectance anisotropy measurements using a pushbroom spectrometer on an unmanned aerial vehicle-results for barley, winter wheat, and potato. Remote Sens., 8.","DOI":"10.3390\/rs8110909"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"972","DOI":"10.1080\/2150704X.2015.1089362","article-title":"Influence of solar zenith angle on the enhanced vegetation index of a guyanese rainforest","volume":"6","author":"Brede","year":"2015","journal-title":"Remote Sens. Lett."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.isprsjprs.2014.02.013","article-title":"Unmanned aerial systems for photogrammetry and remote sensing: A review","volume":"92","author":"Colomina","year":"2014","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"819","DOI":"10.3390\/rs2030819","article-title":"Acquisition of bidirectional reflectance factor dataset using a micro unmanned aerial vehicle and a consumer camera","volume":"2","author":"Hakala","year":"2010","journal-title":"Remote Sens."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"5440","DOI":"10.1109\/TGRS.2016.2565471","article-title":"Remote sensing of 3-D geometry and surface moisture of a peat production area using hyperspectral frame cameras in visible to short-wave infrared spectral ranges onboard a small unmanned airborne vehicle (UAV)","volume":"54","author":"Honkavaara","year":"2016","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"15467","DOI":"10.3390\/rs71115467","article-title":"Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level","volume":"7","author":"Honkavaara","year":"2015","journal-title":"Remote Sens."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"20791","DOI":"10.1029\/93JD02072","article-title":"Coupled surface-atmosphere reflectance (CSAR) model 2. Semiempirical surface model usable with NOAA advanced very high resolution radiometer data","volume":"98","author":"Rahman","year":"1993","journal-title":"J. Geophys. Res."},{"key":"ref_43","doi-asserted-by":"crossref","unstructured":"Stoorvogel, J.J., Kooistra, L., and Bouma, J. (2015). Managing soil variability at different spatial scales as a basis for precision agriculture. Soil-Specific Farming: Precision Agriculture, CRC Press.","DOI":"10.1201\/b18759-3"},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/0034-4257(89)90076-X","article-title":"Application of a weighted infrared-red vegetation index for estimating leaf area index by correcting for soil moisture","volume":"29","author":"Clevers","year":"1989","journal-title":"Remote Sens. Environ."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"611","DOI":"10.1080\/2150704X.2016.1171925","article-title":"Estimating potato leaf chlorophyll content using ratio vegetation indices","volume":"7","author":"Kooistra","year":"2016","journal-title":"Remote Sens. Lett."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/j.rse.2011.11.026","article-title":"Sentinel-2: Esa\u2019s optical high-resolution mission for gmes operational services","volume":"120","author":"Drusch","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.eja.2015.11.026","article-title":"Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots?","volume":"74","author":"Rasmussen","year":"2016","journal-title":"Eur. J. Agron."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"5006","DOI":"10.3390\/rs5105006","article-title":"Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture","volume":"5","author":"Honkavaara","year":"2013","journal-title":"Remote Sens."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"92","DOI":"10.3390\/rs1020092","article-title":"RPV model parameters based on hyperspectral bidirectional reflectance measurements of Fagus sylvatica L. leaves","volume":"1","author":"Biliouris","year":"2009","journal-title":"Remote Sens."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1016\/j.rse.2015.09.022","article-title":"Effects of soil moisture content on reflectance anisotropy laboratory goniometer measurements and RPV model inversions","volume":"170","author":"Roosjen","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1016\/j.rse.2003.12.006","article-title":"Bidirectional reflectance of earth targets: Evaluation of analytical models using a large set of spaceborne measurements with emphasis on the hot spot","volume":"90","author":"Maignan","year":"2004","journal-title":"Remote Sens. Environ."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3389\/fpls.2015.00542","article-title":"Coping with drought: Stress and adaptive responses in potato and perspectives for improvement","volume":"6","author":"Obidiegwu","year":"2015","journal-title":"Front. Plant Sci."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"1855","DOI":"10.1109\/TGRS.2014.2349946","article-title":"Operational BRDF effects correction for wide-field-of-view optical scanners (BREFCOR)","volume":"53","author":"Schlapfer","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"654","DOI":"10.1016\/j.rse.2014.06.006","article-title":"Green area index from an unmanned aerial system over wheat and rapeseed crops","volume":"152","author":"Verger","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Honkavaara, E., Hakala, T., Nevalainen, O., Viljanen, N., Rosnell, T., Khoramshahi, E., N\u00e4si, R., Oliveira, R., and Tommaselli, A. (2016). Geometric and reflectance signature characterization of complex canopies using hyperspectral stereoscopic images from uav and terrestrial platforms. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Archives.","DOI":"10.5194\/isprsarchives-XLI-B7-77-2016"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"2866","DOI":"10.3390\/rs4092866","article-title":"Mapping vegetation density in a heterogeneous river floodplain ecosystem using pointable CHRIS\/PROBA data","volume":"4","author":"Verrelst","year":"2012","journal-title":"Remote Sens."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"S56","DOI":"10.1016\/j.rse.2008.01.026","article-title":"PROSPECT + SALL models: A review of use for vegetation characterization","volume":"113","author":"Jacquemoud","year":"2009","journal-title":"Remote Sens. Environ."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/9\/5\/417\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,7]],"date-time":"2024-06-07T13:50:02Z","timestamp":1717768202000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/9\/5\/417"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,4,29]]},"references-count":57,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2017,5]]}},"alternative-id":["rs9050417"],"URL":"https:\/\/doi.org\/10.3390\/rs9050417","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2017,4,29]]}}}