{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,2]],"date-time":"2024-08-02T09:52:49Z","timestamp":1722592369035},"reference-count":75,"publisher":"MDPI AG","issue":"12","license":[{"start":{"date-parts":[[2016,12,3]],"date-time":"2016-12-03T00:00:00Z","timestamp":1480723200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Phenology-based multi-index with the random forest (RF) algorithm can be used to overcome the shortcomings of traditional deforestation mapping that involves pixel-based classification, such as ISODATA or decision trees, and single images. The purpose of this study was to investigate methods to identify specific types of deforestation in North Korea, and to increase the accuracy of classification, using phenological characteristics extracted with multi-index and random forest algorithms. The mapping of deforestation area based on RF was carried out by merging phenology-based multi-indices (i.e., normalized difference vegetation index (NDVI), normalized difference water index (NDWI), and normalized difference soil index (NDSI)) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) products and topographical variables. Our results showed overall classification accuracy of 89.38%, with corresponding kappa coefficients of 0.87. In particular, for forest and farm land categories with similar phenological characteristic (e.g., paddy, plateau vegetation, unstocked forest, hillside field), this approach improved the classification accuracy in comparison with pixel-based methods and other classes. The deforestation types were identified by incorporating point data from high-resolution imagery, outcomes of image classification, and slope data. Our study demonstrated that the proposed methodology could be used for deciding on the restoration priority and monitoring the expansion of deforestation areas.<\/jats:p>","DOI":"10.3390\/rs8120997","type":"journal-article","created":{"date-parts":[[2016,12,5]],"date-time":"2016-12-05T15:27:09Z","timestamp":1480951629000},"page":"997","source":"Crossref","is-referenced-by-count":34,"title":["Mapping Deforestation in North Korea Using Phenology-Based Multi-Index and Random Forest"],"prefix":"10.3390","volume":"8","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5355-8361","authenticated-orcid":false,"given":"Yihua","family":"Jin","sequence":"first","affiliation":[{"name":"Interdisciplinary Program in Landscape Architecture, Seoul National University, Seoul 151-743, Korea"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7862-2788","authenticated-orcid":false,"given":"Sunyong","family":"Sung","sequence":"additional","affiliation":[{"name":"Interdisciplinary Program in Landscape Architecture, Seoul National University, Seoul 151-743, Korea"}]},{"given":"Dong","family":"Lee","sequence":"additional","affiliation":[{"name":"Department of Landscape Architecture and Rural System Engineering, Seoul National University, Seoul 151-743, Korea"}]},{"given":"Gregory","family":"Biging","sequence":"additional","affiliation":[{"name":"Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA"}]},{"given":"Seunggyu","family":"Jeong","sequence":"additional","affiliation":[{"name":"Plant Resources Division, National Institute of Biological Resources, Incheon 22689, Korea"}]}],"member":"1968","published-online":{"date-parts":[[2016,12,3]]},"reference":[{"key":"ref_1","unstructured":"Millennium Ecosystem Assessment (MEA) (2005). Ecosystems and Human Well-Being: Scenarios, Millennium Ecosystem Assessment."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1111\/conl.12103","article-title":"Relative contributions of the logging, fiber, oil palm, and mining industries to forest loss in Indonesia","volume":"8","author":"Abood","year":"2015","journal-title":"Conserv. Lett."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1111\/j.1755-263X.2009.00067.x","article-title":"Critical need for new definitions of \u201cforest\u201d and \u201cforest degradation\u201d in global climate change agreements","volume":"2","author":"Sasaki","year":"2009","journal-title":"Conserv. Lett."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1023\/A:1007963324520","article-title":"Rates and patterns of landscape change between 1972 and 1988 in the Changbai Mountain area of China and North Korea","volume":"12","author":"Zheng","year":"1997","journal-title":"Landsc. Ecol."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"s27","DOI":"10.1016\/S0140-6736(02)11809-5","article-title":"Food shortages and nutrition in North Korea","volume":"360","author":"Bhatia","year":"2002","journal-title":"Lancet"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"1295","DOI":"10.1016\/j.biocon.2010.01.024","article-title":"Forest degradation deepens around and within protected areas in East Asia","volume":"143","author":"Tang","year":"2010","journal-title":"Biol. Conserv."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"1458","DOI":"10.1126\/science.1155365","article-title":"Beyond deforestation: Restoring forests and ecosystem services on degraded lands","volume":"320","author":"Chazdon","year":"2008","journal-title":"Science"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1016\/S0034-4257(01)00318-2","article-title":"Detection of forest harvest type using multiple dates of Landsat TM imagery","volume":"80","author":"Wilson","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"ref_9","first-page":"483","article-title":"The utilization of google earth images as reference data for the multitemporal land cover classification with MODIS data of North Korea","volume":"23","author":"Cha","year":"2007","journal-title":"Korean J. Remote Sens."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.isprsjprs.2016.03.008","article-title":"Optical remotely sensed time series data for land cover classification: A review","volume":"116","author":"White","year":"2016","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"5493","DOI":"10.3390\/rs5115493","article-title":"Ten-year landsat classification of deforestation and forest degradation in the Brazilian Amazon","volume":"5","author":"Souza","year":"2013","journal-title":"Remote Sens."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"3440","DOI":"10.1080\/01431161.2014.903435","article-title":"Land-use\/cover classification in a heterogeneous coastal landscape using rapideye imagery: Evaluating the performance of random forest and support vector machines classifiers","volume":"35","author":"Adam","year":"2014","journal-title":"Int. J. Remote Sens."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.geoderma.2008.05.008","article-title":"Soil organic carbon concentrations and stocks on barro colorado island\u2014Digital soil mapping using random forests analysis","volume":"146","author":"Grimm","year":"2008","journal-title":"Geoderma"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1038\/nclimate1354","article-title":"Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps","volume":"2","author":"Baccini","year":"2012","journal-title":"Nat. Clim. Chang."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"2816","DOI":"10.1016\/j.rse.2010.07.001","article-title":"A scalable approach to mapping annual land cover at 250 m using MODIS time series data: A case study in the dry chaco ecoregion of South America","volume":"114","author":"Clark","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"1781","DOI":"10.3390\/rs4061781","article-title":"Exploring the use of MODIS NDVI-based phenology indicators for classifying forest general habitat categories","volume":"4","author":"Clerici","year":"2012","journal-title":"Remote Sens."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1007\/s10661-015-4489-3","article-title":"Land cover mapping based on random forest classification of multitemporal spectral and thermal images","volume":"187","author":"Eisavi","year":"2015","journal-title":"Environ. Monit. Assess."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"2795","DOI":"10.3390\/rs5062795","article-title":"Mapping rubber plantations and natural forests in Xishuangbanna (Southwest China) using multi-spectral phenological metrics from MODIS time series","volume":"5","author":"Senf","year":"2013","journal-title":"Remote Sens."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1659\/MRD-JOURNAL-D-12-00011.1","article-title":"Improving the accuracy of vegetation classifications in mountainous areas","volume":"33","author":"Gartzia","year":"2013","journal-title":"Mt. Res. Dev."},{"key":"ref_20","first-page":"49","article-title":"Classification of alpine vegetation using Landsat thematic mapper SPOT HRV and DEM data","volume":"20","author":"Franklin","year":"1994","journal-title":"Can. J. Remote Sens."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"460","DOI":"10.1016\/S0034-4257(01)00324-8","article-title":"Phenological differences in tasseled cap indices improve deciduous forest classification","volume":"80","author":"Dymond","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"ref_22","first-page":"399","article-title":"Monitoring vegetation phenology using MODIS in Northern Plateau region, North Korea","volume":"25","author":"Cha","year":"2009","journal-title":"Korean J. Remote Sens."},{"key":"ref_23","unstructured":"Schoene, D., Killmann, W., L\u00fcpke, H.v., and LoycheWilkie, M. (2007). Definitional Issues Related to Reducing Emissions from Deforestation in Developing Countries, Food and Agriculture Organization of the United Nations."},{"key":"ref_24","unstructured":"Land-Cover and Land-Use Change Program (LCLUC) Deforestation in North Korea. Available online: http:\/\/lcluc.umd.edu\/hotspot\/deforestation-north-korea."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"20","DOI":"10.5751\/ES-05443-180220","article-title":"An operational framework for defining and monitoring forest degradation","volume":"18","author":"Thompson","year":"2013","journal-title":"Ecol. Soc."},{"key":"ref_26","unstructured":"USGS Earth Explorer, Available online: http:\/\/earthexplorer.usgs.gov\/."},{"key":"ref_27","unstructured":"Jensen, J.R., and Cowen, D.C. (1997). Proceedings Land Satellite Information in the Next Decade II, American Society for Photogrammetry & Remote Sensing."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"307","DOI":"10.2307\/4003734","article-title":"Techniques for computer-assisted mapping of rangeland change","volume":"50","author":"Yool","year":"1997","journal-title":"J. Range Manag."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"833","DOI":"10.1016\/j.cageo.2004.05.006","article-title":"Timesat\u2014A program for analyzing time-series of satellite sensor data","volume":"30","author":"Eklundh","year":"2004","journal-title":"Comput. Geosci."},{"key":"ref_30","unstructured":"Eklundh, L., and J\u00f6nsson, P. (2015). Timesat 3.2 Software Manual, Lund and Malm\u00f6 University."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1585","DOI":"10.1080\/01431169208904212","article-title":"The best index slope extraction (BISE)\u2014A method for reducing noise in NDVI time-series","volume":"13","author":"Viovy","year":"1992","journal-title":"Int. J. Remote Sens."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1016\/0921-8181(91)90092-B","article-title":"Monitoring land ecosystems using the NOAA global vegetation index data set","volume":"90","author":"Gutman","year":"1991","journal-title":"Glob. Planet Chang."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"1417","DOI":"10.1080\/01431168608948945","article-title":"Characteristics of maximum-value composite images from temporal AVHRR data","volume":"7","author":"Holben","year":"1986","journal-title":"Int. J. Remote Sens."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"2269","DOI":"10.1080\/01431169008955174","article-title":"A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery","volume":"11","author":"Lloyd","year":"1990","journal-title":"Int. J. Remote Sens."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"703","DOI":"10.2307\/3235884","article-title":"Measuring phenological variability from satellite imagery","volume":"5","author":"Reed","year":"1994","journal-title":"J. Veg. Sci."},{"key":"ref_36","first-page":"1571","article-title":"A global 1-degrees by 1-degrees NDVI data set for climate studies. 2. The generation of global fields of terrestrial biophysical parameters from the NDVI","volume":"16","author":"Sellers","year":"1995","journal-title":"Int. J. Remote Sens."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"1824","DOI":"10.1109\/TGRS.2002.802519","article-title":"Seasonality extraction by function fitting to time-series of satellite sensor data","volume":"40","author":"Jonsson","year":"2002","journal-title":"IEEE Trans. Geosci. Remote"},{"key":"ref_38","unstructured":"Google Earth. Available online: https:\/\/www.google.com\/earth\/."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"6026","DOI":"10.3390\/rs5116026","article-title":"Exploring the use of google earth imagery and object-based methods in land use\/cover mapping","volume":"5","author":"Hu","year":"2013","journal-title":"Remote Sens."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"769","DOI":"10.1016\/j.patcog.2012.09.005","article-title":"Stratified sampling for feature subspace selection in random forests for high dimensional data","volume":"46","author":"Ye","year":"2013","journal-title":"Pattern Recognit."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"964","DOI":"10.3390\/rs6020964","article-title":"Comparison of classification algorithms and training sample sizes in urban land classification with landsat thematic mapper imagery","volume":"6","author":"Li","year":"2014","journal-title":"Remote Sens."},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Congalton, R.G., and Green, K. (2009). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, CRC Press. [2nd ed.].","DOI":"10.1201\/9781420055139"},{"key":"ref_43","unstructured":"Simonetti, E., Simonetti, D., and Preatoni, D. (2014). Phenology-Based Land Cover Classification Using Landsat 8 Time Series, European Commission Joint Research Center."},{"key":"ref_44","first-page":"7","article-title":"Development of normalized vegetation, soil and water indices derived from satellite remote sensing data","volume":"43","author":"Takeuchi","year":"2004","journal-title":"J. Jpn. Soc. Photogramm. Remote Sens."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.rse.2006.04.014","article-title":"Real-time monitoring and short-term forecasting of land surface phenology","volume":"104","author":"White","year":"2006","journal-title":"Remote Sens. Environ."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"2907","DOI":"10.1080\/014311698214343","article-title":"A statistical study of NDVI sensitivity to seasonal and interannual rainfall variations in Southern Africa","volume":"19","author":"Richard","year":"1998","journal-title":"Int. J. Remote Sens."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"244","DOI":"10.1016\/j.rse.2004.10.006","article-title":"On the relationship of NDVI with leaf area index in a deciduous forest site","volume":"94","author":"Wang","year":"2005","journal-title":"Remote Sens. Environ."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"318","DOI":"10.1080\/2150704X.2015.1137645","article-title":"A simple method for developing near real-time nationwide forest monitoring for Indonesia using MODIS near- and shortwave infrared bands","volume":"7","author":"Setiawan","year":"2016","journal-title":"Remote Sens. Lett."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1016\/S0034-4257(02)00096-2","article-title":"Overview of the radiometric and biophysical performance of the MODIS vegetation indices","volume":"83","author":"Huete","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/S0034-4257(01)00191-2","article-title":"Detecting vegetation leaf water content using reflectance in the optical domain","volume":"77","author":"Ceccato","year":"2001","journal-title":"Remote Sens. Environ."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/0034-4257(80)90096-6","article-title":"Remote sensing of leaf water content in the near infrared","volume":"10","author":"Tucker","year":"1980","journal-title":"Remote Sens. Environ."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"815","DOI":"10.2307\/2845983","article-title":"Global primary production: A remote sensing approach","volume":"22","author":"Prince","year":"1995","journal-title":"J. Biogeogr."},{"key":"ref_53","first-page":"40","article-title":"Rndsi: A ratio normalized difference soil index for remote sensing of urban\/suburban environments","volume":"39","author":"Deng","year":"2015","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_54","unstructured":"Wolf, A. (2010). Using Worldview 2 Vis-NIR MSI Imagery to Support Land Mapping and Feature Extraction Using Normalized Difference Index Ratios, Digital Globe."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1016\/S0034-4257(96)00067-3","article-title":"NDWI\u2014A normalized difference water index for remote sensing of vegetation liquid water from space","volume":"58","author":"Gao","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.ecolind.2013.10.024","article-title":"Satellite-derived vegetation indices contribute significantly to the prediction of epiphyllous liverworts","volume":"38","author":"Jiang","year":"2014","journal-title":"Ecol. Indic."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.rse.2003.07.002","article-title":"Derivation of a shortwave infrared water stress index from MODIS near- and shortwave infrared data in a semiarid environment","volume":"87","author":"Fensholt","year":"2003","journal-title":"Remote Sens. Environ."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/S0034-4257(02)00027-5","article-title":"Estimating fire-related parameters in boreal forest using SPOT vegetation","volume":"82","author":"Fraser","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.isprsjprs.2011.11.002","article-title":"An assessment of the effectiveness of a random forest classifier for land-cover classification","volume":"67","author":"Ghimire","year":"2012","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1080\/01431160412331269698","article-title":"Random forest classifier for remote sensing classification","volume":"26","author":"Pal","year":"2005","journal-title":"Int. J. Remote Sens."},{"key":"ref_62","doi-asserted-by":"crossref","unstructured":"Senf, C., Hostert, P., and van der Linden, S. (2012, January 22\u201327). Using MODIS time series and random forests classification for mapping land use in South-East Asia. Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany.","DOI":"10.1109\/IGARSS.2012.6352560"},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.rse.2013.07.008","article-title":"Estimating deforestation in tropical humid and dry forests in madagascar from 2000 to 2010 using multi-date landsat satellite images and the random forests classifier","volume":"139","author":"Grinand","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_64","unstructured":"R Core Team (2009). R: A Language and Envirionment for Statistical Computing, R Foundation for Statistical Computing."},{"key":"ref_65","first-page":"18","article-title":"Classificatn and regression by randomforest","volume":"2\/3","author":"Liaw","year":"2002","journal-title":"R News"},{"key":"ref_66","unstructured":"Jensen, J.R. (2005). Introductory Digital Image Processing: A Remote Sensing Perspective, Prentice Hall."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"1069","DOI":"10.1080\/01431161.2016.1142685","article-title":"Mapping riparian habitat using a combination ofremote-sensing techniques","volume":"37","author":"Jeong","year":"2016","journal-title":"Int. J. Remote Sens."},{"key":"ref_68","unstructured":"Boo, K., Kim, U., Kim, J., Kim, C., Soo, I., Park, G., Park, G., Park, S., Sohn, H., and Yu, B. (2001). Agriculture in North Korea: The Real State and Development Direction, SNU Press. [1st ed.]."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"585","DOI":"10.1080\/01431160902894442","article-title":"Discriminating different landuse types by using multitemporal NDXI in a rice planting area","volume":"31","author":"Pan","year":"2010","journal-title":"Int. J. Remote Sens."},{"key":"ref_70","doi-asserted-by":"crossref","unstructured":"Richardson, A.D., and O\u2019Keefe, J. (2009). Phenological differences between understory and overstory. Phenol. Ecosyst. Process., 87\u2013117.","DOI":"10.1007\/978-1-4419-0026-5_4"},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"2661","DOI":"10.3390\/rs4092661","article-title":"Tree species classification with random forest using very high spatial resolution 8-band Worldview-2 satellite data","volume":"4","author":"Immitzer","year":"2012","journal-title":"Remote Sens."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"7339","DOI":"10.3390\/rs6087339","article-title":"Urban built-up area extraction from landsat TM\/ETM+ images using spectral information and multivariate texture","volume":"6","author":"Zhang","year":"2014","journal-title":"Remote Sens."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/j.rse.2011.11.020","article-title":"A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery","volume":"118","author":"Duro","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"823","DOI":"10.1080\/01431160600746456","article-title":"A survey of image classification methods and techniques for improving classification performance","volume":"28","author":"Lu","year":"2007","journal-title":"Int. J. Remote Sens."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"73","DOI":"10.13087\/kosert.2016.19.1.73","article-title":"Terrace fields classification in North Korea using MODIS multi-temporal image data","volume":"19","author":"Jeong","year":"2016","journal-title":"J. Korea Soc. Environ. Restor. Technol."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/8\/12\/997\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,6]],"date-time":"2024-06-06T14:10:07Z","timestamp":1717683007000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/8\/12\/997"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,12,3]]},"references-count":75,"journal-issue":{"issue":"12","published-online":{"date-parts":[[2016,12]]}},"alternative-id":["rs8120997"],"URL":"https:\/\/doi.org\/10.3390\/rs8120997","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2016,12,3]]}}}