{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:11:06Z","timestamp":1732036266501},"reference-count":73,"publisher":"MDPI AG","issue":"9","license":[{"start":{"date-parts":[[2016,9,15]],"date-time":"2016-09-15T00:00:00Z","timestamp":1473897600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"We developed a method to enhance compositional mapping from spectral remote sensing through the integration of visible to near infrared (VNIR, ~0.4\u20131 \u00b5m), shortwave infrared (SWIR, ~1\u20132.5 \u00b5m), and longwave infrared (LWIR, ~8\u201313 \u00b5m) data. Spectral information from the individual ranges was first analyzed independently and then the resulting compositional information in the form of image endmembers and apparent abundances was integrated using ISODATA cluster analysis. Independent VNIR, SWIR, and LWIR analyses of a study area near Mountain Pass, California identified image endmembers representing vegetation, manmade materials (e.g., metal, plastic), specific minerals (e.g., calcite, dolomite, hematite, muscovite, gypsum), and general lithology (e.g., sulfate-bearing, carbonate-bearing, and silica-rich units). Integration of these endmembers and their abundances produced a final full-range classification map incorporating much of the variation from all three spectral ranges. The integrated map and its 54 classes provide additional compositional information that is not evident in the VNIR, SWIR, or LWIR data alone, which allows for more complete and accurate compositional mapping. A supplemental examination of hyperspectral LWIR data and comparison with the multispectral LWIR data used in the integration illustrates its potential to further improve this approach.<\/jats:p>","DOI":"10.3390\/rs8090757","type":"journal-article","created":{"date-parts":[[2016,9,15]],"date-time":"2016-09-15T14:22:51Z","timestamp":1473949371000},"page":"757","source":"Crossref","is-referenced-by-count":10,"title":["Enhanced Compositional Mapping through Integrated Full-Range Spectral Analysis"],"prefix":"10.3390","volume":"8","author":[{"given":"Meryl","family":"McDowell","sequence":"first","affiliation":[{"name":"Science Applications International Corporation (SAIC), 12010 Sunset Hills Rd., Reston, VA 20190, USA"},{"name":"Remote Sensing Center, Naval Postgraduate School, 833 Dyer Rd., Monterey, CA 93943, USA"}]},{"given":"Fred","family":"Kruse","sequence":"additional","affiliation":[{"name":"Remote Sensing Center, Naval Postgraduate School, 833 Dyer Rd., Monterey, CA 93943, USA"},{"name":"Physics Department, Naval Postgraduate School, 833 Dyer Rd., Monterey, CA 93943, USA"}]}],"member":"1968","published-online":{"date-parts":[[2016,9,15]]},"reference":[{"key":"ref_1","first-page":"79","article-title":"Hyperspectral Image Processing for Automatic Target Detection Applications","volume":"14","author":"Manolakis","year":"2003","journal-title":"Linc. Lab. J."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1093\/jpe\/rtm005","article-title":"Remote sensing imagery in vegetation mapping: A review","volume":"1","author":"Xie","year":"2008","journal-title":"J. Plant Ecol."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.geoderma.2010.12.018","article-title":"The use of remote sensing in soil and terrain mapping\u2014A review","volume":"162","author":"Mulder","year":"2011","journal-title":"Geoderma"},{"key":"ref_4","first-page":"112","article-title":"Multi- and hyperspectral geologic remote sensing: A review","volume":"14","author":"Hecker","year":"2012","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1111\/gec3.12017","article-title":"Hyperspectral Remote Sensing of Urban Areas","volume":"7","author":"Hardin","year":"2013","journal-title":"Geogr. Compass"},{"key":"ref_6","unstructured":"Cudahy, T.J., Wilson, J., Hewson, R., Linton, P., Harris, P., Sears, M., Okada, K., and Hackwell, J.A. (2001, January 9\u201313). Mapping porphyry-skarn alteration at Yerington, Nevada, using airborne hyperspectral VNIR-SWIR-TIR imaging data. Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, Australia."},{"key":"ref_7","unstructured":"Kruse, F.A. (2002, January 24\u201328). Combined SWIR and LWIR Mineral Mapping Using MASTER\/ASTER. Proceedings IEEE 2002 International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"350","DOI":"10.1016\/S0034-4257(02)00127-X","article-title":"Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data","volume":"84","author":"Rowan","year":"2003","journal-title":"Remote Sens. Environ."},{"key":"ref_9","unstructured":"Vaughan, R.G., and Calvin, W.M. (2004, January 20\u201324). Synthesis of High-Spatial Resolution Hyperspectral VNIR\/SWIR and TIR Image Data for Mapping Weathering and Alteration Minerals in Virginia City, Nevada. Proceedings of the IEEE 2004 International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"7005","DOI":"10.3390\/rs6087005","article-title":"Mineral Classification of Land Surface Using Multispectral LWIR and Hyperspectral SWIR Remote-Sensing Data. A Case Study over the Sokolov Lignite Open-Pit Mines, the Czech Republic","volume":"6","author":"Notesco","year":"2014","journal-title":"Remote Sens."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1117\/12.478742","article-title":"Analysis of VIS-LWIR hyperspectral image data for detailed geologic mapping","volume":"4725","author":"Bowers","year":"2002","journal-title":"Proc. SPIE"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1029\/2004JE002355","article-title":"Joint analysis of ISM and TES spectra: The utility of multiple wavelength regimes for Martian surface studies","volume":"110","author":"Mustard","year":"2005","journal-title":"J. Geophys. Res. E Planets"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/j.epsl.2014.08.006","article-title":"The dominance of cold and dry alteration processes on recent Mars, as revealed through pan-spectral orbital analyses","volume":"404","author":"Salvatore","year":"2014","journal-title":"Earth Planet. Sci. Lett."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.icarus.2014.11.034","article-title":"Integrating CRISM and TES hyperspectral data to characterize a halloysite-bearing deposit in Kashira crater, Mars","volume":"250","author":"Goudge","year":"2015","journal-title":"Icarus"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"1516","DOI":"10.1002\/2013JE004476","article-title":"Global assessment of pure crystalline plagioclase across the Moon and implications for the evolution of the primary crust","volume":"119","author":"Cheek","year":"2014","journal-title":"J. Geophys. Res. Planets"},{"key":"ref_16","first-page":"741","article-title":"Efficiency of Landsat ETM+ Thermal Band for Land Cover Classification of the Biosphere Reserve \u201cEastern Carpathians\u201d (Central Europe) Using SMAP and ML Algorithms","volume":"4","author":"Ehsani","year":"2010","journal-title":"Int. J. Environ. Res."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"475","DOI":"10.1029\/90JB01392","article-title":"Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows","volume":"96","author":"Abrams","year":"1991","journal-title":"J. Geophys. Res."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1017\/S0954102013000254","article-title":"Characterization of spectral and geochemical variability within the Ferrar Dolerite of the McMurdo Dry Valleys, Antarctica: Weathering, alteration, and magmatic processes","volume":"26","author":"Salvatore","year":"2014","journal-title":"Antarct. Sci."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"318","DOI":"10.3390\/rs8040318","article-title":"Integration of Hyperspectral Shortwave and Longwave Infrared Remote-Sensing Data for Mineral Mapping of Makhtesh Ramon in Israel","volume":"8","author":"Notesco","year":"2016","journal-title":"Remote Sens."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"344","DOI":"10.1016\/j.rse.2007.03.015","article-title":"Integrating visible, near-infrared and short-wave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada","volume":"110","author":"Chen","year":"2007","journal-title":"Remote Sens. Environ."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"2155","DOI":"10.1080\/01431160802549286","article-title":"Does single broadband or multispectral thermal data add information for classification of visible, near- and shortwave infrared imagery of urban areas?","volume":"30","author":"Warner","year":"2009","journal-title":"Int. J. Remote Sens."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1733","DOI":"10.1080\/01431160902926616","article-title":"Integrating visible, near-infrared and short-wave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada: A rule-based system","volume":"31","author":"Chen","year":"2010","journal-title":"Int. J. Remote Sens."},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Kruse, F.A. (2015). Integrated visible and near-infrared, shortwave infrared, and longwave infrared full-range hyperspectral data analysis for geologic mapping. J. Appl. Remote Sens., 9.","DOI":"10.1117\/1.JRS.9.096005"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"771","DOI":"10.1016\/j.rse.2012.06.028","article-title":"Synergy of VSWIR (0.4\u20132.5 \u03bcm) and MTIR (3.5\u201312.5 \u03bcm) data for post-fire assessments","volume":"124","author":"Veraverbeke","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Cone, S.R., Kruse, F.A., and McDowell, M.L. (2015). Exploration of integrated visible to near-, shortwave-, and longwave-infrared (full range) hyperspectral data analysis. Proc. SPIE, 9472.","DOI":"10.1117\/12.2086670"},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"McDowell, M.L., and Kruse, F.A. (2015). Integrated visible to near infrared, short wave infrared, and long wave infrared spectral analysis for surface composition mapping near Mountain Pass, California. Proc. SPIE, 9472.","DOI":"10.1117\/12.2176871"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"4138","DOI":"10.1109\/TGRS.2011.2161585","article-title":"Analysis of Imaging Spectrometer Data Using N-Dimensional Geometry and a Mixture-Tuned Matched Filtering Approach","volume":"49","author":"Boardman","year":"2011","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1016\/j.rse.2005.04.030","article-title":"Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images","volume":"99","author":"Vaughan","year":"2005","journal-title":"Remote Sens. Environ."},{"key":"ref_29","doi-asserted-by":"crossref","unstructured":"Schmidt, K.M., and McMackin, M. (2006). Preliminary Surficial Geologic Map of the Mesquite Lake 30\u2032 \u00d7 60\u2032 Quadrangle, California and Nevada.","DOI":"10.3133\/ofr20061035"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"2011","DOI":"10.1016\/j.rse.2010.04.008","article-title":"Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals","volume":"114","author":"Mars","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"ref_31","unstructured":"(2007). Geology and Mineral Resources of the East Mojave National Scenic Area, San Bernardino County, California."},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Hewett, D.F. (1956). Geology and Mineral Resources of the Ivanpah Quadrangle California and Nevada.","DOI":"10.3133\/pp275"},{"key":"ref_33","doi-asserted-by":"crossref","unstructured":"Olson, J.C., Shawe, D.R., Pray, L.C., and Sharp, W.N. (1954). Rare-Earth Mineral Deposits of the Mountain Pass District San Bernardino County California.","DOI":"10.1126\/science.119.3088.325"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"779","DOI":"10.3749\/canmin.46.4.779","article-title":"The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California","volume":"46","author":"Castor","year":"2008","journal-title":"Can. Mineral."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1016\/S0034-4257(98)00064-9","article-title":"Imaging spectroscopy and the Airborne Visible\/Infrared Imaging Spectrometer (AVIRIS)","volume":"65","author":"Green","year":"1998","journal-title":"Remote Sens. Environ."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/S0034-4257(00)00195-4","article-title":"The MODIS\/ASTER airborne simulator (MASTER)\u2014A new instrument for earth science studies","volume":"76","author":"Hook","year":"2001","journal-title":"Remote Sens. Environ."},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Hall, J.L., Boucher, R.H., Gutierrez, D.J., Hansel, S.J., Kasper, B.P., Keim, E.R., Moreno, N.M., Polak, M.L., Sivjee, M.G., and Tratt, D.M. (2011). First flights of a new airborne thermal infrared imaging spectrometer with high area coverage. Proc. SPIE, 8012.","DOI":"10.1117\/12.884865"},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Warren, D.W., Boucher, R.H., Gutierrez, D.J., Keim, E.R., and Sivjee, M.G. (2010). MAKO: A high-performance, airborne imaging spectrometer for the long-wave infrared. Proc. SPIE, 7812.","DOI":"10.1117\/12.861374"},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Matthew, M.W., Adler-Golden, S.M., Berk, A., Felde, G.W., Anderson, G.P., Gorodetzky, D., Paswaters, S.E., and Shippert, M. (2003). Atmospheric correction of spectral imagery: Evaluation of the FLAASH algorithm with AVIRIS data. Proc. SPIE, 5093.","DOI":"10.1117\/12.499604"},{"key":"ref_40","first-page":"29","article-title":"Compensation of Hyperspectral Data for Atmospheric Effects","volume":"14","author":"Griffin","year":"2003","journal-title":"Linc. Lab. J."},{"key":"ref_41","doi-asserted-by":"crossref","unstructured":"Perkins, T., Adler-Golden, S., Matthew, M., Berk, A., Anderson, G., Gardner, J., and Felde, G. (2005). Retrieval of atmospheric properties from hyper- and multi-spectral imagery with the FLAASH atmospheric correction algorithm. Proc. SPIE, 5979.","DOI":"10.1117\/12.626526"},{"key":"ref_42","unstructured":"Boardman, J.W. (1997, January 17\u201319). Mineralogic and geochemical mapping at Virginia City, Nevada using 1995 AVIRIS data. Proceedings of the Twelfth Thematic Conference on Geologic Remote Sensing, Denver, CO, USA."},{"key":"ref_43","unstructured":"Boardman, J.W. (1998, January 12\u201316). Post-ATREM Polishing of AVIRIS Apparent Reflectance Data using EFFORT: A Lesson in Accuracy versus Precision. Proceedings of the Summaries of the Seventh JPL Airborne Earth Science Workshop, Pasadena, CA, USA."},{"key":"ref_44","unstructured":"Roberts, D.A., Yamaguchi, Y., and Lyon, R.J.P. (1985, January 21). Calibration of Airborne Imaging Spectrometer data to precent reflectance using field spectral measurements. Proceedings of the 19th International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"2653","DOI":"10.1080\/014311699211994","article-title":"The use of the empirical line method to calibrate remotely sensed data to reflectance","volume":"20","author":"Smith","year":"1999","journal-title":"Int. J. Remote Sens."},{"key":"ref_46","first-page":"4774","article-title":"An in-scene method for atmospheric compensation of thermal hyperspectral data","volume":"107","author":"Young","year":"2002","journal-title":"J. Geophys. Res."},{"key":"ref_47","doi-asserted-by":"crossref","unstructured":"DiStasio, R.J., and Resmini, R.G. (2010). Atmospheric Compensation of Thermal Infrared Hyperspectral Imagery with the Emissive Empirical Line Method and the In-Scene Atmospheric Compensation Algorithms: A Comparison. Proc. SPIE, 7695.","DOI":"10.1117\/12.849898"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"1113","DOI":"10.1109\/36.700995","article-title":"A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images","volume":"36","author":"Gillespie","year":"1998","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_49","doi-asserted-by":"crossref","unstructured":"Adler-Golden, S.M., Conforti, P., Gagnon, M., Tremblay, P., and Chamberland, M. (2014). Long-wave infrared surface reflectance spectra retrieved from Telops Hyper-Cam imagery. Proc. SPIE, 9088.","DOI":"10.1117\/12.2050446"},{"key":"ref_50","first-page":"55","article-title":"A Survey of Spectral Unmixing Algorithms","volume":"14","author":"Keshava","year":"2003","journal-title":"Linc. Lab. J."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"4103","DOI":"10.1109\/TGRS.2011.2167193","article-title":"Foreword to the Special Issue on Spectral Unmixing of Remotely Sensed Data","volume":"49","author":"Plaza","year":"2011","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1109\/36.3001","article-title":"A transformation for ordering multispectral data in terms of image quality with implications for noise removal","volume":"26","author":"Green","year":"1988","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_53","unstructured":"Boardman, J.W., Kruse, F.A., and Green, R.O. (1995, January 23\u201326). Mapping target signatures via partial unmixing of AVIRIS data. Proceedings of the Summaries of the 5th Annunal JPL Airborne Earth Science Workshop, Pasadena, CA, USA."},{"key":"ref_54","unstructured":"Boardman, J.W. (1993, January 25\u201329). Automated spectral unmixing of AVIRIS data using convex geometery concepts. Proceedings of the Summaries of the 4th JPL Airborne Geoscience Workshop, Washington, DC, USA."},{"key":"ref_55","unstructured":"Boardman, J.W. (1998, January 12\u201316). Leveraging the high dimensionality of AVIRIS data for improved sub-pixel target unmixing and rejection of false positives: mixture tuned matched filtering. Proceedings of the Summaries of the 7th JPL Airborne Earth Science Workshop, Pasadena, CA, USA."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"1021","DOI":"10.1109\/LGRS.2012.2227932","article-title":"A case study of spectral signature detection in multimodal and outlier-contaminated scenes","volume":"10","author":"Thompson","year":"2013","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_57","doi-asserted-by":"crossref","unstructured":"Kruse, F.A., Baugh, W.M., and Perry, S.L. (2015). Validation of DigitalGlobe WorldView-3 Earth imaging satellite shortwave infrared bands for mineral mapping. J. Appl. Remote Sens., 9.","DOI":"10.1117\/1.JRS.9.096044"},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1109\/TAES.1987.313335","article-title":"A Detection Algorithm for Optical Targets in Clutter","volume":"1","author":"Chen","year":"1987","journal-title":"IEEE Trans. Aerosp. Electron. Syst."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"1016","DOI":"10.1109\/PROC.1963.2383","article-title":"An Analysis of the Factors which Determine Signal\/Noise Discrimination in Pulsed-Carrier Systems","volume":"51","author":"North","year":"1963","journal-title":"Proc. IEEE"},{"key":"ref_60","unstructured":"Tou, J.T., and Gonzalez, R.C. (1974). Pattern Recognition Principles, Addison-Wesley Publishing Company."},{"key":"ref_61","doi-asserted-by":"crossref","unstructured":"Clark, R.N., Swayze, G.A., Wise, R., Livo, E., Hoefen, T., Kokaly, R., and Sutley, S.J. (2007). USGS Digital Spectral Library Splib06a.","DOI":"10.3133\/ds231"},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"711","DOI":"10.1016\/j.rse.2008.11.007","article-title":"The ASTER spectral library version 2.0","volume":"113","author":"Baldridge","year":"2009","journal-title":"Remote Sens. Environ."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"1335","DOI":"10.2138\/am.2014.4674","article-title":"Visible and short-wave infrared reflectance spectroscopy of REE fluorocarbonates","volume":"99","author":"Turner","year":"2014","journal-title":"Am. Mineral."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"12653","DOI":"10.1029\/JB095iB08p12653","article-title":"High spectral resolution reflectance spectroscopy of minerals","volume":"95","author":"Clark","year":"1990","journal-title":"J. Geophys. Res."},{"key":"ref_65","unstructured":"Rencz, A.N. (1999). Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences, John Wiley and Sons."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"621","DOI":"10.1130\/0091-7613(1994)022<0621:NISOMT>2.3.CO;2","article-title":"Near infrared spectra of muscovite, Tschemak substitution, and metamorphic reaction progress: Implications for remote sensing","volume":"22","author":"Duke","year":"1994","journal-title":"Geology"},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"393","DOI":"10.1016\/j.rse.2007.01.008","article-title":"Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0\u201314.0 \u03bcm)","volume":"109","author":"Crowley","year":"2007","journal-title":"Remote Sens. Environ."},{"key":"ref_68","doi-asserted-by":"crossref","unstructured":"Kohonen, T. (2001). Self-Organizing Maps, Springer.","DOI":"10.1007\/978-3-642-56927-2"},{"key":"ref_69","doi-asserted-by":"crossref","unstructured":"Mwasiagi, J.I. (2011). Self Organizing Maps\u2014Applications and Novel Algorithm Design, InTech.","DOI":"10.5772\/566"},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"2347","DOI":"10.1002\/2015JC011493","article-title":"Patterns of the loop current system and regions of sea surface height variability in the eastern Gulf of Mexico revealed by the self-organizing maps","volume":"121","author":"Liu","year":"2016","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_71","first-page":"199","article-title":"An unsupervised artificial neural network method for satellite image segmentation","volume":"7","author":"Awad","year":"2010","journal-title":"Int. Arab J. Inf. Technol."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"3894","DOI":"10.1109\/TGRS.2007.909205","article-title":"A time-efficient method for anomaly detection in hyperspectral images","volume":"45","author":"Duran","year":"2007","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_73","doi-asserted-by":"crossref","unstructured":"Mer\u00e9nyi, E., Csatho, B., and Tasdemir, K. (2007, January 11\u201313). Knowledge discovery in urban environments from fused multi-dimentional imagery. Proceedings of the 4th IEEE GRSS\/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, Paris, France.","DOI":"10.1109\/URS.2007.371860"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/8\/9\/757\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,6]],"date-time":"2024-06-06T03:49:07Z","timestamp":1717645747000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/8\/9\/757"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,9,15]]},"references-count":73,"journal-issue":{"issue":"9","published-online":{"date-parts":[[2016,9]]}},"alternative-id":["rs8090757"],"URL":"https:\/\/doi.org\/10.3390\/rs8090757","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2016,9,15]]}}}