{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,1,15]],"date-time":"2025-01-15T13:45:06Z","timestamp":1736948706845,"version":"3.33.0"},"reference-count":66,"publisher":"MDPI AG","issue":"5","license":[{"start":{"date-parts":[[2016,5,23]],"date-time":"2016-05-23T00:00:00Z","timestamp":1463961600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["41474017","41274035"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"National Key Basic Research Program of China","award":["2012CB957703"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Mascon modeling is used in this paper to produce the mass flux solutions in the Tibetan Plateau. In the mascon modeling, the pseudo observations and their covariance matrices are derived from the GRACE monthly gravity field models. The sampling density of the pseudo observations is determined based on the eigenvalues of the covariance matrices. In the Tibetan Plateau, the sampling density of per 1.5\u00b0 is the most appropriate among all choices. The mass flux variations from 2003 to 2014 are presented in this paper, which show large mass loss (about \u221215.5 Gt\/year) in Tianshan, North India, and Eastern Himalaya, as well as strong positive signals (about 9 Gt\/year) in the Inner Tibetan Plateau. After the glacier isostatic adjustment effects from Pau-5-AUT model are removed, the mass change rates in the Tibetan Plateau derived from CSR RL05, JPL RL05, GFZ RL05a, and Tongji-GRACE02 monthly models are \u22126.41 \u00b1 4.74 Gt\/year, \u22125.87 \u00b1 4.88 Gt\/year, \u22126.08 \u00b1 4.65 Gt\/year, and \u221211.50 \u00b1 4.79 Gt\/year, respectively, which indicate slight mass loss in this area. Our results confirm that mascon modeling is efficient in the recovery of time-variable gravity signals in the Tibetan Plateau.<\/jats:p>","DOI":"10.3390\/rs8050439","type":"journal-article","created":{"date-parts":[[2016,5,24]],"date-time":"2016-05-24T13:05:05Z","timestamp":1464095105000},"page":"439","source":"Crossref","is-referenced-by-count":0,"title":["Mass Flux Solution in the Tibetan Plateau Using Mascon Modeling"],"prefix":"10.3390","volume":"8","author":[{"given":"Tianyi","family":"Chen","sequence":"first","affiliation":[{"name":"College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China"}]},{"given":"Yunzhong","family":"Shen","sequence":"additional","affiliation":[{"name":"College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China"}]},{"given":"Qiujie","family":"Chen","sequence":"additional","affiliation":[{"name":"College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China"},{"name":"Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Hong Kong 999077, China"}]}],"member":"1968","published-online":{"date-parts":[[2016,5,23]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Tapley, B.D., Bettadpur, S., Watkins, M., and Reigber, C. (2004). The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett., 31.","DOI":"10.1029\/2004GL019920"},{"key":"ref_2","unstructured":"Jekeli, C. (1981). Alternative Methods to Smooth the Earth\u2019s Gravity Field, Ohio Ohio State University. Report 327 of Geodetic Science and Surveying."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"30205","DOI":"10.1029\/98JB02844","article-title":"Time variability of the earth\u2019s gravity field: Hydrological and oceanic effects and their possible detection using GRACE","volume":"103","author":"Wahr","year":"1998","journal-title":"J. Geophys. Res."},{"key":"ref_4","doi-asserted-by":"crossref","unstructured":"Zhang, Z.Z., Chao, B.F., Lu, Y., and Hsu, H.T. (2009). An effective filtering for GRACE time-variable gravity: Fan filter. Geophys. Res. Lett., 36.","DOI":"10.1029\/2009GL039459"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1007\/s11430-011-4275-1","article-title":"Trend of mass change in the Antarctic ice sheet recovered from the GRACE temporal gravity field","volume":"55","author":"Luo","year":"2011","journal-title":"Sci. China Earth Sci."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"499","DOI":"10.1007\/s11200-006-0031-y","article-title":"Wiener optimal filtering of GRACE data","volume":"50","author":"Sasgen","year":"2006","journal-title":"Stud. Geophys. Geod."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"680","DOI":"10.1126\/science.161.3842.680","article-title":"Mascons: Lunar mass concentrations","volume":"161","author":"Muller","year":"1968","journal-title":"Science"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"1483","DOI":"10.1029\/JB075i008p01483","article-title":"A simple layer model of the geopotential from a combination of satellite and gravity data","volume":"75","author":"Koch","year":"1970","journal-title":"J. Geophys. Res."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"8471","DOI":"10.1029\/JB076i035p08471","article-title":"Earth\u2019s gravity field represented by a simple-layer potential from Doppler tracking of satellites","volume":"76","author":"Koch","year":"1971","journal-title":"J. Geophys. Res."},{"key":"ref_10","first-page":"107","article-title":"Simple layer model of the geopotential in satellite geodesy","volume":"Volume 15","author":"Henriksen","year":"1972","journal-title":"The Use of Artificial Satellites for Geodesy"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"6220","DOI":"10.1029\/JB076i026p06220","article-title":"A surface-layer representation of the lunar gravitational field","volume":"76","author":"Wong","year":"1971","journal-title":"J. Geophys. Res."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"4933","DOI":"10.1029\/JB081i026p04933","article-title":"Algorithms for computing the geopotential using a simple density layer","volume":"81","author":"Morrison","year":"1976","journal-title":"J. Geophys. Res."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"1568","DOI":"10.2514\/1.54533","article-title":"Global point mascon models for simple, accurate, and parallel geopotential computation","volume":"35","author":"Russell","year":"2012","journal-title":"J. Guid. Control Dyn."},{"key":"ref_14","unstructured":"Forsberg, R., and Reeh, N. (September, January 28). Mass change of the Greenland ice sheet from GRACE. Proceedings of the 1st Meeting of the International Gravity Field Service, Istanbul, Turkey."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1007\/s00190-011-0463-1","article-title":"Assessing Greenland ice mass loss by means of point-mass modeling: A viable methodology","volume":"85","author":"Baur","year":"2011","journal-title":"J. Geod."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"2648","DOI":"10.1002\/2014JB011547","article-title":"Improved methods for observing earth\u2019s time variable mass distribution with GRACE using spherical cap mascons","volume":"120","author":"Watkins","year":"2015","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"1286","DOI":"10.1126\/science.1130776","article-title":"Recent Greenland ice mass loss by drainage system from satellite gravity observations","volume":"314","author":"Luthcke","year":"2006","journal-title":"Science"},{"key":"ref_18","doi-asserted-by":"crossref","unstructured":"Luthcke, S.B., Rowlands, D.D., Lemoine, F.G., Klosko, S.M., Chinn, D., and McCarthy, J.J. (2006). Monthly spherical harmonic gravity field solutions determined from GRACE inter-satellite range-rate data alone. Geophys. Res. Lett., 33.","DOI":"10.1029\/2005GL024846"},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Rowlands, D.D., Luthcke, S.B., McCarthy, J.J., Klosko, S.M., Chinn, D.S., Lemoine, F.G., Boy, J.P., and Sabaka, T.J. (2010). Global mass flux solutions from GRACE: A comparison of parameter estimation strategies\u2014Mass concentrations versus Stokes coefficients. J. Geophys. Res., 115.","DOI":"10.1029\/2009JB006546"},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Sabaka, T.J., Rowlands, D.D., Luthcke, S.B., and Boy, J.P. (2010). Improving global mass flux solutions from gravity recovery and climate experiment (GRACE) through forward modeling and continuous time correlation. J. Geophys. Res., 115.","DOI":"10.1029\/2010JB007533"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"613","DOI":"10.3189\/2013JoG12J147","article-title":"Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution","volume":"59","author":"Luthcke","year":"2013","journal-title":"J. Glaciol."},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Rowlands, D.D., Luthcke, S.B., Klosko, S.M., Lemoine, F.G.R., Chinn, D.S., McCarthy, J.J., Cox, C.M., and Anderson, O.B. (2005). Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys. Res. Lett., 32.","DOI":"10.1029\/2004GL021908"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"393","DOI":"10.1038\/454393a","article-title":"China: The third pole","volume":"454","author":"Qiu","year":"2008","journal-title":"Nature"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"29","DOI":"10.5194\/adgeo-27-29-2010","article-title":"Hydrological system analysis and modelling of the Nam Co basin in Tibet","volume":"27","author":"Krause","year":"2010","journal-title":"Adv. Geosci."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/j.rse.2013.03.013","article-title":"Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data","volume":"135","author":"Song","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"2504","DOI":"10.1002\/2013JB010860","article-title":"Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models","volume":"119","author":"Yi","year":"2014","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"514","DOI":"10.1038\/nature10847","article-title":"Recent contributions of glaciers and ice caps to sea level rise","volume":"482","author":"Jacob","year":"2012","journal-title":"Nature"},{"key":"ref_28","unstructured":"International Centre for Global Earth Models. Available online: http:\/\/icgem.gfz-potsdam.de\/ICGEM\/."},{"key":"ref_29","unstructured":"Bettadpur, S. (2012). Gravity Recovery and Climate Experiment UTCSR Level-2 Processing Standards Document for Level-2 Product Release 0005, Center for Space Research, University of Texas at Austin."},{"key":"ref_30","unstructured":"Watkins, M.M., and Yuan, D.-N. (2012). JPL Level-2 Processing Standards Document for Level-2 Product Release 05, Jet Propulsion Laboratory. GRACE 327-741, Rev. 4.0."},{"key":"ref_31","unstructured":"Dahle, C., Flechtner, F., Gruber, C., K\u00f6nig, D., K\u00f6nig, R., Michalak, G., Neumayer, K.-H., and Gfz, D.G. (2013). GFZ GRACE Level-2 Processing Standards Document for Level-2 Product Release 0005, Deutsches GeoForschungsZentrum GFZ."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"1804","DOI":"10.1002\/2014JB011470","article-title":"Monthly gravity field models derived from GRACE level 1b data using a modified short-arc approach","volume":"120","author":"Chen","year":"2015","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_33","doi-asserted-by":"crossref","unstructured":"Cheng, M., and Tapley, B.D. (2004). Variations in the earth\u2019s oblateness during the past 28 years. J. Geophys. Res. Solid Earth, 109.","DOI":"10.1029\/2004JB003028"},{"key":"ref_34","unstructured":"Hofmann-Wellenhof, B., and Moritz, H. (2006). Physical Geodesy, Springer-Verlag Wien. [2nd ed.]."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.jog.2012.01.007","article-title":"Geocenter motion and its geodetic and geophysical implications","volume":"58","author":"Wu","year":"2012","journal-title":"J. Geodyn."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Swenson, S., Chambers, D., and Wahr, J. (2008). Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res., 113.","DOI":"10.1029\/2007JB005338"},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Cheng, M.K., Ries, J.C., and Tapley, B.D. (2013). Geocenter Variations from Analysis of SLR Data, Springer.","DOI":"10.1007\/978-3-642-32998-2_4"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1126\/science.265.5169.195","article-title":"Ice Age Paleotopography","volume":"265","author":"Peltier","year":"1994","journal-title":"Science"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1146\/annurev.earth.32.082503.144359","article-title":"Global glacial isostasy and the surface of the ice-age earth: The ICE-5G (VM2) model and GRACE","volume":"32","author":"Peltier","year":"2004","journal-title":"Ann. Rev. Earth Planet. Sci."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"497","DOI":"10.1111\/j.1365-246X.2007.03556.x","article-title":"Inference of mantle viscosity from GRACE and relative sea level data","volume":"171","author":"Paulson","year":"2007","journal-title":"Geophys. J. Int."},{"key":"ref_41","doi-asserted-by":"crossref","unstructured":"Baur, O., Kuhn, M., and Featherstone, W.E. (2009). GRACE-derived ice-mass variations over Greenland by accounting for leakage effects. J. Geophys. Res., 114.","DOI":"10.1029\/2008JB006239"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"576","DOI":"10.1016\/j.epsl.2006.02.026","article-title":"Effects of lateral variations in lithospheric thickness and mantle viscosity on glacially induced surface motion on a spherical, self-gravitating Maxwell Earth","volume":"244","author":"Wang","year":"2006","journal-title":"Earth Planet. Sci. Lett."},{"key":"ref_43","first-page":"1035","article-title":"Solution of incorrectly formulated problems and the regularization method","volume":"5","author":"Tikhonov","year":"1963","journal-title":"Sov. Math. Dokl."},{"key":"ref_44","first-page":"1624","article-title":"Regularization of incorrectly posed problems","volume":"4","author":"Tikhonov","year":"1963","journal-title":"Sov. Math. Dokl."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1080\/00401706.1979.10489751","article-title":"Generalized cross-validation as a method for choosing a good ridge parameter","volume":"21","author":"Golub","year":"1979","journal-title":"Technometrics"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1007\/s00190-006-0032-1","article-title":"Variance component estimation in linear inverse ill-posed models","volume":"80","author":"Xu","year":"2006","journal-title":"J. Geod."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"597","DOI":"10.1007\/s00190-012-0542-y","article-title":"Bias-corrected regularized solution to inverse ill-posed models","volume":"86","author":"Shen","year":"2012","journal-title":"J. Geod."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1007\/s00190-002-0257-6","article-title":"Regularization of gravity field estimation from satellite gravity gradients","volume":"76","author":"Kusche","year":"2002","journal-title":"J. Geod."},{"key":"ref_49","unstructured":"Ran, J., Ditmar, P., Klees, R., and Vizcaino, M. (July, January 22). Advanced analysis of mass balance of the Greenland ice sheet from GRACE and surface mass balance modelling. Proceedings of the 26th IUGG General Assembly, Prague, Czech Republic."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"999","DOI":"10.1038\/nature08238","article-title":"Satellite-based estimates of groundwater depletion in India","volume":"460","author":"Rodell","year":"2009","journal-title":"Nature"},{"key":"ref_51","doi-asserted-by":"crossref","unstructured":"Tiwari, V.M., Wahr, J., and Swenson, S. (2009). Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett., 36.","DOI":"10.1029\/2009GL039401"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"4466","DOI":"10.1002\/jgrd.50301","article-title":"Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau","volume":"118","author":"Chen","year":"2013","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_53","first-page":"635","article-title":"Applicability of GLDAS and climate change in the Qinghai-Xizang Plateau and its surrounding arid area","volume":"32","author":"Wang","year":"2013","journal-title":"Plateau Meteorol."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"859","DOI":"10.1038\/ngeo694","article-title":"Accelerated Antarctic ice loss from satellite gravity measurements","volume":"2","author":"Chen","year":"2009","journal-title":"Nat. Geosci."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"679","DOI":"10.1007\/s00190-008-0282-1","article-title":"S2 tide aliasing in GRACE time-variable gravity solutions","volume":"83","author":"Chen","year":"2008","journal-title":"J. Geod."},{"key":"ref_56","first-page":"3487","article-title":"Analysis of the gravity field recovery accuracy from the low-low satellite-to-satellite tracking mission","volume":"58","author":"Ran","year":"2015","journal-title":"Chin. J. Geophys."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"61","DOI":"10.3724\/SP.J.1246.2011.00061.1","article-title":"Long-term gravity changes in Chinese mainland from GRACE and ground-based gravity measurements","volume":"2","author":"Lelin","year":"2011","journal-title":"Geod. Geodyn."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1038\/ngeo1068","article-title":"Spatially variable response of Himalayan glaciers to climate change affected by debris cover","volume":"4","author":"Scherler","year":"2011","journal-title":"Nat. Geosci."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"1263","DOI":"10.5194\/tc-7-1263-2013","article-title":"Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999\u20132011","volume":"7","author":"Gardelle","year":"2013","journal-title":"Cryosphere"},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"2125","DOI":"10.1002\/grl.50462","article-title":"Increased mass over the Tibetan Plateau: From lakes or glaciers?","volume":"40","author":"Zhang","year":"2013","journal-title":"Geophys. Res. Lett."},{"key":"ref_61","doi-asserted-by":"crossref","unstructured":"Ge, S., McKenzie, J., Voss, C., and Wu, Q. (2011). Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation. Geophys. Res. Lett., 38.","DOI":"10.1029\/2011GL047911"},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1007\/s10040-012-0927-2","article-title":"Permafrost and groundwater on the Qinghai-Tibet Plateau and in Northeast China","volume":"21","author":"Cheng","year":"2012","journal-title":"Hydrogeol. J."},{"key":"ref_63","doi-asserted-by":"crossref","unstructured":"Jin, H., He, R., Cheng, G., Wu, Q., Wang, S., L\u00fc, L., and Chang, X. (2009). Changes in frozen ground in the source area of the yellow river on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environ. Res. Lett., 4.","DOI":"10.1088\/1748-9326\/4\/4\/045206"},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"322","DOI":"10.1038\/ngeo1450","article-title":"Slight mass gain of Karakoram glaciers in the early twenty-first century","volume":"5","author":"Gardelle","year":"2012","journal-title":"Nat. Geosci."},{"key":"ref_65","doi-asserted-by":"crossref","unstructured":"Chen, Q., Shen, Y., Chen, W., Zhang, X., and Hsu, H. (2016). An improved GRACE monthly gravity field solution by modeling the non-conservative acceleration and attitude observation errors. J. Geod.","DOI":"10.1007\/s00190-016-0889-6"},{"key":"ref_66","first-page":"1","article-title":"Reanalysis of glacier changes: From the IGY to the IPY, 1960\u20132008","volume":"108","author":"Dyurgerov","year":"2010","journal-title":"Data Glaciol. Stud."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/8\/5\/439\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,14]],"date-time":"2025-01-14T16:26:56Z","timestamp":1736872016000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/8\/5\/439"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,5,23]]},"references-count":66,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2016,5]]}},"alternative-id":["rs8050439"],"URL":"https:\/\/doi.org\/10.3390\/rs8050439","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2016,5,23]]}}}