{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T16:13:06Z","timestamp":1740154386017,"version":"3.37.3"},"reference-count":52,"publisher":"MDPI AG","issue":"4","license":[{"start":{"date-parts":[[2016,4,6]],"date-time":"2016-04-06T00:00:00Z","timestamp":1459900800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Urban fringe is the transition zone fine grained with urban and non-urban land cover types. The complex landscape mosaic in this area challenges the land cover classification based on the remote-sensing data. Spectral signatures are not efficient to discriminate all pixels into classes. To improve the recognition and handle the uncertainty, this paper provides a novel integrated approach, based on a fuzzy rough set and evidential reasoning (FRSER), for land cover classification in an urban fringe area. The approach is implemented on Landsat Operation Land Imager data covering the urban fringe area of Wuhan city, China. A fuzzy rough set is first used to define a decision table from multispectral imagery and ground reference data. Then the fuzzy rough information system is interpreted using the Dempster\u2013Shafer theory, based on an evidential reasoning system. A final land cover classification with uncertainty is achieved by evidential reasoning. The results are compared with the traditional maximum likelihood classifier (MLC) and some rough set-based classifiers including classical rough set classifier (RS), fuzzy rough set classifier (FRS), and variable precision fuzzy rough set classifier (VPFRS). The better overall accuracy, user\u2019s and producer\u2019s accuracies, and the kappa coefficient, in comparison with the other classifiers, suggest that the proposed approach can effectively discriminate land cover types in urban fringe areas with high inter-class similarities and intra-class heterogeneity. It is also capable of handling the uncertainty in data processing, and the final land cover map comes with a degree of uncertainty. The proposed approach that can efficiently integrate the merits of both the fuzzy rough set and DS theory provides an efficient method for urban fringe land cover classification.<\/jats:p>","DOI":"10.3390\/rs8040304","type":"journal-article","created":{"date-parts":[[2016,4,6]],"date-time":"2016-04-06T16:54:18Z","timestamp":1459961658000},"page":"304","source":"Crossref","is-referenced-by-count":9,"title":["Classification of Complex Urban Fringe Land Cover Using Evidential Reasoning Based on Fuzzy Rough Set: A Case Study of Wuhan City"],"prefix":"10.3390","volume":"8","author":[{"given":"Yetao","family":"Yang","sequence":"first","affiliation":[{"name":"Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1347-7030","authenticated-orcid":false,"given":"Yi","family":"Wang","sequence":"additional","affiliation":[{"name":"Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9692-4221","authenticated-orcid":false,"given":"Ke","family":"Wu","sequence":"additional","affiliation":[{"name":"Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China"}]},{"given":"Xin","family":"Yu","sequence":"additional","affiliation":[{"name":"Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China"}]}],"member":"1968","published-online":{"date-parts":[[2016,4,6]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1016\/j.isprsjprs.2006.09.004","article-title":"Multiple support vector machines for land cover change detection: An application for mapping urban extensions","volume":"61","author":"Nemmour","year":"2006","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1016\/j.rse.2011.02.030","article-title":"Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends","volume":"117","author":"Weng","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"3647","DOI":"10.1016\/j.eswa.2010.09.019","article-title":"Study of land cover classification based on knowledge rules using high-resolution remote sensing images","volume":"38","author":"Zhang","year":"2011","journal-title":"Expert Syst. Appl."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"218","DOI":"10.1016\/j.rse.2004.06.015","article-title":"Landsat urban mapping based on a combined spectral\u2013spatial methodology","volume":"92","author":"Guindon","year":"2004","journal-title":"Remote Sens. Environ."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1016\/j.cageo.2013.03.024","article-title":"A self-trained semisupervised SVM approach to the remote sensing land cover classification","volume":"59","author":"Liu","year":"2013","journal-title":"Comput. Geosci."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"2516","DOI":"10.1080\/01431161.2011.616551","article-title":"An integrated spatio-temporal classification method for urban fringe change detection analysis","volume":"33","author":"Yang","year":"2012","journal-title":"Int. J. Remote Sens."},{"key":"ref_7","first-page":"352","article-title":"A kernel functions analysis for support vector machines for land cover classification","volume":"11","author":"Kavzoglu","year":"2009","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"2721","DOI":"10.1080\/014311698214479","article-title":"A fuzzy classification of sub-urban land cover from remotely sensed imagery","volume":"19","author":"Zhang","year":"1998","journal-title":"Int. J. Remote Sens."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.isprsjprs.2010.11.001","article-title":"Support vector machines in remote sensing: A review","volume":"66","author":"Mountrakis","year":"2011","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"399","DOI":"10.1016\/S0034-4257(97)00049-7","article-title":"Decision tree classification of land cover from remotely sensed data","volume":"61","author":"Friedl","year":"1997","journal-title":"Remote Sens. Environ."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10661-015-4298-8","article-title":"Modeling land use and land cover changes in a vulnerable coastal region using artificial neural networks and cellular automata","volume":"187","author":"Qiang","year":"2015","journal-title":"Environ. Monit. Assess."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1007\/BF01001956","article-title":"Rough sets","volume":"11","author":"Pawlak","year":"1982","journal-title":"Int. J. Comput. Inf. Sci."},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Pawlak, Z. (1991). Rough Sets: Theoretical Aspects of Reasoning about Data, Springer.","DOI":"10.1007\/978-94-011-3534-4"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"469","DOI":"10.1016\/S0020-7373(84)80022-X","article-title":"Rough classification","volume":"20","author":"Pawlak","year":"1984","journal-title":"Int. J. Man-Mach. Stud."},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Pawlak, Z. (2004). Transactions on Rough Sets I, Springer.","DOI":"10.1007\/11574798_1"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"2495","DOI":"10.1109\/TGRS.2002.803716","article-title":"Multispectral image segmentation using the rough-set-initialized em algorithm","volume":"40","author":"Pal","year":"2002","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"3041","DOI":"10.1080\/01431160600702368","article-title":"Land cover classification based on tolerant rough set","volume":"27","author":"Yun","year":"2006","journal-title":"Int. J. Remote Sens."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"1033","DOI":"10.1080\/13658810601169915","article-title":"A rough set approach to the discovery of classification rules in spatial data","volume":"21","author":"Leung","year":"2007","journal-title":"Int. J. Geogr. Inf. Sci."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10596-007-9057-7","article-title":"The comparison of pca and discrete rough set for feature extraction of remote sensing image classification\u2014A case study on rice classification, Taiwan","volume":"12","author":"Lei","year":"2008","journal-title":"Comput. Geosci."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"1466","DOI":"10.1016\/j.cageo.2009.11.010","article-title":"A variable precision rough set approach to the remote sensing land use\/cover classification","volume":"36","author":"Pan","year":"2010","journal-title":"Comput. Geosci."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"330","DOI":"10.1080\/17538947.2010.494738","article-title":"Impact of discretization methods on the rough set-based classification of remotely sensed images","volume":"4","author":"Ge","year":"2011","journal-title":"Int. J. Digit. Earth"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"787","DOI":"10.14358\/PERS.79.9.787","article-title":"Selecting key features for remote sensing classification by using decision-theoretic rough set model","volume":"79","author":"Xie","year":"2013","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"4597","DOI":"10.1080\/01431160701244898","article-title":"Multispectral image classification: A supervised neural computation approach based on rough\u2013fuzzy membership function and weak fuzzy similarity relation","volume":"28","author":"Agrawal","year":"2007","journal-title":"Int. J. Remote Sens."},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Das, S., Abraham, A., and Sarkar, S.K. (2006, January 13\u201315). A hybrid rough set\u2014Particle swarm algorithm for image pixel classification. Proceedings of the Sixth International Conference on Hybrid Intelligent Systems, Rio de Janeiro, Brazil.","DOI":"10.1109\/HIS.2006.264909"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1007\/s00477-009-0303-5","article-title":"Risk assessment of human neural tube defects using a bayesian belief network","volume":"24","author":"Liao","year":"2010","journal-title":"Stoch. Environ. Res. Risk Assess."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1080\/13658810802443457","article-title":"Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China","volume":"24","author":"Wang","year":"2010","journal-title":"Int. J. Geogr. Inf. Sci."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"5745","DOI":"10.1016\/j.eswa.2010.02.035","article-title":"A case-based reasoning approach for land use change prediction","volume":"37","author":"Du","year":"2010","journal-title":"Expert Syst. Appl."},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Fischer, M.M., and Wang, J. (2011). Spatial Data Analysis: Models, Methods and Techniques, Springer-Verlag.","DOI":"10.1007\/978-3-642-21720-3"},{"key":"ref_29","first-page":"432","article-title":"Spatial data discretization methods for geocomputation","volume":"26","author":"Cao","year":"2014","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_30","unstructured":"Zhao, W., and Zhu, Y. (2006). Rough Sets and Knowledge Technology, Springer."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"3671","DOI":"10.1016\/j.asoc.2012.05.024","article-title":"Rough sets for spam filtering: Selecting appropriate decision rules for boundary e-mail classification","volume":"12","year":"2012","journal-title":"Appl. Soft Comput."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.cageo.2012.05.022","article-title":"Uncertainty in ecosystem mapping by remote sensing","volume":"50","author":"Rocchini","year":"2013","journal-title":"Comput. Geosci."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1016\/S0020-0255(02)00379-1","article-title":"Generalized fuzzy rough sets","volume":"151","author":"Wu","year":"2003","journal-title":"Inf. Sci."},{"key":"ref_34","unstructured":"Liu, B. (2004). Uncertainty Theory, Springer."},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Shafer, G. (1976). A Mathematical Theory of Evidence, Princeton University Press.","DOI":"10.1515\/9780691214696"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1214\/aoms\/1177698950","article-title":"Upper and lower probabilities induced by a multivalued mapping","volume":"38","author":"Dempster","year":"1967","journal-title":"Ann. Math. Stat."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1109\/TGRS.2003.817819","article-title":"Arktos: An intelligent system for SAR sea ice image classification","volume":"42","author":"Soh","year":"2004","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"1010","DOI":"10.1016\/j.rse.2007.07.022","article-title":"Mapping plant functional types from MODIS data using multisource evidential reasoning","volume":"112","author":"Sun","year":"2008","journal-title":"Remote Sens. Environ."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"1951","DOI":"10.1080\/01431160500181788","article-title":"Classification of a complex landscape using dempster\u2013shafer theory of evidence","volume":"27","author":"Cayuela","year":"2006","journal-title":"Int. J. Remote Sens."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"5989","DOI":"10.1080\/01431160902798395","article-title":"Fusion of features in multi-temporal sar imagery to detect changes in urban areas","volume":"30","author":"Cao","year":"2009","journal-title":"Int. J. Remote Sens."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1080\/13658816.2011.577745","article-title":"Large-scale land cover mapping with the integration of multi-source information based on the dempster\u2013shafer theory","volume":"26","author":"Ran","year":"2012","journal-title":"Int. J. Geogr. Inf. Sci."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1080\/03081079008935107","article-title":"Rough fuzzy sets and fuzzy rough sets","volume":"17","author":"Dubois","year":"1990","journal-title":"Int. J. Gen. Syst."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/S0165-0114(98)00405-9","article-title":"Modeling vague beliefs using fuzzy-valued belief structures","volume":"116","year":"2000","journal-title":"Fuzzy Sets Syst."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"386","DOI":"10.1016\/j.eswa.2005.12.015","article-title":"Managing uncertainty in location services using rough set and evidence theory","volume":"32","author":"Sikder","year":"2007","journal-title":"Expert Syst. Appl."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2012.04.041","article-title":"Rough sets in the soft computing environment","volume":"212","author":"Bello","year":"2012","journal-title":"Inf. Sci."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1016\/S0020-0255(97)00076-5","article-title":"Interpretations of belief functions in the theory of rough sets","volume":"104","author":"Yao","year":"1998","journal-title":"Inf. Sci."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1109\/TKDE.2004.1269594","article-title":"Caim discretization algorithm","volume":"16","author":"Kurgan","year":"2004","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"441","DOI":"10.1007\/s10115-009-0214-2","article-title":"Fuzzy clustering-based discretization for gene expression classification","volume":"24","author":"Kianmehr","year":"2010","journal-title":"Knowl. Inf. Syst."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1007\/s11633-007-0217-y","article-title":"Rough sets, their extensions and applications","volume":"4","author":"Shen","year":"2007","journal-title":"Int. J. Autom. Comput."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/0020-0255(81)90008-6","article-title":"The degree of belief in a fuzzy event","volume":"25","author":"Smets","year":"1981","journal-title":"Inf. Sci."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"1018","DOI":"10.1109\/36.602544","article-title":"Application of dempster-shafer evidence theory to unsupervised classification in multisource remote sensing","volume":"35","author":"Bloch","year":"1997","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"599","DOI":"10.1109\/34.87345","article-title":"Calculating dempster-shafer plausibility","volume":"13","author":"Barnett","year":"1991","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/8\/4\/304\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,4]],"date-time":"2024-06-04T19:26:10Z","timestamp":1717529170000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/8\/4\/304"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,4,6]]},"references-count":52,"journal-issue":{"issue":"4","published-online":{"date-parts":[[2016,4]]}},"alternative-id":["rs8040304"],"URL":"https:\/\/doi.org\/10.3390\/rs8040304","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2016,4,6]]}}}