{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T01:56:21Z","timestamp":1726451781035},"reference-count":71,"publisher":"MDPI AG","issue":"5","license":[{"start":{"date-parts":[[2015,5,4]],"date-time":"2015-05-04T00:00:00Z","timestamp":1430697600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Automatic methods for an early detection of plant diseases (i.e., visible symptoms at early stages of disease development) using remote sensing are critical for precision crop protection. Verticillium wilt (VW) of olive caused by Verticillium dahliae can be controlled only if detected at early stages of development. Linear discriminant analysis (LDA) and support vector machine (SVM) classification methods were applied to classify V. dahliae severity using remote sensing at large scale. High-resolution thermal and hyperspectral imagery were acquired with a manned platform which flew a 3000-ha commercial olive area. LDA reached an overall accuracy of 59.0% and a \u03ba of 0.487 while SVM obtained a higher overall accuracy, 79.2% with a similar \u03ba, 0.495. However, LDA better classified trees at initial and low severity levels, reaching accuracies of 71.4 and 75.0%, respectively, in comparison with the 14.3% and 40.6% obtained by SVM. Normalized canopy temperature, chlorophyll fluorescence, structural, xanthophyll, chlorophyll, carotenoid and disease indices were found to be the best indicators for early and advanced stage infection by VW. These results demonstrate that the methods developed in other studies at orchard scale are valid for flights in large areas comprising several olive orchards differing in soil and crop management characteristics.<\/jats:p>","DOI":"10.3390\/rs70505584","type":"journal-article","created":{"date-parts":[[2015,5,4]],"date-time":"2015-05-04T14:33:04Z","timestamp":1430749984000},"page":"5584-5610","source":"Crossref","is-referenced-by-count":165,"title":["Early Detection and Quantification of Verticillium Wilt in Olive Using Hyperspectral and Thermal Imagery over Large Areas"],"prefix":"10.3390","volume":"7","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7639-1795","authenticated-orcid":false,"given":"Roc\u00edo","family":"Calder\u00f3n","sequence":"first","affiliation":[{"name":"Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Cient\u00edficas (CSIC), Alameda del Obispo s\/n, C\u00f3rdoba 14004, Spain"}]},{"given":"Juan","family":"Navas-Cort\u00e9s","sequence":"additional","affiliation":[{"name":"Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Cient\u00edficas (CSIC), Alameda del Obispo s\/n, C\u00f3rdoba 14004, Spain"}]},{"given":"Pablo","family":"Zarco-Tejada","sequence":"additional","affiliation":[{"name":"Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Cient\u00edficas (CSIC), Alameda del Obispo s\/n, C\u00f3rdoba 14004, Spain"}]}],"member":"1968","published-online":{"date-parts":[[2015,5,4]]},"reference":[{"key":"ref_1","unstructured":"FAOSTAT. Available online: http:\/\/faostat.fao.org\/."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"304","DOI":"10.1094\/PDIS-06-11-0496","article-title":"Verticillium wilt, a major threat to olive production: Current status and future prospects for its management","volume":"96","author":"Cirulli","year":"2012","journal-title":"Plant Dis."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"304","DOI":"10.1094\/PHYTO-07-10-0176","article-title":"A region-wide analysis of genetic diversity in Verticillium dahliae infecting olive in southern Spain and agricultural factors influencing the distribution and prevalence of vegetative compatibility groups and pathotypes","volume":"101","author":"Landa","year":"2011","journal-title":"Phytopathology"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"296","DOI":"10.1016\/j.eja.2005.10.008","article-title":"Modelling potential growth and yield of olive (Olea europaea L.) canopies","volume":"24","author":"Villalobos","year":"2006","journal-title":"Eur. J. Agron."},{"key":"ref_5","unstructured":"Hiemstra, J.A., and Harris, D.C. (1998). A Compendium of Verticillium Wilt in Tree Species, Posen and Looijen."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1094\/PHYTO-98-2-0167","article-title":"Spatiotemporal analysis of spread of infections by Verticillium dahliae pathotypes within a high tree density olive orchard in southern Spain","volume":"98","author":"Landa","year":"2008","journal-title":"Phytopathology"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1007\/s10343-008-0194-2","article-title":"Sensor use in plant protection","volume":"60","author":"Steiner","year":"2008","journal-title":"Gesunde Pflanz."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1007\/s10658-011-9878-z","article-title":"Recent advances in sensing plant diseases for precision crop protection","volume":"133","author":"Mahlein","year":"2012","journal-title":"Eur. J. Plant Pathol."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.compag.2010.02.007","article-title":"A review of advanced techniques for detecting plant diseases","volume":"72","author":"Sankaran","year":"2010","journal-title":"Comput. Electron. Agric."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1146\/annurev.py.27.090189.002533","article-title":"Reassessment of plant wilt toxins","volume":"27","year":"1989","journal-title":"Ann. Rev. Phytopathol."},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Oerke, E.-C., Gerhards, R., Menz, G., and Sikora, R.A. (2010). Precision Crop Protection\u2014The Challenge and Use of Heterogeneity, Springer.","DOI":"10.1007\/978-90-481-9277-9"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1016\/j.rse.2013.07.031","article-title":"High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices","volume":"139","author":"Lucena","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Calder\u00f3n, R., Lucena, C., Trapero-Casas, J.L., Zarco-Tejada, P.J., and Navas-Cort\u00e9s, J.A. (2014). Soil temperature determines the reaction of olive cultivars to Verticillium dahliae pathotypes. Plos One, 9.","DOI":"10.1371\/journal.pone.0110664"},{"key":"ref_14","unstructured":"Delwiche, S.R., and Kim, M.S. (2000). Hyperspectral imaging for detection of scab in wheat. Proc. SPIE, 4203."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1007\/s11694-008-9043-3","article-title":"Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method","volume":"2","author":"Qin","year":"2008","journal-title":"Sens. Instrum. Food Qual. Saf."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1016\/j.eja.2007.02.005","article-title":"Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: Non-parametric statistical approaches and physiological implications","volume":"27","author":"Delalieux","year":"2007","journal-title":"Eur. J. Agron."},{"key":"ref_17","unstructured":"Grimm, L.G., and Yarnold, P.R. (1995). Reading and Understanding Multivariate Statistics, American Psychological Association."},{"key":"ref_18","unstructured":"Balakrishnama, S., and Ganapathiraju, A. (1998). Linear Discriminant Analysis\u2014A Brief Tutorial, Institute for Signal and Information Processing, Department of Electrical and Computer Engineering, Mississippi State University."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1111\/j.1469-1809.1936.tb02137.x","article-title":"The use of multiple measurements in taxonomic problems","volume":"7","author":"Fisher","year":"1936","journal-title":"Ann. Eugenic."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.compag.2004.04.003","article-title":"Automatic detection of \u201cyellow rust\u201d in wheat using reflectance measurements and neural networks","volume":"44","author":"Moshou","year":"2004","journal-title":"Comput. Electron. Agr."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/j.compag.2010.06.009","article-title":"Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance","volume":"74","author":"Rumpf","year":"2010","journal-title":"Comput. Electron. Agric."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1530","DOI":"10.1109\/TGRS.2004.827262","article-title":"Robust support vector method for hyperspectral data classification and knowledge discovery","volume":"42","author":"Moreno","year":"2004","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1016\/j.eij.2012.08.002","article-title":"Support Vector Machines (SVMs) versus Multilayer Perception (MLP) in data classification","volume":"13","author":"Zanaty","year":"2012","journal-title":"Egypt Inform. J."},{"key":"ref_24","unstructured":"Vapnik, V. (1998). Statistical Learning Theory, Wiley-Interscience."},{"key":"ref_25","unstructured":"De Le\u00f3n, A., Arriba, A., and De La Plaza, M.C. (1989). Caracterizaci\u00f3n Agroclim\u00e1tica de la Provincia de SEVILLA, Ministerio de Agricultura, Pesca y Alimentaci\u00f3n."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"1487","DOI":"10.1094\/PDIS.2003.87.12.1487","article-title":"Simultaneous detection of the defoliating and nondefoliating Verticillium dahliae pathotypes in infected olive plants by duplex, nested polymerase chain reaction","volume":"87","year":"2003","journal-title":"Plant Dis."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"322","DOI":"10.1016\/j.rse.2011.10.007","article-title":"Fluorescence, temperature and narrow-band indices acquired from a UAV for water stress detection using a hyperspectral imager and a thermal camera","volume":"117","author":"Berni","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_28","unstructured":"Gueymard, C.A. (1995). SMARTS, A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment, Florida Solar Energy Center. Technical report no. FSEC-PF-270-95."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1016\/S0038-092X(01)00054-8","article-title":"Parameterized transmittance model for direct beam and circumsolar spectral irradiance","volume":"71","author":"Gueymard","year":"2001","journal-title":"Sol. Energy"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"2380","DOI":"10.1016\/j.rse.2009.06.018","article-title":"Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery","volume":"113","author":"Berni","year":"2009a","journal-title":"Remote Sens. Environ."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"722","DOI":"10.1109\/TGRS.2008.2010457","article-title":"Thermal and narrow-band multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle","volume":"47","author":"Berni","year":"2009b","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_32","unstructured":"Beisl, U. (2001). Correction of Bidirectional Effects in Imaging Spectrometer Data, Remote Sensing Laboratories."},{"key":"ref_33","unstructured":"Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., and Harlan, J.C. (1974). Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of Natural Vegetation, College Station Texas A and M University. NASA\/GSFC Type III Final Report."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"375","DOI":"10.1016\/0034-4257(94)00114-3","article-title":"Estimating PAR absorbed by vegetation from bidirectional reflectance measurements","volume":"51","author":"Rougean","year":"1995","journal-title":"Remote Sens. Environ."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1109\/TGRS.1995.8746027","article-title":"A feedback based modification of the NDVI to minimize canopy background and atmospheric noise","volume":"33","author":"Liu","year":"1995","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/0034-4257(95)00186-7","article-title":"Optimization of soil-adjusted vegetation indices","volume":"55","author":"Rondeaux","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1016\/S0034-4257(00)00197-8","article-title":"Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density","volume":"76","author":"Broge","year":"2000","journal-title":"Remote Sens. Environ."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1016\/j.rse.2003.12.013","article-title":"Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture","volume":"90","author":"Haboudane","year":"2004","journal-title":"Remote Sens. Environ."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1080\/07038992.1996.10855178","article-title":"Evaluation of vegetation indices and modified simple ratio for boreal applications","volume":"22","author":"Chen","year":"1996","journal-title":"Can. J. Remote Sens."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/0034-4257(92)90059-S","article-title":"A narrow-wave band spectral index that tracks diurnal changes in photosynthetic efficiency","volume":"41","author":"Gamon","year":"1992","journal-title":"Remote Sens. Environ."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"1563","DOI":"10.1080\/01431169308953986","article-title":"Red edge spectral measurements from sugar maple leaves","volume":"14","author":"Vogelmann","year":"1993","journal-title":"Int. J. Remote Sens."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"2691","DOI":"10.1080\/014311697217558","article-title":"Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll","volume":"18","author":"Gitelson","year":"1997","journal-title":"Int. J. Remote Sens."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"657","DOI":"10.1080\/014311698215919","article-title":"Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves","volume":"19","author":"Blackburn","year":"1998","journal-title":"Int. J. Remote Sens."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"416","DOI":"10.1016\/S0034-4257(02)00018-4","article-title":"Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture","volume":"84","author":"Haboudane","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"ref_45","first-page":"121","article-title":"Remote estimation of phytoplankton density in productive waters","volume":"55","author":"Gitelson","year":"2000","journal-title":"Arch. Hydrobiol."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1016\/j.rse.2005.09.002","article-title":"Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy","volume":"99","author":"Miller","year":"2005","journal-title":"Remote Sens. Environ."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"599","DOI":"10.1016\/S0176-1617(96)80081-2","article-title":"Detection of vegetation stress via a new high resolution fluorescence imaging system","volume":"148","author":"Lichtenhaler","year":"1996","journal-title":"J. Plant Physiol."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1117\/12.7971842","article-title":"MK II Fraunhofer Line Dicsriminator (FLD-II) for airborne and orbital remote sensing of solar-stimulated luminescence","volume":"14","author":"Plascyk","year":"1975","journal-title":"Opt. Eng."},{"key":"ref_49","unstructured":"McDonald, M., Schepers, J., Tartly, L., van Toai, T., and Major, D. (2003). Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology, American Society of Agronomy."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1016\/j.rse.2012.09.019","article-title":"Development of spectral indices for detecting and identifying plant diseases","volume":"128","author":"Mahlein","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.rse.2013.05.011","article-title":"Relationships between net photosynthesis and steady-state chlorophyll fluorescence retrieved from airborne hyperspectral imagery","volume":"136","author":"Catalina","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_52","unstructured":"National Institutes of Health, Bethesda, USA Fiji Package of ImageJ Software, Available online: http:\/\/www.fiji.sc."},{"key":"ref_53","unstructured":"GRASS Development Team GRASS GIS Software. Available online: http:\/\/grass.osgeo.org\/."},{"key":"ref_54","unstructured":"Khattree, R., and Naik, D.N. (2000). Multivariate Data Reduction and Discrimination with SAS Software, SAS Institute Inc."},{"key":"ref_55","unstructured":"R Foundation for Statistical Computing R Software, Version 3.1.1. Available online: http:\/\/www.R-project.org\/."},{"key":"ref_56","unstructured":"Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C.C., and Lin, C.C. Misc Functions of the Department of Statistics (e1071), TU Wien. Available online: http:\/\/rpackages.ianhowson.com\/cran\/e1071\/."},{"key":"ref_57","unstructured":"Chang, C.C., and Lin, C.J. LIBSVM: A Library for Support Vector Machines. Available online: http:\/\/www.csie.ntu.edu.tw\/~cjlin\/libsvm\/."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"725","DOI":"10.1080\/01431160110040323","article-title":"An assessment of support vector machines for land cover classification","volume":"23","author":"Huang","year":"2002","journal-title":"Int. J. Remote Sens."},{"key":"ref_59","first-page":"137","article-title":"Text categorization with support vector machines: learning with many relevant features","volume":"Volume 1398","author":"Rouveirol","year":"1998","journal-title":"Machine Learning: ECML 1998"},{"key":"ref_60","unstructured":"Hsu, C.W., Chang, C.C., and Lin, C.J. A practical guide to support vector classification. Available online: http:\/\/www.csie.ntu.edu.tw\/~cjlin\/papers\/guide\/guide.pdf."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"505","DOI":"10.1111\/j.1365-2338.1993.tb01361.x","article-title":"Prospects and strategies in controlling Verticillium wilt of olive","volume":"23","author":"Tjamos","year":"1993","journal-title":"Bull. OEPP\/EPPO Bull."},{"key":"ref_62","doi-asserted-by":"crossref","unstructured":"Chang, C.-I. (2013). Data Dimensionality Reduction, in Hyperspectral Data Processing: Algorithm Design and Analysis, John Wiley & Sons, Inc.","DOI":"10.1002\/9781118269787"},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"1491","DOI":"10.1109\/36.934080","article-title":"Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data","volume":"39","author":"Miller","year":"2001","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_64","unstructured":"Laudien, R., Bareth, G., and Doluschitz, R. (2003, January 5\u20139). Analysis of hyperspectral field data for detection of sugar beet diseases. Proceedings of the EFITA Conference, Debrecen, Hungary."},{"key":"ref_65","first-page":"221","article-title":"Semi-empirical indices to assess carotenoids\/chlorophyll a ratio from leaf spectral reflectance","volume":"31","author":"Baret","year":"1995","journal-title":"Photosynthetica"},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"2360","DOI":"10.1016\/j.rse.2011.04.036","article-title":"Assessing structural effects on PRI for stress detection in conifer forests","volume":"115","author":"Morales","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1016\/j.compag.2008.11.007","article-title":"The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars","volume":"66","author":"Naidu","year":"2009","journal-title":"Comput. Electron. Agr."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1016\/j.compag.2011.09.011","article-title":"Robust fitting of fluorescence spectra for pre-symptomatic wheat leaf rust detection with Support Vector Machines","volume":"79","author":"Hunsche","year":"2011","journal-title":"Comput. Electron. Agr."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1146\/annurev.py.33.090195.002421","article-title":"Remote sensing and image analysis in plant pathology","volume":"15","author":"Nilsson","year":"1995","journal-title":"Annu. Rev. Phytopathol."},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"561","DOI":"10.1016\/S1671-2927(08)60053-X","article-title":"Spectrum characteristics of cotton canopy infected with Verticillium wilt and applications","volume":"7","author":"Chen","year":"2008","journal-title":"Agric. Sci. China"},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"2706","DOI":"10.1080\/01431161.2011.619586","article-title":"Evaluating the severity level of cotton Verticillium using spectral signature analysis","volume":"33","author":"Chen","year":"2011","journal-title":"Int. J. Remote Sens."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/7\/5\/5584\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,3]],"date-time":"2024-06-03T09:24:25Z","timestamp":1717406665000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/7\/5\/5584"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,5,4]]},"references-count":71,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2015,5]]}},"alternative-id":["rs70505584"],"URL":"https:\/\/doi.org\/10.3390\/rs70505584","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2015,5,4]]}}}