{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,9]],"date-time":"2024-07-09T13:20:21Z","timestamp":1720531221495},"reference-count":26,"publisher":"MDPI AG","issue":"12","license":[{"start":{"date-parts":[[2013,12,4]],"date-time":"2013-12-04T00:00:00Z","timestamp":1386115200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/3.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"A synthetic aperture radar (SAR) system requires external absolute calibration so that radiometric measurements can be exploited in numerous scientific and commercial applications. Besides estimating a calibration factor, metrological standards also demand the derivation of a respective calibration uncertainty. This uncertainty is currently not systematically determined. Here for the first time it is proposed to use hierarchical modeling and Bayesian statistics as a consistent method for handling and analyzing the hierarchical data typically acquired during external calibration campaigns. Through the use of Markov chain Monte Carlo simulations, a joint posterior probability can be conveniently derived from measurement data despite the necessary grouping of data samples. The applicability of the method is demonstrated through a case study: The radar reflectivity of DLR\u2019s new C-band Kalibri transponder is derived through a series of RADARSAT-2 acquisitions and a comparison with reference point targets (corner reflectors). The systematic derivation of calibration uncertainties is seen as an important step toward traceable radiometric calibration of synthetic aperture radars.<\/jats:p>","DOI":"10.3390\/rs5126667","type":"journal-article","created":{"date-parts":[[2013,12,4]],"date-time":"2013-12-04T17:02:38Z","timestamp":1386176558000},"page":"6667-6690","source":"Crossref","is-referenced-by-count":13,"title":["Hierarchical Bayesian Data Analysis in Radiometric SAR System Calibration: A Case Study on Transponder Calibration with RADARSAT-2 Data"],"prefix":"10.3390","volume":"5","author":[{"given":"Bj\u00f6rn","family":"D\u00f6ring","sequence":"first","affiliation":[{"name":"Microwaves and Radar Institute, German Aerospace Center (DLR), Oberpfaffenhofen,D-82234 We\u00dfling, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7896-908X","authenticated-orcid":false,"given":"Kersten","family":"Schmidt","sequence":"additional","affiliation":[{"name":"Microwaves and Radar Institute, German Aerospace Center (DLR), Oberpfaffenhofen,D-82234 We\u00dfling, Germany"}]},{"given":"Matthias","family":"Jirousek","sequence":"additional","affiliation":[{"name":"Microwaves and Radar Institute, German Aerospace Center (DLR), Oberpfaffenhofen,D-82234 We\u00dfling, Germany"}]},{"given":"Daniel","family":"Rudolf","sequence":"additional","affiliation":[{"name":"Microwaves and Radar Institute, German Aerospace Center (DLR), Oberpfaffenhofen,D-82234 We\u00dfling, Germany"}]},{"given":"Jens","family":"Reimann","sequence":"additional","affiliation":[{"name":"Microwaves and Radar Institute, German Aerospace Center (DLR), Oberpfaffenhofen,D-82234 We\u00dfling, Germany"}]},{"given":"Sebastian","family":"Raab","sequence":"additional","affiliation":[{"name":"Microwaves and Radar Institute, German Aerospace Center (DLR), Oberpfaffenhofen,D-82234 We\u00dfling, Germany"}]},{"given":"John","family":"Antony","sequence":"additional","affiliation":[{"name":"Microwaves and Radar Institute, German Aerospace Center (DLR), Oberpfaffenhofen,D-82234 We\u00dfling, Germany"}]},{"given":"Marco","family":"Schwerdt","sequence":"additional","affiliation":[{"name":"Microwaves and Radar Institute, German Aerospace Center (DLR), Oberpfaffenhofen,D-82234 We\u00dfling, Germany"}]}],"member":"1968","published-online":{"date-parts":[[2013,12,4]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Van Zyl, J.J., and Kim, Y. (2011). Synthetic Aperture Radar Polarimetry, John Wiley & Sons, Inc.","DOI":"10.1002\/9781118116104"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"412","DOI":"10.1109\/36.134090","article-title":"Dependence of radar backscatter on coniferous forest biomass","volume":"30","author":"Dobson","year":"1992","journal-title":"IEEE Trans. Geosci. Remote Sens. Electr"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"1107","DOI":"10.1109\/36.193786","article-title":"SAR calibration: An overview","volume":"30","author":"Freeman","year":"1992","journal-title":"IEEE Trans. GeoscI. Remote Sens"},{"key":"ref_4","unstructured":"Curlander, J.C. (1991). Synthetic Aperture Radar: Systems and Signal Processing, John Wiley & Sons, Inc."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"677","DOI":"10.1109\/TGRS.2009.2035308","article-title":"Final TerraSAR-X calibration results based on novel efficient methods","volume":"48","author":"Schwerdt","year":"2010","journal-title":"IEEE Trans. Geosci. Remote Sens"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"3915","DOI":"10.1109\/TGRS.2009.2023909","article-title":"PALSAR radiometric and geometric calibration","volume":"47","author":"Shimada","year":"2009","journal-title":"IEEE Trans. Geosci. Remote Sens"},{"key":"ref_7","unstructured":"(2008). Evaluation of Measurement Data\u2014Guide to the Expression of Uncertainty in Measurement, ISO copyright office. ISO\/IEC Guide 98-3:2008;."},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Schwerdt, M., Hueso Gonzalez, J., Bachmann, M., Schrank, D., D\u00f6ring, B., Tous Ramon, N., and Walter Antony, J.M. (2011, January 24\u201329). In-Orbit Calibration of the TanDEM-X System. Vancouver, BC, Canada.","DOI":"10.1109\/IGARSS.2011.6049699"},{"key":"ref_9","unstructured":"Luscombe, A.P., and Thompson, A.A. (2001, January 24\u201329). RADARSAT-2 Calibration: Proposed Targets and Techniques. Vancouver, BC, Canada."},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Luscombe, A. (2009, January 12\u201317). Image Quality and Calibration of RADARSAT-2. Cape Town, South Africa.","DOI":"10.1109\/IGARSS.2009.5418201"},{"key":"ref_11","first-page":"490","article-title":"Initial results using RISAT-1 C-band SAR data","volume":"104","author":"Chakraborty","year":"2013","journal-title":"Curr. Sci"},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004). Bayesian Data Analysis, Chapman & Hall\/CRC. [2nd ed].","DOI":"10.1201\/9780429258480"},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Gregory, P. (2005). Bayesian Logical Data Analysis for the Physical Sciences, Cambridge University Press.","DOI":"10.1017\/CBO9780511791277"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1214\/088342304000000116","article-title":"The interplay of bayesian and frequentist analysis","volume":"19","author":"Bayarri","year":"2004","journal-title":"Stat. Sci"},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"D\u00f6ring, B.J., and Schwerdt, M. (2013). The radiometric measurement quantity for SAR images. IEEE Trans. Geosci. Remote Sens.","DOI":"10.1109\/TGRS.2012.2234128"},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Bolstad, W.M. (2007). Introduction to Bayesian Statistics, John Wiley & Sons, Inc. [2nd ed].","DOI":"10.1002\/9780470181188"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"1","DOI":"10.18637\/jss.v035.i04","article-title":"PyMC: Bayesian stochastic modelling in Python","volume":"35","author":"Patil","year":"2010","journal-title":"J. Stat. Softw"},{"key":"ref_18","unstructured":"D\u00f6ring, B.J., Looser, P., Jirousek, M., Schwerdt, M., and Peichl, M. (2010, January 7\u201310). Highly Accurate Calibration Target for Multiple Mode SAR Systems. Aachen, Germany."},{"key":"ref_19","unstructured":"MDA Corporation (2011). Radarsat-2 Product Description, MacDonald, Dettwiler and Associates Ltd."},{"key":"ref_20","unstructured":"Oerry, A.W., and Brock, B.C. (2009). Radar Cross Section of Triangular Trihedral Reflector with Extended Bottom Plate, Sandia National Laboratories. Technical Report May;."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"374","DOI":"10.1109\/36.54363","article-title":"Synthetic aperture radar calibration using reference reflectors","volume":"28","author":"Gray","year":"1990","journal-title":"IEEE Trans. Geosci. Remote Sens"},{"key":"ref_22","unstructured":"Dettwiler, M. (2011). RADARSAT-2 Product Format Definition, MacDonald, Dettwiler and Associates Ltd. Technical Report 1\/9;."},{"key":"ref_23","unstructured":"Schwerdt, M., D\u00f6ring, B., Zink, M., and Schrank, D. (2010, January 7\u201310). In-Orbit Calibration Plan of Sentinel-l. Aachen, Germany."},{"key":"ref_24","unstructured":"Weise, K., and W\u00f6ger, W. (1992). A Bayesian theory of measurement uncertainty. Meas. Sci. Technol."},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Kacker, R., and Jones, A. (2003). On use of Bayesian statistics to make the Guide to the Expression of Uncertainty in Measurement consistent. Metrologia.","DOI":"10.1088\/0026-1394\/40\/5\/305"},{"key":"ref_26","unstructured":"Willink, R., and White, R. (2012). Disentangling Classical and Bayesian Approaches to Uncertainty Analysis, BIPM. Technical Report No. CCT\/12-08;."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/5\/12\/6667\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,31]],"date-time":"2024-05-31T23:41:27Z","timestamp":1717198887000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/5\/12\/6667"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2013,12,4]]},"references-count":26,"journal-issue":{"issue":"12","published-online":{"date-parts":[[2013,12]]}},"alternative-id":["rs5126667"],"URL":"https:\/\/doi.org\/10.3390\/rs5126667","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2013,12,4]]}}}