{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,17]],"date-time":"2024-08-17T00:22:47Z","timestamp":1723854167662},"reference-count":61,"publisher":"MDPI AG","issue":"16","license":[{"start":{"date-parts":[[2024,8,16]],"date-time":"2024-08-16T00:00:00Z","timestamp":1723766400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Wisconsin Fertilizer Research Council","award":["AAC2644"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Unmanned aircraft systems (UASs) are emerging as useful tools in environmental studies due to their mobility and ability to cover large areas. In this study, we used an air analyzer attached to a UAS to measure gas and particulate matter (PM) emissions from rotationally grazed dairy pastures in northern Wisconsin. UAS-based sampling enabled wireless data transmission using the LoRa protocol to a ground station, synchronizing with a cloud server. During the measurements, latitude, longitude, and altitude were recorded using a high-precision global positioning system (GPS). Over 1200 measurements per parameter were made during each site visit. The spatial distribution of the emission rates was estimated using the Lagrangian mass balance approach and Kriging interpolation. A horizontal sampling probe effectively minimized the impact of propeller downwash on the measurements. The average concentrations of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were 800.1 \u00b1 39.7 mg m\u22123, 1.38 \u00b1 0.063 mg m\u22123, and 0.71 \u00b1 0.03 mg m\u22123, respectively. No significant difference was found between CO2 concentrations measured by the UAS sensor and gas chromatography (p = 0.061). Emission maps highlighted variability across the pasture, with an average CO2 emission rate of 1.52 \u00b1 0.80 g day\u22121 m\u22122, which was within the range reported in the literature. Future studies could explore the impact of pasture management on air emissions.<\/jats:p>","DOI":"10.3390\/rs16163007","type":"journal-article","created":{"date-parts":[[2024,8,16]],"date-time":"2024-08-16T08:29:57Z","timestamp":1723796997000},"page":"3007","source":"Crossref","is-referenced-by-count":0,"title":["Field Measurements of Spatial Air Emissions from Dairy Pastures Using an Unmanned Aircraft System"],"prefix":"10.3390","volume":"16","author":[{"ORCID":"http:\/\/orcid.org\/0009-0000-1167-6821","authenticated-orcid":false,"given":"Doee","family":"Yang","sequence":"first","affiliation":[{"name":"Biological Systems Engineering, University of Wisconsin\u2014Madison, Madison, WI 53706, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7036-9661","authenticated-orcid":false,"given":"Yuchuan","family":"Wang","sequence":"additional","affiliation":[{"name":"Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0215-0219","authenticated-orcid":false,"given":"Neslihan","family":"Akdeniz","sequence":"additional","affiliation":[{"name":"Biological Systems Engineering, University of Wisconsin\u2014Madison, Madison, WI 53706, USA"}]}],"member":"1968","published-online":{"date-parts":[[2024,8,16]]},"reference":[{"key":"ref_1","unstructured":"FAA (2024, April 17). Small Unmanned Aircraft System (sUAS), Available online: https:\/\/www.faa.gov\/air_traffic\/publications\/atpubs\/aim_html\/chap11_section_2.html."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"154898","DOI":"10.1016\/j.scitotenv.2022.154898","article-title":"Evaluating the use of an unmanned aerial vehicle (UAV)-based active AirCore system to quantify methane emissions from dairy cows","volume":"831","author":"Vinkovic","year":"2022","journal-title":"Sci. Total Environ."},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Burgu\u00e9s, J., Esclapez, M.D., Do\u00f1ate, S., Pastor, L., and Marco, S. (2021). Aerial mapping of odorous gases in a wastewater treatment plant using a small drone. Remote Sens., 13.","DOI":"10.3390\/rs13091757"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"131815","DOI":"10.1016\/j.snb.2022.131815","article-title":"Electrochemical gas sensing module combined with unmanned aerial vehicles for air quality monitoring","volume":"364","author":"Arroyo","year":"2022","journal-title":"Sens. Actuators B Chem."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"168606","DOI":"10.1016\/j.scitotenv.2023.168606","article-title":"Efficient air pollution mapping in extensive regions with fully autonomous unmanned aerial vehicles: A numerical perspective","volume":"909","author":"Bakirci","year":"2023","journal-title":"Sci. Total Environ."},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Bax, C., Sironi, S., and Capelli, L. (2020). How can odors be measured? An overview of methods and their applications. Atmosphere, 11.","DOI":"10.3390\/atmos11010092"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"157290","DOI":"10.1016\/j.scitotenv.2022.157290","article-title":"Characterization of odour emissions in a wastewater treatment plant using a drone-based chemical sensor system","volume":"846","author":"Esclapez","year":"2022","journal-title":"Sci. Total Environ."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"1192","DOI":"10.1002\/rob.21896","article-title":"Remote sensing and identification of volcanic plumes using fixed-wing UAVs over Volc\u00e1n de Fuego, Guatemala","volume":"36","author":"Schellenberg","year":"2019","journal-title":"J. Field Robot."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"141172","DOI":"10.1016\/j.scitotenv.2020.141172","article-title":"Environmental chemical sensing using small drones: A review","volume":"748","author":"Burgues","year":"2020","journal-title":"Sci. Total Environ."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"9578","DOI":"10.1364\/OE.27.009578","article-title":"Autonomous multi-species environmental gas sensing using drone-based Fourier-transform infrared spectroscopy","volume":"27","author":"Rutkauskas","year":"2019","journal-title":"Opt. Express"},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Emran, B., Tannant, D., and Najjaran, H. (2017). Low-Altitude Aerial Methane Concentration Mapping. Remote Sens., 9.","DOI":"10.3390\/rs9080823"},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Roldan, J.J., Garcia-Aunon, P., Garzon, M., De Leon, J., Del Cerro, J., and Barrientos, A. (2016). Heterogeneous multi-robot system for mapping environmental variables of greenhouses. Sensors, 16.","DOI":"10.3390\/s16071018"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"2668","DOI":"10.1021\/acsearthspacechem.1c00106","article-title":"Sensitive drone mapping of methane emissions without the need for supplementary ground-based measurements","volume":"5","author":"Galfalk","year":"2021","journal-title":"ACS Earth Space Chem."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"410","DOI":"10.1080\/10962247.2020.1728423","article-title":"Comparing estimates of fugitive landfill methane emissions using inverse plume modeling obtained with surface emission monitoring (SEM), drone emission monitoring (DEM), and downwind plume emission monitoring (DWPEM)","volume":"70","author":"Ali","year":"2020","journal-title":"J. Air Waste Manag. Assoc."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"108206","DOI":"10.1016\/j.oceaneng.2020.108206","article-title":"Maritime vessel emission monitoring by a UAV gas sensor system","volume":"218","author":"Yuan","year":"2020","journal-title":"Ocean Eng."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"883","DOI":"10.1016\/j.wasman.2017.12.024","article-title":"The development and trial of an unmanned aerial system for the Measurement of methane flux from landfill and greenhouse gas emission hotspots","volume":"87","author":"Allen","year":"2019","journal-title":"Waste Manag."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"103748","DOI":"10.1016\/j.agsy.2023.103748","article-title":"Mitigation of greenhouse gas emissions in pasture-based dairy-beef production systems","volume":"211","author":"Kearney","year":"2023","journal-title":"Agric. Syst."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1017\/S0022029921000182","article-title":"Challenges and opportunities for quantifying greenhouse gas emissions through dairy cattle research in developing countries","volume":"88","author":"Munidasa","year":"2021","journal-title":"J. Dairy Res."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"238","DOI":"10.15232\/aas.2018-01803","article-title":"Emission and Mitigation of greenhouse gases from dairy farms: The cow, the manure, and the field","volume":"35","author":"Pas","year":"2019","journal-title":"Appl. Anim. Sci."},{"key":"ref_20","unstructured":"Reinemann, D.J., Larson, R., Aguirre-Villegas, H., and Passos-Fonseca, T. (2024, February 14). Comparing Greenhouse Gas Emissions of Dairy Systems. Available online: https:\/\/cias.wisc.edu\/wp-content\/uploads\/sites\/194\/2019\/03\/ciasrb101final.pdf."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"6675","DOI":"10.3168\/jds.2017-13272","article-title":"Modeling greenhouse gas emissions from dairy farms","volume":"101","author":"Rotz","year":"2018","journal-title":"J. Dairy Sci."},{"key":"ref_22","first-page":"52110","article-title":"Measurement of greenhouse gas flux from agricultural soils using static chambers","volume":"90","author":"Collier","year":"2014","journal-title":"J. Vis. Exp."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"405","DOI":"10.5194\/bg-6-405-2009","article-title":"An automated dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases of grassland ecosystems","volume":"6","author":"Pape","year":"2009","journal-title":"Biogeosciences"},{"key":"ref_24","unstructured":"(2023). Determination of Particle Size Distribution\u2014Single Particle Light Interaction Methods (Standard No. ISO 21501-4). Available online: https:\/\/www.en-standard.eu\/bs-iso-21501-4-2018-a1-2023."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1413","DOI":"10.13031\/trans.59.11873","article-title":"Mitigation of multiple air emissions from swine buildings using corn cob biofilters","volume":"59","author":"Akdeniz","year":"2016","journal-title":"Trans. ASABE"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"4974","DOI":"10.1016\/j.biortech.2011.01.058","article-title":"Biofilter performance of pine nuggets and lava rock as media","volume":"102","author":"Akdeniz","year":"2011","journal-title":"Bioresour. Technol."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"373","DOI":"10.13031\/ja.15744","article-title":"Alkaline hydrolysis of poultry carcasses and health risk assessment of exposure to target volatile organic compounds","volume":"67","author":"Sun","year":"2024","journal-title":"J. ASABE"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"7896","DOI":"10.1021\/acs.est.5b00705","article-title":"Near-Field Characterization of methane emission variability from a compressor station using a model aircraft","volume":"49","author":"Nathan","year":"2015","journal-title":"Environ. Sci. Technol."},{"key":"ref_29","unstructured":"Khan, S.H. (2014). International Encyclopedia of Statistical Science-Standard Deviation, Springer."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"1581","DOI":"10.5194\/amt-12-1581-2019","article-title":"A new multicopter-based unmanned aerial system for pollen and spores collection in the atmospheric boundary layer","volume":"12","author":"Crazzolara","year":"2019","journal-title":"Atmos. Meas. Tech."},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Burgues, J., Hernandez, V., Lilienthal, A.J., and Marco, S. (2019). Smelling nano aerial vehicle for gas source localization and mapping. Sensors, 19.","DOI":"10.3390\/s19030478"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1016\/j.advengsoft.2016.10.001","article-title":"Simulate the aerodynamic olfactory effects of gas-sensitive UAVs: A numerical model and its parallel implementation","volume":"102","author":"Luo","year":"2016","journal-title":"Adv. Eng. Softw."},{"key":"ref_33","first-page":"e2022GC010821","article-title":"Global-Krigger: A global Kriging interpolation toolbox with paleoclimatology examples","volume":"24","author":"Cosentino","year":"2023","journal-title":"Adv. Earth Space Sci."},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Oliver, M.A., and Webster, R. (2015). The Variogram and Modelling. Basic Steps in Geostatistics: The Variogram and Kriging, Springer International Publishing.","DOI":"10.1007\/978-3-319-15865-5"},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Zhang, H., Tian, Y., and Zhao, P. (2023). Dispersion curve interpolation based on Kriging method. Appl. Sci., 13.","DOI":"10.3390\/app13042557"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"100694","DOI":"10.1016\/j.paerosci.2020.100694","article-title":"Configurations, flight mechanisms, and applications of unmanned aerial systems: A review","volume":"121","author":"Darvishpoor","year":"2020","journal-title":"Prog. Aerosp. Sci."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/j.paerosci.2017.04.003","article-title":"Classifications, applications, and design challenges of drones: A review","volume":"91","author":"Hassanalian","year":"2017","journal-title":"Prog. Aerosp. Sci."},{"key":"ref_38","unstructured":"WSCO (2024, March 14). Summer Climate Data-Wisconsin State Climatology Office. Available online: https:\/\/climtology.nelson.wisc.edu\/wisconsin-seasons\/summer\/."},{"key":"ref_39","unstructured":"NOAA (2024, May 14). Climate Change: Atmospheric Carbon Dioxide, Available online: https:\/\/www.climate.gov\/news-features\/understanding-climate\/climate-change-atmospheric-carbon-dioxide."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"5419","DOI":"10.1021\/acs.est.0c00094","article-title":"Human ammonia emission rates under various indoor environmental conditions","volume":"54","author":"Li","year":"2020","journal-title":"Environ. Sci. Technol."},{"key":"ref_41","unstructured":"ATSDR (2024, March 14). Public Health Statement Hydrogen Sulfide, Available online: https:\/\/www.atsdr.cdc.gov\/ToxProfiles\/tp114-c1-b.pdf."},{"key":"ref_42","unstructured":"EPA (2024, March 14). Air Quality and Climate Change Research, Available online: https:\/\/www.epa.gov\/air-research\/air-quality-and-climate-change-research."},{"key":"ref_43","unstructured":"CAAQS (2023, September 16). California Ambient Air Quality Standards, Available online: https:\/\/ww2.arb.ca.gov\/resources\/inhalable-particulate-matter-and-health."},{"key":"ref_44","unstructured":"EPA (2024, May 07). National Ambient Air Quality Standards (NAAQS) for PM, Available online: https:\/\/www.epa.gov\/pm-pollution\/national-ambient-air-quality-standards-naaqs-pm."},{"key":"ref_45","unstructured":"EPA (2023, September 16). Technical Overview of Volatile Organic Compounds, Available online: https:\/\/www.epa.gov\/indoor-air-quality-iaq\/technical-overview-volatile-organic-compounds#measurement."},{"key":"ref_46","unstructured":"EPA (2023, September 16). Timeline of Nitrogendioxide (NO2), Available online: https:\/\/www.epa.gov\/no2-pollution\/timeline-nitrogen-dioxide-NO2-national-ambient-air-quality-standards-naaqs."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"150608","DOI":"10.1016\/j.scitotenv.2021.150608","article-title":"Improving the accuracy of nitrous oxide emission factors estimated for hotspots within dairy-grazed farms","volume":"806","author":"Saggar","year":"2022","journal-title":"Sci. Total Environ."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"282","DOI":"10.1016\/j.agee.2009.12.003","article-title":"Management options to reduce nitrous oxide emissions from intensively grazed pastures: A review","volume":"136","author":"Luo","year":"2010","journal-title":"Agric. Ecosyst. Environ."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"148099","DOI":"10.1016\/j.scitotenv.2021.148099","article-title":"Management and implications of using nitrification inhibitors to reduce nitrous oxide emissions from urine patches on grazed pasture soils\u2014A review","volume":"791","author":"Adhikari","year":"2021","journal-title":"Sci. Total Environ."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"107952","DOI":"10.1016\/j.agrformet.2020.107952","article-title":"Predicting ammonia volatilization from fertilized pastures used for grazing","volume":"287","author":"Smith","year":"2020","journal-title":"Agric. For. Meteorol."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"119869","DOI":"10.1016\/j.atmosenv.2023.119869","article-title":"Estimating individual vehicle emission factors from near-road measurements in India","volume":"308","author":"Raparthi","year":"2023","journal-title":"Atmos. Environ."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"1090888","DOI":"10.1016\/j.agrformet.2022.109088","article-title":"CO2 exchanges and evapotranspiration of a grazed pasture under tropical climate conditions","volume":"323","author":"Bezerra","year":"2022","journal-title":"Agric. For. Meteorol."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"3651","DOI":"10.3168\/jds.2023-24185","article-title":"Fifty years of environmental progress for United States dairy farms","volume":"107","author":"Rotz","year":"2024","journal-title":"J. Dairy Sci."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"107633","DOI":"10.1016\/j.agee.2021.107633","article-title":"Effects of extensive-to-intensive pasture conversion on soil nitrogen availability and CO2 and N2O fluxes in a Brazilian oxisol","volume":"321","author":"Bento","year":"2021","journal-title":"Agric. Ecosyst. Environ."},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Yan, R.R., Tang, H.J., Lv, S.H., Jin, D.Y., Xin, X.P., Chen, B.R., Zhang, B.H., Yan, Y.C., Wang, X., and Murray, P.J. (2017). Response of ecosystem CO2 fluxes to grazing intensities-a five-year experiment in the Hulunber meadow steppe of China. Sci. Rep., 7.","DOI":"10.1038\/s41598-017-09855-1"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1016\/j.agsy.2017.03.007","article-title":"An economic and greenhouse gas emissions evaluation of pasture-based dairy calf-to-beef production systems","volume":"154","author":"Murphy","year":"2017","journal-title":"Agric. Sys."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"545","DOI":"10.1080\/00288233.2004.9513619","article-title":"Control of gaseous emissions of ammonia and hydrogen sulphide from cow manure by use of natural materials","volume":"47","author":"Luo","year":"2004","journal-title":"N. Z. J. Agric. Res."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"1","DOI":"10.4141\/CJAS10034","article-title":"Review: Ammonia emissions from dairy farms and beef feedlots","volume":"91","author":"Hristov","year":"2011","journal-title":"Can. J. Anim. Sci."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"791","DOI":"10.2134\/jeq2009.0240","article-title":"Coarse particulate matter emissions from cattle feedlots in Australia","volume":"39","author":"McGinn","year":"2010","journal-title":"J. Environ. Qual."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"572","DOI":"10.5094\/APR.2014.066","article-title":"Sources of particulate matter pollution in a small New Zealand city","volume":"5","author":"Ancelet","year":"2014","journal-title":"Atmos. Pollut. Res."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1016\/j.egypro.2016.11.008","article-title":"Theoretical and experimental study pf Gaussian plume model in small scale system","volume":"101","author":"Brusca","year":"2016","journal-title":"Energy Procedia"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/16\/16\/3007\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,16]],"date-time":"2024-08-16T09:01:35Z","timestamp":1723798895000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/16\/16\/3007"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8,16]]},"references-count":61,"journal-issue":{"issue":"16","published-online":{"date-parts":[[2024,8]]}},"alternative-id":["rs16163007"],"URL":"https:\/\/doi.org\/10.3390\/rs16163007","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,8,16]]}}}