{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,17]],"date-time":"2024-08-17T00:22:59Z","timestamp":1723854179959},"reference-count":84,"publisher":"MDPI AG","issue":"16","license":[{"start":{"date-parts":[[2024,8,16]],"date-time":"2024-08-16T00:00:00Z","timestamp":1723766400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"open bidding for selecting the best candidates of Fuzhou City","award":["2022JDA07"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["41501575","42330707","42171338"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Project of Chongqing Science and Technology Bureau","award":["cstc2021jcyj-msxmX0384"]},{"name":"Sichuan Science and Technology Program","award":["2023NSFSC1916"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Soil organic carbon (SOC) plays a vital role in the global carbon cycle and soil quality assessment. The Qinghai\u2013Tibet Plateau is one of the largest plateaus in the world. Therefore, in this region, SOC density and the spatial distribution of SOC are highly sensitive to climate change and human intervention. Given the insufficient understanding of the spatial distribution of SOC density in the Qinghai\u2013Tibet Plateau, this study utilized machine learning (ML) algorithms to estimate the density and distribution pattern of SOC density in the region. In this study, we first collected multisource data, such as optical remote sensing data, synthetic aperture radar) (SAR) data, and other environmental variables, including socioeconomic factors, topographic factors, climate factors, and soil properties. Then, we used ML algorithms, namely random forest (RF), extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM), to estimate the topsoil SOC density and spatial distribution patterns of SOC density. We also aimed to investigate any driving factors. The results are as follows: (1) The average SOC density is 5.30 kg\/m2. (2) Among the three ML algorithms used, LightGBM showed the highest validation accuracy (R2 = 0.7537, RMSE = 2.4928 kgC\/m2, MAE = 1.7195). (3) The normalized difference vegetation index (NDVI), valley depth (VD), and temperature are crucial in predicting the spatial distribution of topsoil SOC density. Feature importance analyses conducted using the three ML models all showed these factors to be among the top three in importance, with contribution rates of 14.08%, 12.29%, and 14.06%; 17.32%, 20.73%, and 24.62%; and 16.72%, 11.96%, and 20.03%. (4) Spatially, the southeastern part of the Qinghai\u2013Tibet Plateau has the highest topsoil SOC density, with recorded values ranging from 8.41 kg\/m2 to 13.2 kg\/m2, while the northwestern part has the lowest density, with recorded values ranging from 0.85 kg\/m2 to 2.88 kg\/m2. Different land cover types showed varying SOC density values, with forests and grasslands having higher SOC densities compared to urban and bare land areas. The findings of this study provide a scientific basis for future soil resource management and improved carbon sequestration accounting in the Qinghai\u2013Tibet Plateau.<\/jats:p>","DOI":"10.3390\/rs16163006","type":"journal-article","created":{"date-parts":[[2024,8,16]],"date-time":"2024-08-16T08:29:57Z","timestamp":1723796997000},"page":"3006","source":"Crossref","is-referenced-by-count":0,"title":["Estimation of Soil Organic Carbon Density on the Qinghai\u2013Tibet Plateau Using a Machine Learning Model Driven by Multisource Remote Sensing"],"prefix":"10.3390","volume":"16","author":[{"given":"Qi","family":"Chen","sequence":"first","affiliation":[{"name":"College of Resources and Environment, Shandong Agricultural University, Taian 271018, China"}]},{"given":"Wei","family":"Zhou","sequence":"additional","affiliation":[{"name":"Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China"},{"name":"Key Laboratory of Agricultural Remote Sensing, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6199-9733","authenticated-orcid":false,"given":"Wenjiao","family":"Shi","sequence":"additional","affiliation":[{"name":"Key Laboratory of Agricultural Remote Sensing, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China"}]}],"member":"1968","published-online":{"date-parts":[[2024,8,16]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"107654","DOI":"10.1016\/j.agrformet.2019.107654","article-title":"Soil organic carbon in Italian forests and agroecosystems: Estimating current stock and future changes with a spatial modelling approach","volume":"278","author":"Caddeo","year":"2019","journal-title":"Agric. For. Meteorol."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"1223","DOI":"10.1002\/eap.1516","article-title":"Toward inventory-based estimates of soil organic carbon in forests of the United States","volume":"27","author":"Domke","year":"2017","journal-title":"Ecol. Appl."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"991","DOI":"10.1080\/10807039.2015.1122509","article-title":"Estimation of soil organic carbon in the forest catchment of two hydroelectric reservoirs in Uttarakhand, India","volume":"22","author":"Kumar","year":"2016","journal-title":"Hum. Ecol. Risk Assess. Int. J."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1111\/j.1365-2486.1995.tb00026.x","article-title":"Land-use change and the carbon cycle","volume":"1","author":"Houghton","year":"1995","journal-title":"Glob. Change Biol."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1038\/298156a0","article-title":"Soil carbon pools and world life zones","volume":"298","author":"Post","year":"1982","journal-title":"Nature"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"522","DOI":"10.1890\/1540-9295(2004)002[0522:CCIS]2.0.CO;2","article-title":"Carbon cycling in soil","volume":"2","author":"Johnston","year":"2004","journal-title":"Front. Ecol. Environ."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"212","DOI":"10.1002\/fes3.96","article-title":"Soil health and carbon management","volume":"5","author":"Lal","year":"2016","journal-title":"Food Energy Secur."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1111\/j.1365-2389.2008.01107.x","article-title":"Quantifying the relationship between soil organic carbon and soil physical properties using shrinkage modelling","volume":"60","author":"Boivin","year":"2009","journal-title":"Eur. J. Soil Sci."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.geoderma.2011.07.012","article-title":"Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information","volume":"171","author":"Zhang","year":"2012","journal-title":"Geoderma"},{"key":"ref_10","first-page":"330","article-title":"Study on Carbon Reservoir in Soils of China","volume":"15","author":"Genxing","year":"1999","journal-title":"Sci. Technol. Bull."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1269","DOI":"10.2136\/sssaj2007.0177","article-title":"Nondestructive system for analyzing carbon in the soil","volume":"72","author":"Wielopolski","year":"2008","journal-title":"Soil Sci. Soc. Am. J."},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Ward, K.J., Chabrillat, S., Brell, M., Castaldi, F., Spengler, D., and Foerster, S. (2020). Mapping Soil Organic Carbon for Airborne and Simulated EnMAP Imagery Using the LUCAS Soil Data-base and a Local PLSR. Remote Sens., 12.","DOI":"10.5194\/egusphere-egu2020-3013"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.rse.2018.09.015","article-title":"Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging","volume":"218","author":"Gholizadeh","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Angelopoulou, T., Tziolas, N., Balafoutis, A., Zalidis, G., and Bochtis, D. (2019). Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review. Remote Sens., 11.","DOI":"10.3390\/rs11060676"},{"key":"ref_15","first-page":"66","article-title":"Soil organic carbon content retrieved by UAV-borne high-resolution spectrometer","volume":"37","author":"Zhu","year":"2021","journal-title":"Trans. Chin. Soc. Agric. Eng. (Trans. CSAE)"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"1094","DOI":"10.1016\/j.scitotenv.2016.11.078","article-title":"Assimilation of optical and radar remote sensing data in 3D mapping of soil properties over large areas","volume":"579","author":"Poggio","year":"2017","journal-title":"Sci. Total Environ."},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Bousbih, S., Zribi, M., Lili-Chabaane, Z., Baghdadi, N., El Hajj, M., Gao, Q., and Mougenot, B. (2017). Potential of Sentinel-1 Radar Data for the Assessment of Soil and Cereal Cover Parameters. Sensors, 17.","DOI":"10.3390\/s17112617"},{"key":"ref_18","doi-asserted-by":"crossref","unstructured":"Mengen, D., Montzka, C., Jagdhuber, T., Fluhrer, A., Brogi, C., Baum, S., Sch\u00fcttemeyer, D., Bayat, B., Bogena, H., and Coccia, A. (2021). The SARSense Campaign: Air- and Space-Borne C- and L-Band SAR for the Analysis of Soil and Plant Parameters in Agriculture. Remote Sens., 13.","DOI":"10.3390\/rs13040825"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"747","DOI":"10.3390\/rs70100747","article-title":"Potential of X-Band TerraSAR-X and COSMO-SkyMed SAR Data for the Assessment of Physical Soil Parameters","volume":"7","author":"Gorrab","year":"2015","journal-title":"Remote Sens."},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Yang, R., Rossiter, D.G., Liu, F., Lu, Y., Yang, F., Yang, F., Zhao, Y., Li, D., and Zhang, G. (2015). Predictive Mapping of Topsoil Organic Carbon in an Alpine Environment Aided by Landsat TM. PLoS ONE, 10.","DOI":"10.1371\/journal.pone.0139042"},{"key":"ref_21","first-page":"1835","article-title":"Digital SOC Mapping in Croplands Using Agricultural Activity Factors Derived from Time-Series Data in Western Fujian","volume":"24","author":"Nie","year":"2022","journal-title":"Geo-Inf. Sci."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1016\/j.catena.2018.11.010","article-title":"Assessment of spatial hybrid methods for predicting soil organic matter using DEM derivatives and soil parameters","volume":"174","author":"Tziachris","year":"2019","journal-title":"Catena"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1080\/09599916.2020.1832558","article-title":"Predicting property prices with machine learning algorithms","volume":"38","author":"Ho","year":"2021","journal-title":"J. Prop. Res."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"4150","DOI":"10.1021\/acs.jcim.9b00633","article-title":"LightGBM: An effective and scalable algorithm for prediction of chemical toxicity\u2013application to the Tox21 and mutagenicity data sets","volume":"59","author":"Zhang","year":"2019","journal-title":"J. Chem. Inf. Model."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"101084","DOI":"10.1016\/j.frl.2018.12.032","article-title":"A novel cryptocurrency price trend forecasting model based on LightGBM","volume":"32","author":"Sun","year":"2020","journal-title":"Financ. Res. Lett."},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Rufo, D.D., Debelee, T.G., Ibenthal, A., and Negera, W.G. (2021). Diagnosis of diabetes mellitus using gradient boosting machine (LightGBM). Diagnostics, 11.","DOI":"10.3390\/diagnostics11091714"},{"key":"ref_27","first-page":"3506","article-title":"A review of research on soil carbon storage and its influencing factors in the Tibetan Plateau","volume":"38","author":"Wang","year":"2019","journal-title":"Chin. J. Ecol."},{"key":"ref_28","unstructured":"(2023, August 22). Northeast Institute of Geography Has Made Important Progress in the Stability Mechanism of Soil Organic Carbon in the Yarlung Zangbo River Basin on the Tibetan Plateau--Northeast Institute of Geography and Agroecology. Chinese Academy of Sciences. Available online: https:\/\/www.cas.cn\/syky\/202308\/t20230823_4965292.shtml."},{"key":"ref_29","doi-asserted-by":"crossref","unstructured":"Zhang, P., Li, L., Wang, J., Zhang, S., and Zhu, Z. (2023). Effects of Hydraulic Erosion on the Spatial Redistribution Characteristics of Soil Aggregates and SOC on Pisha Sandstone Slope. Sustainability, 15.","DOI":"10.3390\/su151713276"},{"key":"ref_30","first-page":"1208","article-title":"The Biogeochemical Cycling Model DNDC and Its Applications","volume":"38","author":"Buke","year":"2007","journal-title":"Chin. J. Soil Sci."},{"key":"ref_31","first-page":"237","article-title":"Prediction of the spatial distribution of soil properties based on environmental correlation and geostatistics","volume":"25","author":"Lian","year":"2009","journal-title":"Trans. Chin. Soc. Agric. Eng. (Trans. CSAE)"},{"key":"ref_32","first-page":"837","article-title":"Prediction and mapping of spatial distribution of soil attributes by using soil-landscape models","volume":"40","author":"Sun","year":"2008","journal-title":"Soils"},{"key":"ref_33","first-page":"648","article-title":"Prediction of Spatial Distribution of Soil Organic Carbon in Cultivated Land Based on Phenology and Extreme Climate Information","volume":"61","author":"Zhou","year":"2024","journal-title":"Acta Pedol. Sin."},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Yu, W., Zhou, W., Wang, T., Xiao, J., Peng, Y., Li, H., and Li, Y. (2024). Significant Improvement in Soil Organic Carbon Estimation Using Data-Driven Machine Learning Based on Habitat Patches. Remote Sens., 16.","DOI":"10.3390\/rs16040688"},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Hengl, T., Mendes de Jesus, J., Heuvelink, G.B.M., Ruiperez Gonzalez, M., Kilibarda, M., Blagoti\u0107, A., Shangguan, W., Wright, M.N., Geng, X., and Bauer-Marschallinger, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE, 12.","DOI":"10.1371\/journal.pone.0169748"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1016\/j.geoderma.2018.07.037","article-title":"Baseline map of soil organic carbon in Tibet and its uncertainty in the 1980s","volume":"334","author":"Zhou","year":"2019","journal-title":"Geoderma"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"107631","DOI":"10.1016\/j.catena.2023.107631","article-title":"Evaluation and mapping soil organic carbon in seasonally frozen ground on the Tibetan Plateau","volume":"235","author":"Yang","year":"2024","journal-title":"Catena"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"1592","DOI":"10.1111\/j.1365-2486.2008.01591.x","article-title":"Storage, patterns and controls of soil organic carbon in the Tibetan grasslands","volume":"14","author":"Yang","year":"2008","journal-title":"Glob. Change Biol."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1016\/S0048-9697(01)01100-7","article-title":"Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication","volume":"291","author":"Wang","year":"2002","journal-title":"Sci. Total Environ."},{"key":"ref_40","first-page":"2289","article-title":"Assessment of ecological vulnerability on the Tibetan Plateau","volume":"30","author":"Yu","year":"2011","journal-title":"Geogr. Res."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"217","DOI":"10.5194\/soil-7-217-2021","article-title":"SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty","volume":"7","author":"Poggio","year":"2021","journal-title":"Soil"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1016\/j.scib.2021.10.013","article-title":"Mapping high resolution National Soil Information Grids of China","volume":"67","author":"Liu","year":"2021","journal-title":"Sci. Bull."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"114061","DOI":"10.1016\/j.geoderma.2019.114061","article-title":"High-resolution and three-dimensional mapping of soil texture of China","volume":"361","author":"Liu","year":"2020","journal-title":"Geoderma"},{"key":"ref_44","unstructured":"Xu, E. (2019). Land Use of the Tibet Plateau in 2015 (Version 1.0), Northwest Institute of Eco-Environment and Resources. A Big Earth Data Platform for Three Poles."},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Ye, Z., Sheng, Z., Liu, X., Ma, Y., Wang, R., Ding, S., Liu, M., Li, Z., and Wang, Q. (2021). Using Machine Learning Algorithms Based on GF-6 and Google Earth Engine to Predict and Map the Spatial Distribution of Soil Organic Matter Content. Sustainability, 13.","DOI":"10.3390\/su132414055"},{"key":"ref_46","doi-asserted-by":"crossref","unstructured":"Wang, H., Zhang, X., Wu, W., and Liu, H. (2021). Prediction of Soil Organic Carbon under Different Land Use Types Using Sentinel-1\/-2 Data in a Small Wa-tershed. Remote Sens., 13.","DOI":"10.3390\/rs13071229"},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"142661","DOI":"10.1016\/j.scitotenv.2020.142661","article-title":"Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images","volume":"755","author":"Zhou","year":"2021","journal-title":"Sci. Total Environ."},{"key":"ref_48","first-page":"558","article-title":"Comparison of Four Machine Learning Models in Predicting Soil Organic Carbon Content in a Subtropical Hilly Watershed","volume":"44","author":"Wang","year":"2023","journal-title":"Res. Agric. Mod."},{"key":"ref_49","first-page":"2497","article-title":"Correlation analysis on spatial pattern of land use and soil at catchment scale","volume":"23","author":"Chen","year":"2003","journal-title":"Acta Ecol. Sin."},{"key":"ref_50","doi-asserted-by":"crossref","unstructured":"Yan, J., Xu, Y., Cheng, Q., Jiang, S., Wang, Q., Xiao, Y., Ma, C., Yan, J., and Wang, X. (2021). LightGBM: Accelerated genomically designed crop breeding through ensemble learning. Genome Biol., 22.","DOI":"10.1186\/s13059-021-02492-y"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1016\/j.chemosphere.2018.02.122","article-title":"Pollution, ecological-health risks; sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau","volume":"201","author":"Wu","year":"2018","journal-title":"Chemosphere"},{"key":"ref_52","doi-asserted-by":"crossref","unstructured":"Yang, J., Fan, J., Lan, Z., Mu, X., Wu, Y., Xin, Z., Miping, P., and Zhao, G. (2023). Improved Surface Soil Organic Carbon Mapping of SoilGrids250m Using Sentinel-2 Spectral Images in the Qinghai\u2013Tibetan Plateau. Remote Sens., 15.","DOI":"10.3390\/rs15010114"},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1080\/10888438.2015.1107073","article-title":"The Random Forests statistical technique: An examination of its value for the study of reading","volume":"20","author":"Matsuki","year":"2016","journal-title":"Sci. Stud. Read."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"1174","DOI":"10.1037\/a0024776","article-title":"The trade-off between accuracy and precision in latent variable models of mediation processes","volume":"101","author":"Ledgerwood","year":"2011","journal-title":"J. Personal. Soc. Psychol."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"425","DOI":"10.1111\/1467-9868.00294","article-title":"Bayesian calibration of computer models","volume":"63","author":"Kennedy","year":"2001","journal-title":"J. R. Stat. Soc. Ser. B (Stat. Methodol.)"},{"key":"ref_57","unstructured":"Liu, B., and Udell, M. (2020). Impact of accuracy on model interpretations. arXiv."},{"key":"ref_58","unstructured":"Zhao, Y., Chen, J., and Oymak, S. (2020). On the role of dataset quality and heterogeneity in model confidence. arXiv."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1016\/j.catena.2017.04.007","article-title":"Elevational gradient affect functional fractions of soil organic carbon and aggregates stability in a Tibetan alpine meadow","volume":"156","author":"Li","year":"2017","journal-title":"Catena"},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1038\/nature04514","article-title":"Temperature sensitivity of soil carbon decomposition and feedbacks to climate change","volume":"440","author":"Davidson","year":"2006","journal-title":"Nature"},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"274","DOI":"10.1007\/s11859-009-0316-4","article-title":"Distribution characteristics of soil organic carbon of alpine meadow in the Eastern Qinghai-Tibet Plateau","volume":"14","author":"Zhang","year":"2009","journal-title":"Wuhan Univ. J. Nat. Sci."},{"key":"ref_62","first-page":"7621","article-title":"The spatial and temporal pattern evolution of vegetation NPP and its driving forces in middle-lower areas of the Min river based on geographical detector analyses","volume":"39","author":"Pan","year":"2019","journal-title":"Acta Ecol. Sin."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"177","DOI":"10.17520\/biods.2017152","article-title":"The distribution, population and conservation status of Przewalski\u2019s gazelle, Procapra przewalskii","volume":"26","author":"Ping","year":"2018","journal-title":"Biodivers. Sci."},{"key":"ref_64","first-page":"933","article-title":"Distribution Characteristics of Soil Organic Carbon Storage and Density on the Qinghai-Tibet Plateau","volume":"45","author":"Tian","year":"2008","journal-title":"Acta Pedol. Sin."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"302","DOI":"10.12677\/AEP.2023.132040","article-title":"Influence of Hydrogeological Characteristics on Soil Groundwater Pollution Diffusion\u2014A Case Study of an Agricultural Pharmaceutical Factory","volume":"13","author":"Du","year":"2023","journal-title":"Adv. Environ. Prot."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1016\/j.catena.2017.06.017","article-title":"Effect of altitude and aspect on soil organic carbon and nitrogen stocks in the Himalayan Mawer Forest Range","volume":"158","author":"Bangroo","year":"2017","journal-title":"Catena"},{"key":"ref_67","doi-asserted-by":"crossref","unstructured":"Choudhury, B.U., Verma, B.C., Ramesh, T., and Hazarika, S. (2018). Altitude regulates accumulation of organic carbon in soil: Case studies from the hilly ecosystem of northeastern region of India. Adv. Crop Environ. Interact., 137\u2013149.","DOI":"10.1007\/978-981-13-1861-0_5"},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/j.geoderma.2007.10.023","article-title":"Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai\u2013Tibet Plateau, China","volume":"143","author":"Wang","year":"2008","journal-title":"Geoderma"},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"222","DOI":"10.1016\/j.catena.2017.09.026","article-title":"Topographic metric predictions of soil redistribution and organic carbon in Iowa cropland fields","volume":"160","author":"Li","year":"2018","journal-title":"Catena"},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"963","DOI":"10.1016\/j.scitotenv.2015.12.022","article-title":"Impact of topographic aspect and vegetation (native and reforested areas) on soil organic carbon and nitrogen budgets in Mediterranean natural areas","volume":"544","author":"Brevik","year":"2016","journal-title":"Sci. Total Environ."},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"391","DOI":"10.1007\/s10980-008-9316-6","article-title":"Assessing topographic patterns in moisture use and stress using a water balance approach","volume":"24","author":"Dyer","year":"2009","journal-title":"Landsc. Ecol."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.geoderma.2012.11.016","article-title":"Soil prediction using artificial neural networks and topographic attributes","volume":"195","author":"Silveira","year":"2013","journal-title":"Geoderma"},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1002\/ppp.1740","article-title":"Soil organic carbon and its relationship to vegetation communities and soil properties in permafrost areas of the Central Western Qinghai-Tibet Plateau, China","volume":"23","author":"Wu","year":"2012","journal-title":"Permafr. Periglac. Process."},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"035401","DOI":"10.1088\/1748-9326\/7\/3\/035401","article-title":"Storage, patterns; control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai\u2013Tibetan Plateau","volume":"7","author":"Liu","year":"2012","journal-title":"Environ. Res. Lett."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"3001","DOI":"10.1111\/j.1365-2486.2009.01953.x","article-title":"Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau","volume":"15","author":"Baumann","year":"2009","journal-title":"Glob. Change Biol."},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"1707","DOI":"10.5194\/bg-10-1707-2013","article-title":"Meta-analysis of relationships between environmental factors and aboveground biomass in the alpine grassland on the Tibetan Plateau","volume":"10","author":"Sun","year":"2013","journal-title":"Biogeosciences"},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"11999","DOI":"10.1002\/ece3.4656","article-title":"Response of soil organic carbon to vegetation degradation along a moisture gradient in a wet mead-ow on the Qinghai\u2013Tibet Plateau","volume":"8","author":"Alhassan","year":"2018","journal-title":"Ecol. Evol."},{"key":"ref_78","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/j.scitotenv.2018.09.038","article-title":"Nitrogen and phosphorus enrichment accelerates soil organic carbon loss in alpine grassland on the Qinghai-Tibetan Plateau","volume":"650","author":"Luo","year":"2019","journal-title":"Sci. Total Environ."},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1007\/s11104-021-05086-6","article-title":"Degradation of wetlands on the Qinghai-Tibetan Plateau causing a loss in soil organic carbon in 1966\u20132016","volume":"467","author":"Li","year":"2021","journal-title":"Plant Soil"},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"5265","DOI":"10.1080\/0143116031000115247","article-title":"Relationships between Radarsat SAR data and surface moisture content of agricultural organic soils","volume":"24","author":"Mathieu","year":"2003","journal-title":"Int. J. Remote Sens."},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"1729","DOI":"10.1109\/36.942551","article-title":"Soil Moisture Retrieval from Space: The Soil Moisture and Ocean Salinity (SMOS) Mission","volume":"39","author":"Kerr","year":"2001","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_82","doi-asserted-by":"crossref","unstructured":"Monerris, A., Benedicto, P., Vall-llossera, M., Camps, A., Santanach, E., Piles, M., and Prehn, R. (2008). Assessment of the topography impact on microwave radiometry at L-band. Solid Earth, 113.","DOI":"10.1029\/2008JB005602"},{"key":"ref_83","unstructured":"Liu, F., and Zhang, G. (2021). Basic Soil Property Dataset of High-Resolution China Soil Information Grids (2010\u20132018), Northwest Institute of Eco-Environment and Resources. A Big Earth Data Platform for Three Poles."},{"key":"ref_84","doi-asserted-by":"crossref","unstructured":"Wang, T., Zhou, W., Xiao, J., Li, H., Yao, L., Xie, L., and Wang, K. (2023). Soil Organic Carbon Prediction Using Sentinel-2 Data and Environmental Variables in a Karst Trough Val-ley Area of Southwest China. Remote Sens., 15.","DOI":"10.3390\/rs15082118"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/16\/16\/3006\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,16]],"date-time":"2024-08-16T09:01:04Z","timestamp":1723798864000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/16\/16\/3006"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8,16]]},"references-count":84,"journal-issue":{"issue":"16","published-online":{"date-parts":[[2024,8]]}},"alternative-id":["rs16163006"],"URL":"https:\/\/doi.org\/10.3390\/rs16163006","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,8,16]]}}}