{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,31]],"date-time":"2024-07-31T00:30:26Z","timestamp":1722385826488},"reference-count":118,"publisher":"MDPI AG","issue":"15","license":[{"start":{"date-parts":[[2024,7,25]],"date-time":"2024-07-25T00:00:00Z","timestamp":1721865600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Spectral confusion among land cover classes is quite common, let alone in a complex and heterogenous system like the semi-arid Mediterranean environment; thus, employing new developments in remote sensing, such as multispectral imagery (MSI) captured by unmanned aerial vehicles (UAVs) and airborne light detection and ranging (LiDAR) techniques, with deep learning (DL) algorithms for land cover classification can help to address this problem. Therefore, we propose an image-based land cover classification methodology based on fusing multispectral and airborne LiDAR data by adopting CNN-based semantic segmentation in a semi-arid Mediterranean area of northeastern Aegean, Greece. The methodology consists of three stages: (i) data pre-processing, (ii) semantic segmentation, and (iii) accuracy assessment. The multispectral bands were stacked with the calculated Normalized Difference Vegetation Index (NDVI) and the LiDAR-based attributes height, intensity, and number of returns converted into two-dimensional (2D) images. Then, a hyper-parameter analysis was performed to investigate the impact on the classification accuracy and training time of the U-Net architecture by varying the input tile size and the patch size for prediction, including the learning rate and algorithm optimizer. Finally, comparative experiments were conducted by altering the input data type to test our hypothesis, and the CNN model performance was analyzed by using accuracy assessment metrics and visually comparing the segmentation maps. The findings of this investigation showed that fusing multispectral and LiDAR data improves the classification accuracy of the U-Net, as it yielded the highest overall accuracy of 79.34% and a kappa coefficient of 0.6966, compared to using multispectral (OA: 76.03%; K: 0.6538) or LiDAR (OA: 37.79%; K: 0.0840) data separately. Although some confusion still exists among the seven land cover classes observed, the U-Net delivered a detailed and quite accurate segmentation map.<\/jats:p>","DOI":"10.3390\/rs16152729","type":"journal-article","created":{"date-parts":[[2024,7,25]],"date-time":"2024-07-25T18:31:07Z","timestamp":1721932267000},"page":"2729","source":"Crossref","is-referenced-by-count":0,"title":["Fusing Multispectral and LiDAR Data for CNN-Based Semantic Segmentation in Semi-Arid Mediterranean Environments: Land Cover Classification and Analysis"],"prefix":"10.3390","volume":"16","author":[{"given":"Athanasia","family":"Chroni","sequence":"first","affiliation":[{"name":"Department of Geography, University of the Aegean, 81100 Mytilene, Greece"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6932-2986","authenticated-orcid":false,"given":"Christos","family":"Vasilakos","sequence":"additional","affiliation":[{"name":"Department of Geography, University of the Aegean, 81100 Mytilene, Greece"}]},{"given":"Marianna","family":"Christaki","sequence":"additional","affiliation":[{"name":"Department of Geography, University of the Aegean, 81100 Mytilene, Greece"}]},{"given":"Nikolaos","family":"Soulakellis","sequence":"additional","affiliation":[{"name":"Department of Geography, University of the Aegean, 81100 Mytilene, Greece"}]}],"member":"1968","published-online":{"date-parts":[[2024,7,25]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"2703","DOI":"10.1080\/01431160500522700","article-title":"Land Use\/Cover Classification of Arid and Semi-Arid Mediterranean Landscapes Using Landsat ETM","volume":"27","author":"Alrababah","year":"2006","journal-title":"Int. J. Remote Sens."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"158","DOI":"10.1016\/j.baae.2006.03.009","article-title":"Effects of Fragmentation, Abiotic Factors and Land Use on Vegetation Recovery in a Semi-Arid Mediterranean Area","volume":"8","author":"Pueyo","year":"2007","journal-title":"Basic Appl. Ecol."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1016\/S0098-3004(99)00119-3","article-title":"The Integration of Spectral and Textural Information Using Neural Networks for Land Cover Mapping in the Mediterranean","volume":"26","author":"Berberoglu","year":"2000","journal-title":"Comput. Geosci."},{"key":"ref_4","first-page":"322","article-title":"Texture Classification of Mediterranean Land Cover","volume":"9","author":"Berberoglu","year":"2007","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1016\/j.isprsjprs.2016.01.004","article-title":"Learning Multiscale and Deep Representations for Classifying Remotely Sensed Imagery","volume":"113","author":"Zhao","year":"2016","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_6","first-page":"102515","article-title":"A Hybrid Deep Convolutional Neural Network for Accurate Land Cover Classification","volume":"103","author":"Wambugu","year":"2021","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1016\/j.neucom.2022.04.045","article-title":"Multi-Source Collaborative Enhanced for Remote Sensing Images Semantic Segmentation","volume":"493","author":"Zhao","year":"2022","journal-title":"Neurocomputing"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"401","DOI":"10.1006\/jare.2000.0771","article-title":"A Comparison of Single Date and Multitemporal Satellite Image Classifications in a Semi-Arid Grassland","volume":"49","author":"Langley","year":"2001","journal-title":"J. Arid Environ."},{"key":"ref_9","first-page":"54","article-title":"Land Use and Land Cover Assessment along Pondicherry and Its Surroundings Using Indian Remote Sensing Satellite and GIS","volume":"4","author":"Nobi","year":"2009","journal-title":"J. Sci. Res."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"2445","DOI":"10.1016\/j.rse.2011.05.005","article-title":"Assessing Effects of Temporal Compositing and Varying Observation Periods for Large-Area Land-Cover Mapping in Semi-Arid Ecosystems: Implications for Global Monitoring","volume":"115","author":"Herold","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.isprsjprs.2016.03.008","article-title":"Optical Remotely Sensed Time Series Data for Land Cover Classification: A Review","volume":"116","author":"White","year":"2016","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"1709","DOI":"10.1109\/JSTARS.2019.2911113","article-title":"Advanced Multi-Sensor Optical Remote Sensing for Urban Land Use and Land Cover Classification: Outcome of the 2018 Ieee Grss Data Fusion Contest","volume":"12","author":"Xu","year":"2019","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"doi-asserted-by":"crossref","unstructured":"Quan, Y., Tong, Y., Feng, W., Dauphin, G., Huang, W., and Xing, M. (2020). A Novel Image Fusion Method of Multi-Spectral and Sar Images for Land Cover Classification. Remote Sens., 12.","key":"ref_13","DOI":"10.3390\/rs12223801"},{"key":"ref_14","first-page":"6501505","article-title":"Land Cover Classification of Multispectral LiDAR Data with an Efficient Self-Attention Capsule Network","volume":"19","author":"Yu","year":"2022","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1080\/10095020.2021.2017237","article-title":"Land Cover Classification from Remote Sensing Images Based on Multi-Scale Fully Convolutional Network","volume":"25","author":"Li","year":"2022","journal-title":"Geo-Spat. Inf. Sci."},{"doi-asserted-by":"crossref","unstructured":"Tzepkenlis, A., Marthoglou, K., and Grammalidis, N. (2023). Efficient Deep Semantic Segmentation for Land Cover Classification Using Sentinel Imagery. Remote Sens., 15.","key":"ref_16","DOI":"10.3390\/rs15082027"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"1237","DOI":"10.3390\/s8021287","article-title":"Using ASTER Imagery in Land Use\/Cover Classification of Eastern Mediterranean Landscapes According to CORINE Land Cover Project","volume":"8","author":"Akay","year":"2008","journal-title":"Sensors"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"1141","DOI":"10.1016\/j.rse.2010.01.002","article-title":"Synergistic Use of QuickBird Multispectral Imagery and LIDAR Data for Object-Based Forest Species Classification","volume":"114","author":"Ke","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"1585","DOI":"10.1109\/JPROC.2015.2462751","article-title":"Challenges and Opportunities of Multimodality and Data Fusion in Remote Sensing","volume":"103","author":"Prasad","year":"2015","journal-title":"Proc. IEEE"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"6","DOI":"10.1109\/MGRS.2018.2890023","article-title":"Multisource and Multitemporal Data Fusion in Remote Sensing: A Comprehensive Review of the State of the Art","volume":"7","author":"Ghamisi","year":"2019","journal-title":"IEEE Geosci. Remote Sens. Mag."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"2294","DOI":"10.1109\/JPROC.2019.2948454","article-title":"Remotely Sensed Big Data: Evolution in Model Development for Information Extraction [Point of View]","volume":"107","author":"Zhang","year":"2019","journal-title":"Proc. IEEE"},{"key":"ref_22","first-page":"100740","article-title":"Land Cover Classification through Convolutional Neur-Al Network Model Assembly: A Case Study of a Local Rural Area in Thailand","volume":"26","author":"Fitton","year":"2022","journal-title":"Remote Sens. Appl. Soc. Environ."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"4939","DOI":"10.1109\/TGRS.2020.2969024","article-title":"Classification of Hyperspectral and LiDAR Data Using Coupled CNNs","volume":"58","author":"Hang","year":"2020","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.inffus.2016.03.003","article-title":"A Review of Remote Sensing Image Fusion Methods","volume":"32","author":"Ghassemian","year":"2016","journal-title":"Inf. Fusion"},{"key":"ref_25","first-page":"102634","article-title":"Airborne Multispectral LiDAR Point Cloud Classification with a Feature Reasoning-Based Graph Convolution Network","volume":"105","author":"Zhao","year":"2021","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1109\/MGRS.2016.2540798","article-title":"Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art","volume":"4","author":"Zhang","year":"2016","journal-title":"IEEE Geosci. Remote Sens. Mag."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"166","DOI":"10.1016\/j.isprsjprs.2019.04.015","article-title":"Deep Learning in Remote Sensing Applications: A Meta-Analysis and Review","volume":"152","author":"Ma","year":"2019","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep Learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1016\/j.isprsjprs.2020.05.022","article-title":"Land-Cover Classification of Multispectral LiDAR Data Using CNN with Optimized Hyper-Parameters","volume":"166","author":"Pan","year":"2020","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1109\/MGRS.2017.2762307","article-title":"Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources","volume":"5","author":"Zhu","year":"2017","journal-title":"IEEE Geosci. Remote Sens. Mag."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.isprsjprs.2018.04.014","article-title":"Algorithms for Semantic Segmentation of Multispectral Remote Sensing Imagery Using Deep Learning","volume":"145","author":"Kemker","year":"2018","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1016\/j.isprsjprs.2021.01.020","article-title":"Remote Sensing Image Segmentation Advances: A Meta-Analysis","volume":"173","author":"Kotaridis","year":"2021","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"626","DOI":"10.1016\/j.neucom.2022.01.005","article-title":"Review the State-of-the-Art Technologies of Semantic Segmentation Based on Deep Learning","volume":"493","author":"Mo","year":"2022","journal-title":"Neurocomputing"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"823","DOI":"10.1080\/01431160600746456","article-title":"A Survey of Image Classification Methods and Techniques for Improving Classification Performance","volume":"28","author":"Lu","year":"2007","journal-title":"Int. J. Remote Sens."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1080\/22797254.2017.1274572","article-title":"Integrating Elevation Data and Multispectral High-Resolution Images for an Improved Hybrid Land Use\/Land Cover Mapping","volume":"50","author":"Sturari","year":"2017","journal-title":"Eur. J. Remote Sens."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.rse.2007.03.011","article-title":"Integrating LIDAR Data and Multispectral Imagery for Enhanced Classification of Rangeland Vegetation: A Meta Analysis","volume":"111","author":"Bork","year":"2007","journal-title":"Remote Sens. Environ."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"1537","DOI":"10.1080\/01431160701736471","article-title":"Species Identification of Individual Trees by Combining High Resolution LiDAR Data with Multi-Spectral Images","volume":"29","author":"Holmgren","year":"2008","journal-title":"Int. J. Remote Sens."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"2364","DOI":"10.3390\/rs3112364","article-title":"Fusion of High Resolution Aerial Multispectral and Lidar Data: Land Cover in the Context of Urban Mosquito Habitat","volume":"3","author":"Hartfield","year":"2011","journal-title":"Remote Sens."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"2988","DOI":"10.1016\/j.rse.2008.02.004","article-title":"Object-Based Land Cover Classification Using Airborne LiDAR","volume":"112","author":"Antonarakis","year":"2008","journal-title":"Remote Sens. Environ."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"162","DOI":"10.5589\/m06-015","article-title":"Object-Oriented Land Cover Classification of Lidar-Derived Surfaces","volume":"32","author":"Brennan","year":"2006","journal-title":"Can. J. Remote Sens."},{"unstructured":"Charaniya, A.P., Manduchi, R., and Lodha, S.K. (\u20132, January 27). Supervised Parametric Classification of Aerial LiDAR Data. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Washington, DC, USA.","key":"ref_41"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1080\/01431160903439882","article-title":"Information Fusion of Aerial Images and LIDAR Data in Urban Areas: Vector-Stacking, Re-Classification and Post-Processing Approaches","volume":"32","author":"Huang","year":"2011","journal-title":"Int. J. Remote Sens."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"856","DOI":"10.1139\/cjfr-2014-0430","article-title":"Combining Aerial LiDAR and Multispectral Imagery to Assess Postfire Regeneration Types in a Mediterranean Forest","volume":"45","author":"Coll","year":"2015","journal-title":"Can. J. For. Res."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"298","DOI":"10.1016\/j.isprsjprs.2017.04.005","article-title":"Object-Based Analysis of Multispectral Airborne Laser Scanner Data for Land Cover Classification and Map Updating","volume":"128","author":"Matikainen","year":"2017","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"doi-asserted-by":"crossref","unstructured":"Shi, S., Bi, S., Gong, W., Chen, B., Chen, B., Tang, X., Qu, F., and Song, S. (2021). Land Cover Classification with Multispectral LiDAR Based on Multi-Scale Spatial and Spectral Feature Selection. Remote Sens., 13.","key":"ref_45","DOI":"10.3390\/rs13204118"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.isprsjprs.2010.08.007","article-title":"Relevance of Airborne Lidar and Multispectral Image Data for Urban Scene Classification Using Random Forests","volume":"66","author":"Guo","year":"2011","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"doi-asserted-by":"crossref","unstructured":"Fernandez-Diaz, J.C., Carter, W.E., Glennie, C., Shrestha, R.L., Pan, Z., Ekhtari, N., Singhania, A., Hauser, D., and Sartori, M. (2016). Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar. Remote Sens., 8.","key":"ref_47","DOI":"10.3390\/rs8110936"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"113","DOI":"10.5194\/isprsannals-II-3-W5-113-2015","article-title":"Evaluating the Potential of Multispectral Airborne Lidar for Topographic Mapping and Land Cover Classification","volume":"2","author":"Wichmann","year":"2015","journal-title":"ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"2068","DOI":"10.1109\/JSTARS.2018.2835483","article-title":"Classification of Airborne Multispectral Lidar Point Clouds for Land Cover Mapping","volume":"11","author":"Ekhtari","year":"2018","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"doi-asserted-by":"crossref","unstructured":"Morsy, S., Shaker, A., and El-Rabbany, A. (2017). Multispectral Lidar Data for Land Cover Classification of Urban Areas. Sensors, 17.","key":"ref_50","DOI":"10.3390\/s17050958"},{"key":"ref_51","first-page":"103","article-title":"Classification of Tree Species and Standing Dead Trees with Lidar Point Clouds Using Two Deep Neural Networks: PointCNN and 3DmFV-Net","volume":"90","author":"Hell","year":"2022","journal-title":"PFG-J. Photogramm. Remote Sens. Geoinf. Sci."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"1263","DOI":"10.1109\/LGRS.2019.2940505","article-title":"A Hybrid Capsule Network for Land Cover Classification Using Multispectral LiDAR Data","volume":"17","author":"Yu","year":"2020","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"960","DOI":"10.1080\/13658816.2018.1431840","article-title":"Classifying Airborne LiDAR Point Clouds via Deep Features Learned by a Multi-Scale Convolutional Neural Network","volume":"32","author":"Zhao","year":"2018","journal-title":"Int. J. Geogr. Inf. Sci."},{"doi-asserted-by":"crossref","unstructured":"Jing, Z., Guan, H., Zhao, P., Li, D., Yu, Y., Zang, Y., Wang, H., and Li, J. (2021). Multispectral Lidar Point Cloud Classification Using Se-Pointnet++. Remote Sens., 13.","key":"ref_54","DOI":"10.3390\/rs13132516"},{"key":"ref_55","first-page":"100449","article-title":"Land Cover Mapping of Urban Environments Using Multispectral LiDAR Data under Data Imbalance","volume":"21","author":"Ghaseminik","year":"2021","journal-title":"Remote Sens. Appl. Soc. Environ."},{"doi-asserted-by":"crossref","unstructured":"Sol\u00f3rzano, J.V., Mas, J.F., Gao, Y., and Gallardo-Cruz, J.A. (2021). Land Use Land Cover Classification with U-Net: Advantages of Combining Sentinel-1 and Sentinel-2 Imagery. Remote Sens., 13.","key":"ref_56","DOI":"10.3390\/rs13183600"},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"16275","DOI":"10.1038\/s41598-023-43317-1","article-title":"Research on Land Cover Classification of Multi-Source Remote Sensing Data Based on Improved U-Net Network","volume":"13","author":"Zhang","year":"2023","journal-title":"Sci. Rep."},{"key":"ref_58","first-page":"100887","article-title":"Deep Learning U-Net Classification of Sentinel-1 and 2 Fusions Effectively Demarcates Tropical Montane Forest\u2019s Deforestation","volume":"29","author":"Altarez","year":"2023","journal-title":"Remote Sens. Appl. Soc. Environ."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"111608","DOI":"10.1016\/j.ecolind.2024.111608","article-title":"A Deep-Learning-Based Tree Species Classification for Natural Secondary Forests Using Unmanned Aerial Vehicle Hyperspectral Images and LiDAR","volume":"159","author":"Ma","year":"2024","journal-title":"Ecol. Indic."},{"doi-asserted-by":"crossref","unstructured":"Elamin, A., and El-Rabbany, A. (2023). UAV-Based Image and LiDAR Fusion for Pavement Crack Segmentation. Sensors, 23.","key":"ref_60","DOI":"10.3390\/s23239315"},{"doi-asserted-by":"crossref","unstructured":"Ali, K., and Johnson, B.A. (2022). Land-Use and Land-Cover Classification in Semi-Arid Areas from Medium-Resolution Remote-Sensing Imagery: A Deep Learning Approach. Sensors, 22.","key":"ref_61","DOI":"10.3390\/s22228750"},{"doi-asserted-by":"crossref","unstructured":"Valdivieso-Ros, C., Alonso-Sarria, F., and Gomariz-Castillo, F. (2023). Effect of the Synergetic Use of Sentinel-1, Sentinel-2, LiDAR and Derived Data in Land Cover Classification of a Semiarid Mediterranean Area Using Machine Learning Algorithms. Remote Sens., 15.","key":"ref_62","DOI":"10.3390\/rs15020312"},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"923","DOI":"10.1007\/s11676-021-01375-z","article-title":"Land Cover Classification in a Mixed Forest-Grassland Ecosystem Using LResU-Net and UAV Imagery","volume":"33","author":"Zhang","year":"2022","journal-title":"J. For. Res."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1002\/rse2.44","article-title":"UAV Hyperspectral and Lidar Data and Their Fusion for Arid and Semi-Arid Land Vegetation Monitoring","volume":"4","author":"Sankey","year":"2018","journal-title":"Remote Sens. Ecol. Conserv."},{"doi-asserted-by":"crossref","unstructured":"Norton, C.L., Hartfield, K., Collins, C.D.H., van Leeuwen, W.J.D., and Metz, L.J. (2022). Multi-Temporal LiDAR and Hyperspectral Data Fusion for Classification of Semi-Arid Woody Cover Species. Remote Sens., 14.","key":"ref_65","DOI":"10.3390\/rs14122896"},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"813","DOI":"10.1007\/s10584-012-0570-x","article-title":"Climate Change Hotspots in the CMIP5 Global Climate Model Ensemble","volume":"114","author":"Diffenbaugh","year":"2012","journal-title":"Clim. Chang."},{"doi-asserted-by":"crossref","unstructured":"Douvis, K., Kapsomenakis, J., Solomos, S., Poupkou, A., Stavraka, T., Nastos, P., and Zerefos, C. (2023). Change in Aridity Index in the Mediterranean Region under Different Emission Scenarios. Environ. Sci. Proc., 26.","key":"ref_67","DOI":"10.3390\/environsciproc2023026171"},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.envsci.2020.04.005","article-title":"Addressing the Need for Improved Land Cover Map Products for Policy Support","volume":"112","author":"Szantoi","year":"2020","journal-title":"Environ. Sci. Policy"},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"1880","DOI":"10.12681\/bgsg.17182","article-title":"The Plaka Petrified Forest Park in Western Lesvos\u2014Greece","volume":"40","author":"Zouros","year":"2007","journal-title":"Bull. Geol. Soc. Greece"},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/0034-4257(79)90013-0","article-title":"Red and Photographic Infrared Linear Combinations for Monitoring Vegetation","volume":"8","author":"Tucker","year":"1979","journal-title":"Remote Sens. Environ."},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"288","DOI":"10.1016\/j.jaridenv.2006.02.022","article-title":"A 20-Year Study of NDVI Variability over the Northeast Region of Brazil","volume":"67","author":"Barbosa","year":"2006","journal-title":"J. Arid Environ."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"3041","DOI":"10.3390\/rs6043041","article-title":"Vegetation Greenness in Northeastern Brazil and Its Relation to ENSO Warm Events","volume":"6","author":"Erasmi","year":"2014","journal-title":"Remote Sens."},{"key":"ref_73","first-page":"179","article-title":"Use of MSI\/Sentinel-2 and Airborne LiDAR Data for Mapping Vegetation and Studying the Relationships with Soil Attributes in the Brazilian Semi-Arid Region","volume":"73","author":"Sanches","year":"2018","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"doi-asserted-by":"crossref","unstructured":"Gowravaram, S., Tian, P., Flanagan, H., Goyer, J., and Chao, H. (2018, January 12\u201315). UAS-Based Multispectral Remote Sensing and NDVI Calculation for Post Disaster Assessment. Proceedings of the 2018 International Conference on Unmanned Aircraft Systems, ICUAS 2018, Dallas, TX, USA.","key":"ref_74","DOI":"10.1109\/ICUAS.2018.8453314"},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/j.rse.2014.11.001","article-title":"Urban Land Cover Classification Using Airborne LiDAR Data: A Review","volume":"158","author":"Yan","year":"2015","journal-title":"Remote Sens. Environ."},{"unstructured":"Girardeau-Montaut, D. (2024, February 10). CloudCompare: 3D Point Cloud and Mesh Processing Software. Available online: http:\/\/www.cloudcompare.org.","key":"ref_76"},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"101412","DOI":"10.1016\/j.ecoinf.2021.101412","article-title":"Deep Learning for the Prediction and Classification of Land Use and Land Cover Changes Using Deep Convolutional Neural Network","volume":"65","author":"Jagannathan","year":"2021","journal-title":"Ecol. Inform."},{"key":"ref_78","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1002\/sam.11583","article-title":"Optimal Ratio for Data Splitting","volume":"15","author":"Joseph","year":"2022","journal-title":"Stat. Anal. Data Min."},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"166","DOI":"10.1080\/00401706.2021.1921037","article-title":"SPlit: An Optimal Method for Data Splitting","volume":"64","author":"Joseph","year":"2022","journal-title":"Technometrics"},{"doi-asserted-by":"crossref","unstructured":"Ronneberger, O., Fischer, P., and Brox, T. (2015, January 5\u20139). U-Net: Convolutional Networks for Biomedical Image Segmentation. Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany.","key":"ref_80","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"5845","DOI":"10.1007\/s10462-022-10152-1","article-title":"Modality Specific U-Net Variants for Biomedical Image Segmentation: A Survey","volume":"55","author":"Punn","year":"2022","journal-title":"Artif. Intell. Rev."},{"doi-asserted-by":"crossref","unstructured":"Long, J., Shelhamer, E., and Darrell, T. (2015, January 7\u201312). Fully Convolutional Networks for Semantic Segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA.","key":"ref_82","DOI":"10.1109\/CVPR.2015.7298965"},{"doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., and Sun, J. (2016, January 27\u201330). Deep Residual Learning for Image Recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA.","key":"ref_83","DOI":"10.1109\/CVPR.2016.90"},{"doi-asserted-by":"crossref","unstructured":"Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., and Pal, C. (2016, January 21). The Importance of Skip Connections in Biomedical Image Segmentation. Proceedings of the Deep Learning and Data Labeling for Medical Applications, Athens, Greece.","key":"ref_84","DOI":"10.1007\/978-3-319-46976-8_19"},{"key":"ref_85","doi-asserted-by":"crossref","first-page":"244","DOI":"10.1016\/j.neucom.2020.05.070","article-title":"A Survey on U-Shaped Networks in Medical Image Segmentations","volume":"409","author":"Liu","year":"2020","journal-title":"Neurocomputing"},{"key":"ref_86","doi-asserted-by":"crossref","first-page":"53928","DOI":"10.1109\/ACCESS.2022.3175864","article-title":"Hybrid Skip: A Biologically Inspired Skip Connection for the UNet Architecture","volume":"10","author":"Zioulis","year":"2022","journal-title":"IEEE Access"},{"key":"ref_87","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1016\/j.neunet.2019.08.025","article-title":"MultiResUNet: Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation","volume":"121","author":"Ibtehaz","year":"2020","journal-title":"Neural Netw."},{"key":"ref_88","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1145\/3065386","article-title":"ImageNet Classification with Deep Convolutional Neural Networks","volume":"60","author":"Krizhevsky","year":"2017","journal-title":"Commun. ACM"},{"key":"ref_89","doi-asserted-by":"crossref","first-page":"6232","DOI":"10.1109\/TGRS.2016.2584107","article-title":"Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks","volume":"54","author":"Chen","year":"2016","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_90","doi-asserted-by":"crossref","first-page":"338","DOI":"10.1016\/j.rse.2017.11.024","article-title":"Supervised Methods of Image Segmentation Accuracy Assessment in Land Cover Mapping","volume":"205","author":"Costa","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"1335","DOI":"10.1016\/0031-3203(95)00169-7","article-title":"A Survey on Evaluation Methods for Image Segmentation","volume":"29","author":"Zhang","year":"1996","journal-title":"Pattern Recognit."},{"key":"ref_92","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/S0034-4257(01)00295-4","article-title":"Status of Land Cover Classification Accuracy Assessment","volume":"80","author":"Foody","year":"2002","journal-title":"Remote Sens. Environ."},{"doi-asserted-by":"crossref","unstructured":"Maxwell, A.E., Warner, T.A., and Guill\u00e9n, L.A. (2021). Accuracy Assessment in Convolutional Neural Network-Based Deep Learning Remote Sensing Studies\u2014Part 1: Literature Review. Remote Sens., 13.","key":"ref_93","DOI":"10.3390\/rs13132450"},{"doi-asserted-by":"crossref","unstructured":"M\u00fcller, D., Soto-Rey, I., and Kramer, F. (2022). Towards a Guideline for Evaluation Metrics in Medical Image Segmentation. BMC Res. Notes, 15.","key":"ref_94","DOI":"10.1186\/s13104-022-06096-y"},{"doi-asserted-by":"crossref","unstructured":"Csurka, G., Larlus, D., and Perronnin, F. (2013, January 9\u201313). What Is a Good Evaluation Measure for Semantic Segmentation?. Proceedings of the BMVC 2013\u2014British Machine Vision Conference, Bristol, UK.","key":"ref_95","DOI":"10.5244\/C.27.32"},{"doi-asserted-by":"crossref","unstructured":"Vasilakos, C., Kavroudakis, D., and Georganta, A. (2020). Machine Learning Classification Ensemble of Multitemporal Sentinel-2 Images: The Case of a Mixed Mediterranean Ecosystem. Remote Sens., 12.","key":"ref_96","DOI":"10.3390\/rs12122005"},{"key":"ref_97","doi-asserted-by":"crossref","first-page":"1733","DOI":"10.1080\/01431160600962566","article-title":"Mapping a Specific Class with an Ensemble of Classifiers","volume":"28","author":"Foody","year":"2007","journal-title":"Int. J. Remote Sens."},{"doi-asserted-by":"crossref","unstructured":"Rahman, M.A., and Wang, Y. (2016, January 12\u201314). Optimizing Intersection-over-Union in Deep Neural Networks for Image Segmentation. Proceedings of the Advances in Visual Computing, ISVC 2016, Las Vegas, NV, USA.","key":"ref_98","DOI":"10.1007\/978-3-319-50835-1_22"},{"doi-asserted-by":"crossref","unstructured":"Shi, R., Ngan, K.N., and Li, S. (2014, January 27\u201330). Jaccard Index Compensation for Object Segmentation Evaluation. Proceedings of the 2014 IEEE International Conference on Image Processing, ICIP 2014, Paris, France.","key":"ref_99","DOI":"10.1109\/ICIP.2014.7025904"},{"key":"ref_100","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1007\/BF02289261","article-title":"Note on the \u201cCorrection for Continuity\u201d in Testing the Significance of the Difference between Correlated Proportions","volume":"13","author":"Edwards","year":"1948","journal-title":"Psychometrika"},{"doi-asserted-by":"crossref","unstructured":"Kavzoglu, T. (2017). Object-Oriented Random Forest for High Resolution Land Cover Mapping Using Quickbird-2 Imagery. Handbook of Neural Computation, Elsevier Inc.","key":"ref_101","DOI":"10.1016\/B978-0-12-811318-9.00033-8"},{"key":"ref_102","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1186\/s40537-019-0197-0","article-title":"A Survey on Image Data Augmentation for Deep Learning","volume":"6","author":"Shorten","year":"2019","journal-title":"J. Big Data"},{"key":"ref_103","doi-asserted-by":"crossref","first-page":"5858","DOI":"10.1109\/ACCESS.2017.2696121","article-title":"Smart Augmentation Learning an Optimal Data Augmentation Strategy","volume":"5","author":"Lemley","year":"2017","journal-title":"IEEE Access"},{"doi-asserted-by":"crossref","unstructured":"Chatfield, K., Simonyan, K., Vedaldi, A., and Zisserman, A. (2014, January 1\u20135). Return of the Devil in the Details: Delving Deep into Convolutional Nets. Proceedings of the BMVC 2014\u2014British Machine Vision Conference, Nottingham, UK.","key":"ref_104","DOI":"10.5244\/C.28.6"},{"doi-asserted-by":"crossref","unstructured":"Miko\u0142ajczyk, A., and Grochowski, M. (2018, January 9\u201312). Data Augmentation for Improving Deep Learning in Image Classification Problem. Proceedings of the 2018 International Interdisciplinary PhD Workshop, IIPhDW 2018, Swinoujscie, Poland.","key":"ref_105","DOI":"10.1109\/IIPHDW.2018.8388338"},{"doi-asserted-by":"crossref","unstructured":"Smith, L.N. (2017, January 24\u201331). Cyclical Learning Rates for Training Neural Networks. Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision, WACV 2017, Santa Rosa, CA, USA.","key":"ref_106","DOI":"10.1109\/WACV.2017.58"},{"unstructured":"Zeiler, M.D. (2024, February 10). ADADELTA: An Adaptive Learning Rate Method. Available online: https:\/\/arxiv.org\/abs\/1212.5701.","key":"ref_107"},{"doi-asserted-by":"crossref","unstructured":"Wu, Y., Liu, L., Bae, J., Chow, K.H., Iyengar, A., Pu, C., Wei, W., Yu, L., and Zhang, Q. (2019, January 9\u201312). Demystifying Learning Rate Policies for High Accuracy Training of Deep Neural Networks. Proceedings of the 2019 IEEE International Conference on Big Data, Big Data 2019, Los Angeles, CA, USA.","key":"ref_108","DOI":"10.1109\/BigData47090.2019.9006104"},{"doi-asserted-by":"crossref","unstructured":"Dogo, E.M., Afolabi, O.J., Nwulu, N.I., Twala, B., and Aigbavboa, C.O. (2018, January 21\u201322). A Comparative Analysis of Gradient Descent-Based Optimization Algorithms on Convolutional Neural Networks. Proceedings of the International Conference on Computational Techniques, Electronics and Mechanical Systems, CTEMS 2018, Belgaum, India.","key":"ref_109","DOI":"10.1109\/CTEMS.2018.8769211"},{"doi-asserted-by":"crossref","unstructured":"Zaheer, R., and Shaziya, H. (2019, January 10\u201311). A Study of the Optimization Algorithms in Deep Learning. Proceedings of the 3rd International Conference on Inventive Systems and Control, ICISC 2019, Coimbatore, India.","key":"ref_110","DOI":"10.1109\/ICISC44355.2019.9036442"},{"doi-asserted-by":"crossref","unstructured":"Richter, M.L., Byttner, W., Krumnack, U., Wiedenroth, A., Schallner, L., and Shenk, J. (2021, January 14\u201317). (Input) Size Matters for CNN Classifiers. Proceedings of the Artificial Neural Networks and Machine Learning\u2014ICANN 2021; Bratislava, Slovakia.","key":"ref_111","DOI":"10.1007\/978-3-030-86340-1_11"},{"unstructured":"Tan, M., and Le, Q.V. (2019, January 9\u201315). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, CA, USA.","key":"ref_112"},{"doi-asserted-by":"crossref","unstructured":"Reina, G.A., Panchumarthy, R., Thakur, S.P., Bastidas, A., and Bakas, S. (2020). Systematic Evaluation of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Front. Neurosci., 14.","key":"ref_113","DOI":"10.3389\/fnins.2020.00065"},{"key":"ref_114","doi-asserted-by":"crossref","first-page":"2124","DOI":"10.55730\/1300-0632.3929","article-title":"Analysis of Patch and Sample Size Effects for 2D-3D CNN Models Using Multiplatform Dataset: Hyperspectral Image Classification of ROSIS and Jilin-1 GP01 Imagery","volume":"30","author":"Kavzoglu","year":"2022","journal-title":"Turk. J. Electr. Eng. Comput. Sci."},{"key":"ref_115","doi-asserted-by":"crossref","first-page":"3049","DOI":"10.1364\/BOE.9.003049","article-title":"Effect of Patch Size and Network Architecture on a Convolutional Neural Network Approach for Automatic Segmentation of OCT Retinal Layers","volume":"9","author":"Hamwood","year":"2018","journal-title":"Biomed. Opt. Express"},{"key":"ref_116","doi-asserted-by":"crossref","first-page":"5785","DOI":"10.1109\/TIP.2019.2922072","article-title":"Visual Quality Evaluation for Semantic Segmentation: Subjective Assessment Database and Objective Assessment Measure","volume":"28","author":"Chen","year":"2019","journal-title":"IEEE Trans. Image Process."},{"doi-asserted-by":"crossref","unstructured":"Lee, Y., Sim, W., Park, J., and Lee, J. (2022). Evaluation of Hyperparameter Combinations of the U-Net Model for Land Cover Classification. Forests, 13.","key":"ref_117","DOI":"10.3390\/f13111813"},{"key":"ref_118","first-page":"125","article-title":"Optimised U-Net for Land Use\u2013Land Cover Classification Using Aerial Photography","volume":"91","author":"Clark","year":"2023","journal-title":"PFG-J. Photogramm. Remote Sens. Geoinf. Sci."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/16\/15\/2729\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,30]],"date-time":"2024-07-30T08:17:29Z","timestamp":1722327449000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/16\/15\/2729"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,7,25]]},"references-count":118,"journal-issue":{"issue":"15","published-online":{"date-parts":[[2024,8]]}},"alternative-id":["rs16152729"],"URL":"https:\/\/doi.org\/10.3390\/rs16152729","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2024,7,25]]}}}