{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T16:17:41Z","timestamp":1740154661876,"version":"3.37.3"},"reference-count":61,"publisher":"MDPI AG","issue":"11","license":[{"start":{"date-parts":[[2024,5,22]],"date-time":"2024-05-22T00:00:00Z","timestamp":1716336000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"World Bank and the French Development Agency"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"The Inner Niger Delta (IND), one of the largest floodplain systems in Africa, sustains the livelihoods of more than three million people and is a driver of the rural economy of Mali as far as agriculture, fish production, and livestock are concerned. Because the IND ecosystem and economy are flood-dependent, it is important to monitor seasonal flooding variations. Many attempts to accomplish this task have relied on detailed datasets, such as daily discharge, daily rainfall, and evapotranspiration, which are not easily accessible for data-sparse areas. Additionally, because the area is large, this remains a challenging task. In this study, the interannual variability of seasonal inundation in the IND was investigated by leveraging the computing power of the Google Earth Engine and its large catalogue of open datasets. The main objective was to analyse the temporal and spatial distributions of the inundation extent during the last 13 years. A collection of Landsat 5, 7, 8, and 9 images were composited and different bands were used with various water and vegetation indices in a pixel-based supervised classification to detect the flood extent between 2010 and 2022. A significant improvement in classification accuracy was observed thanks to the different indices. The results suggest a general increasing trend in the maximum annual inundation extent. Throughout the study period, the maximum inundated area varied between 15,209 km2 in autumn 2011 and 21,536 km2 in autumn 2022. The upstream water intake led to a decrease of about 6\u201310% of the inundated area. Similar fluctuations in the inundated area, precipitation, and river discharge were observed. The proposed approach demonstrates a great potential for monitoring annual inundation, especially for large areas such as the IND, where in situ measurements are sparse.<\/jats:p>","DOI":"10.3390\/rs16111853","type":"journal-article","created":{"date-parts":[[2024,5,23]],"date-time":"2024-05-23T07:49:03Z","timestamp":1716450543000},"page":"1853","source":"Crossref","is-referenced-by-count":0,"title":["Inner Niger Delta Inundation Extent (2010\u20132022) Based on Landsat Imagery and the Google Earth Engine"],"prefix":"10.3390","volume":"16","author":[{"ORCID":"https:\/\/orcid.org\/0009-0006-4937-1429","authenticated-orcid":false,"given":"Benjamin","family":"Bonkoungou","sequence":"first","affiliation":[{"name":"Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin"},{"name":"National Water Institute, University of Abomey-Calavi, Abomey Calavi BP 2008, Benin"},{"name":"Centre d\u2019Excellence Africain pour l\u2019Eau et l\u2019Assainissement (C2EA), University of Abomey-Calavi, Abomey Calavi BP 2008, Benin"}]},{"given":"Aymar Yaovi","family":"Bossa","sequence":"additional","affiliation":[{"name":"National Water Institute, University of Abomey-Calavi, Abomey Calavi BP 2008, Benin"},{"name":"Centre d\u2019Excellence Africain pour l\u2019Eau et l\u2019Assainissement (C2EA), University of Abomey-Calavi, Abomey Calavi BP 2008, Benin"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5352-7541","authenticated-orcid":false,"given":"Johannes","family":"van der Kwast","sequence":"additional","affiliation":[{"name":"IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9469-3909","authenticated-orcid":false,"given":"Marloes","family":"Mul","sequence":"additional","affiliation":[{"name":"IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands"}]},{"given":"Luc Ollivier","family":"Sintondji","sequence":"additional","affiliation":[{"name":"National Water Institute, University of Abomey-Calavi, Abomey Calavi BP 2008, Benin"},{"name":"Centre d\u2019Excellence Africain pour l\u2019Eau et l\u2019Assainissement (C2EA), University of Abomey-Calavi, Abomey Calavi BP 2008, Benin"}]}],"member":"1968","published-online":{"date-parts":[[2024,5,22]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Deng, Y., Jiang, W., Tang, Z., Ling, Z., and Wu, Z. (2019). Long-Term Changes of Open-Surface Water Bodies in the Yangtze River Basin Based on the Google Earth Engine Cloud Platform. Remote Sens., 11.","DOI":"10.3390\/rs11192213"},{"key":"ref_2","first-page":"192","article-title":"Wetland Ecosystem Services","volume":"1","author":"Clarkson","year":"2013","journal-title":"Ecosyst. Serv. N. Z. Cond. Trends Manaaki Whenua Press Linc."},{"key":"ref_3","unstructured":"Moser, M., Prentice, C., and Frazier, S. (1996, January 19). A Global Overview of Wetland Loss and Degradation. Proceedings of the 6th Meeting of the Conference of the Contracting Parties to the Ramsar Convention on Wetlands, Brisbane, Australia."},{"key":"ref_4","unstructured":"Secretariat CBD (2015). World Wetlands Day Monday, 2 February 2015: Wetlands for Our Future, United Nations Convention on Biological Diversity (CBD)."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"418","DOI":"10.1038\/nature20584","article-title":"High-resolution mapping of global surface water and its long-term changes","volume":"540","author":"Pekel","year":"2016","journal-title":"Nature"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"4261","DOI":"10.1080\/01431161.2021.1892859","article-title":"Automated Estimation of Daily Surface Water Fraction from MODIS and Landsat Images Using Gaussian Process Regression","volume":"42","author":"Liang","year":"2021","journal-title":"Int. J. Remote Sens."},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Wang, R., Xia, H., Qin, Y., Niu, W., Pan, L., Li, R., Zhao, X., Bian, X., and Fu, P. (2020). Dynamic Monitoring of Surface Water Area during 1989\u20132019 in the Hetao Plain Using Landsat Data in Google Earth Engine. Water, 12.","DOI":"10.3390\/w12113010"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"1290","DOI":"10.1515\/geo-2020-0305","article-title":"Monitoring the Spatiotemporal Dynamics of Surface Water Body of the Xiaolangdi Reservoir Using Landsat-5\/7\/8 Imagery and Google Earth Engine","volume":"13","author":"Wang","year":"2021","journal-title":"Open Geosci."},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Wang, W., Teng, H., Zhao, L., and Han, L. (2023). Long-Term Changes in Water Body Area Dynamic and Driving Factors in the Middle-Lower Yangtze Plain Based on Multi-Source Remote Sensing Data. Remote Sens., 15.","DOI":"10.3390\/rs15071816"},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Xia, H., Zhao, J., Qin, Y., Yang, J., Cui, Y., Song, H., Ma, L., Jin, N., and Meng, Q. (2019). Changes in Water Surface Area during 1989\u20132017 in the Huai River Basin Using Landsat Data and Google Earth Engine. Remote Sens., 11.","DOI":"10.3390\/rs11151824"},{"key":"ref_11","first-page":"31","article-title":"Validation of the Altimetry-Based Water Levels from Sentinel-3A and B in the Inner Niger Delta","volume":"384","author":"Egon","year":"2021","journal-title":"Proc. Int. Assoc. Hydrol. Sci."},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Jiang, W., Ni, Y., Pang, Z., Li, X., Ju, H., He, G., Lv, J., Yang, K., Fu, J., and Qin, X. (2021). An Effective Water Body Extraction Method with New Water Index for Sentinel-2 Imagery. Water, 13.","DOI":"10.3390\/w13121647"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"044507","DOI":"10.1117\/1.JRS.13.044507","article-title":"Potential of Global Thresholding Methods for the Identification of Surface Water Resources Using Sentinel-2 Satellite Imagery and Normalized Difference Water Index","volume":"13","author":"Sekertekin","year":"2019","journal-title":"J. Appl. Remote Sens."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1175\/JHM-D-13-032.1","article-title":"Characterization and Space\u2013Time Downscaling of the Inundation Extent over the Inner Niger Delta Using GIEMS and MODIS Data","volume":"15","author":"Aires","year":"2014","journal-title":"J. Hydrometeorol."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"2127","DOI":"10.3390\/rs70202127","article-title":"Inundations in the Inner Niger Delta: Monitoring and Analysis Using MODIS and Global Precipitation Datasets","volume":"7","year":"2015","journal-title":"Remote Sens."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"368","DOI":"10.1016\/j.jhydrol.2015.01.036","article-title":"Decadal Monitoring of the Niger Inner Delta Flood Dynamics Using MODIS Optical Data","volume":"523","author":"Ogilvie","year":"2015","journal-title":"J. Hydrol."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"552","DOI":"10.1016\/j.rse.2009.10.009","article-title":"Wetland Monitoring Using Classification Trees and SPOT-5 Seasonal Time Series","volume":"114","author":"Davranche","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1007\/s11769-002-0073-1","article-title":"The Methods of Extracting Water Information from Spot Image","volume":"12","author":"Du","year":"2002","journal-title":"Chin. Geogr. Sci."},{"key":"ref_19","first-page":"102656","article-title":"Systematic Method for Mapping Fine-Resolution Water Cover Types in China Based on Time Series Sentinel-1 and 2 Images","volume":"106","author":"Li","year":"2022","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_20","unstructured":"Menarguez, M. (2015). Global Water Body Mapping from 1984 to 2015 Using Global High Resolution Multispectral Satellite Imagery, University of Oklahoma."},{"key":"ref_21","unstructured":"Davids, L., Bekkema, M., Zwarts, L., and Grigoras, I. (2018). An Improved Spatial Flooding Model of the Inner Niger Delta. A&W-Report, Altenburg & Wymenga Ecologisch Onderzoek."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1425","DOI":"10.1080\/01431169608948714","article-title":"The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features","volume":"17","author":"McFeeters","year":"1996","journal-title":"Int. J. Remote Sens."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1016\/S0034-4257(96)00067-3","article-title":"NDWI\u2014A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space","volume":"58","author":"Gao","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Yang, L., Driscol, J., Sarigai, S., Wu, Q., Chen, H., and Lippitt, C.D. (2022). Google Earth Engine and Artificial Intelligence (Ai): A Comprehensive Review. Remote Sens., 14.","DOI":"10.3390\/rs14143253"},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Acharya, T.D., Subedi, A., and Lee, D.H. (2019). Evaluation of Machine Learning Algorithms for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors, 19.","DOI":"10.3390\/s19122769"},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Li, X., Zhang, F., Chan, N.W., Shi, J., Liu, C., and Chen, D. (2022). High Precision Extraction of Surface Water from Complex Terrain in Bosten Lake Basin Based on Water Index and Slope Mask Data. Water, 14.","DOI":"10.3390\/w14182809"},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Ibrahim, M., Wisser, D., Ali, A., Diekkr\u00fcger, B., Seidou, O., Mariko, A., and Afouda, A. (2017). Water Balance Analysis over the Niger Inland Delta-Mali: Spatio-Temporal Dynamics of the Flooded Area and Water Losses. Hydrology, 4.","DOI":"10.3390\/hydrology4030040"},{"key":"ref_28","first-page":"138","article-title":"Estimation of the Flooded Area of the Inner Delta of the River Niger in Mali by Hydrological Balance and Satellite Data","volume":"344","author":"Orange","year":"2011","journal-title":"Hydro-Climatol. Var. Chang."},{"key":"ref_29","unstructured":"Ciss\u00e9, S., Gosseye, P., and Veeneklaas, F. (1990). Comp\u00e9tition Pour des Ressources Limit\u00e9es: Le Cas de la Cinqui\u00e8me R\u00e9gion du Mali, CABO."},{"key":"ref_30","doi-asserted-by":"crossref","unstructured":"Orange, D.R., Arfi, M., Kuper, P., and Morand, P. (2002). Suivi des Zones d\u2019Inondation du Delta Int\u00e9rieur du Niger: Perspectives avec les Donn\u00e9es de Basse R\u00e9solution NOAA\/AVHRR, Gestion Int\u00e9gr\u00e9e des Ressources Naturelles en Zones Inondables Tropicales, B T\u00e9m\u00e9.","DOI":"10.4000\/books.irdeditions.8488"},{"key":"ref_31","unstructured":"Zwarts, L., Van Beukering, P., Kone, B., and Wymenga, E. (2005). The Niger, a Lifeline. Effective Water Management in the Upper Niger Basin, Wetlands International."},{"key":"ref_32","unstructured":"Leten, J., Zwarts, L., Sanogo, S., Porna Kon\u00e9, M., Santara, D.L., Diabat\u00e9, L., and Coulibaly, P. (2010). Etat des Lieux du Delta Int\u00e9rieur\u2014Vers une Vision Commune de D\u00e9veloppement."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.envsci.2012.10.014","article-title":"Vulnerability of Rice Production in the Inner Niger Delta to Water Resources Management under Climate Variability and Change","volume":"34","author":"Liersch","year":"2013","journal-title":"Environ. Sci. Policy"},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Keita, N., B\u00e9li\u00e8res, J.-F., and Sidib\u00e9, S. (2002). Extension de la Zone Am\u00e9nag\u00e9e de l\u2019Office du Niger: Exploitation Rationnelle et Durable des Ressources Naturelles au Service d\u2019un Enjeu National de D\u00e9veloppement.","DOI":"10.4000\/books.irdeditions.8663"},{"key":"ref_35","unstructured":"Gonet, C., and Stausee, K. (2004). Fiche Descriptive Sur Les Zones Humides Ramsar (FDR), Bureau de la Convention de Ramsar."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Ajayi, O.C., Diakit\u2019e, N., Konate, A.B., and Catacutan, D. (2012). Rapid Assessment of the Inner Niger Delta of Mali, World Agroforestry Centre. ICRAF Working Paper No. 144.","DOI":"10.5716\/WP12021.PDF"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"6481","DOI":"10.3390\/rs5126481","article-title":"Seasonal Composite Landsat TM\/ETM+ Images Using the Medoid (a Multi-Dimensional Median)","volume":"5","author":"Flood","year":"2013","journal-title":"Remote Sens."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.isprsjprs.2023.06.002","article-title":"An Assessment Approach for Pixel-Based Image Composites","volume":"202","author":"Francini","year":"2023","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/j.rse.2013.08.029","article-title":"Automated Water Extraction Index: A New Technique for Surface Water Mapping Using Landsat Imagery","volume":"140","author":"Feyisa","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"1717","DOI":"10.1080\/17538947.2020.1805036","article-title":"Analysis of Geo-Spatiotemporal Data Using Machine Learning Algorithms and Reliability Enhancement for Urbanization Decision Support","volume":"13","author":"Hackman","year":"2020","journal-title":"Int. J. Digit. Earth"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"1651","DOI":"10.1007\/s40808-022-01569-2","article-title":"Modelling Past and Future Land Use and Land Cover Dynamics in the Nakambe River Basin, West Africa","volume":"9","author":"Yangouliba","year":"2023","journal-title":"Model. Earth Syst. Environ."},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Zhang, M., Huang, H., Li, Z., Hackman, K.O., Liu, C., Andriamiarisoa, R.L., Raherivelo, T.N.A.N., Li, Y., and Gong, P. (2020). Automatic High-Resolution Land Cover Production in Madagascar Using Sentinel-2 Time Series, Tile-Based Image Classification and Google Earth Engine. Remote Sens., 12.","DOI":"10.3390\/rs12213663"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/0034-4257(79)90013-0","article-title":"Red and Photographic Infrared Linear Combinations for Monitoring Vegetation","volume":"8","author":"Tucker","year":"1979","journal-title":"Remote Sens. Environ."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"583","DOI":"10.1080\/01431160304987","article-title":"Use of Normalized Difference Built-up Index in Automatically Mapping Urban Areas from TM Imagery","volume":"24","author":"Zha","year":"2003","journal-title":"Int. J. Remote Sens."},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Shen, L., and Li, C. (2010, January 18\u201320). Water Body Extraction from Landsat ETM+ Imagery Using Adaboost Algorithm. Proceedings of the 2010 18th International Conference on Geoinformatics, Beijing, China.","DOI":"10.1109\/GEOINFORMATICS.2010.5567762"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"3025","DOI":"10.1080\/01431160600589179","article-title":"Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery","volume":"27","author":"Xu","year":"2006","journal-title":"Int. J. Remote Sens."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/0034-4257(88)90106-X","article-title":"A Soil-Adjusted Vegetation Index (SAVI)","volume":"25","author":"Huete","year":"1988","journal-title":"Remote Sens. Environ."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1016\/S0034-4257(02)00096-2","article-title":"Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices","volume":"83","author":"Huete","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"ref_49","unstructured":"Chen, W., Liu, L., Zhang, C., Wang, J., Wang, J., and Pan, Y. (2004, January 20\u201324). Monitoring the Seasonal Bare Soil Areas in Beijing Using Multitemporal TM Images. Proceedings of the 2004\u2014IGARSS \u201904, IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA."},{"key":"ref_50","first-page":"155","article-title":"Study on Information Extraction of Water Body with a New Water Index (NWI)","volume":"34","author":"Ding","year":"2009","journal-title":"Sci. Surv. Mapp"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random Forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"ref_52","first-page":"372349","article-title":"A Suite of Tools for Assessing Thematic Map Accuracy","volume":"2014","author":"Mas","year":"2014","journal-title":"Geogr. J."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1177\/001316446002000104","article-title":"A Coefficient of Agreement for Nominal Scales","volume":"20","author":"Cohen","year":"1960","journal-title":"Educ. Psychol. Meas."},{"key":"ref_54","doi-asserted-by":"crossref","unstructured":"Zwarts, L. (2010). Will the Inner Niger Delta Shrivel up Due to Climate Change and Water Use Upstream?, Altenburg & Wymenga Ecologisch Onderzoek. A&W Report.","DOI":"10.1163\/9789004278134_007"},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"100703","DOI":"10.1016\/j.ejrh.2020.100703","article-title":"Development of a Time-Varying MODIS\/2D Hydrodynamic Model Relationship between Water Levels and Flooded Areas in the Inner Niger Delta, Mali, West Africa","volume":"30","author":"Haque","year":"2020","journal-title":"J. Hydrol. Reg. Stud."},{"key":"ref_56","doi-asserted-by":"crossref","unstructured":"Tran, B., Mul, M., Seyoum, S., and Wymenga, E. (2022, January 19). Monitoring Wetlands Dynamics in the Inner Niger Delta Using Open-Access Remotely Sensend Evapotranspiration Data. Proceedings of the 39th IAHR World Congress, Granada, Spain.","DOI":"10.3850\/IAHR-39WC2521711920221154"},{"key":"ref_57","unstructured":"OPIDIN (2022). Flood in the Inner Niger Delta Reach Highest Peak, Wetlands International Mali Office. Bulletin 24 October 2022."},{"key":"ref_58","doi-asserted-by":"crossref","unstructured":"Kuper, M., Hassane, A., Orange, D., Chohin-Kuper, A., and Sow, M. (2002). R\u00e9gulation, Utilisation et Partage Des Eaux Du Fleuve Niger: Impact de La Gestion Des Am\u00e9nagements Hydrauliques.","DOI":"10.4000\/books.irdeditions.8575"},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1007\/s10584-012-0492-7","article-title":"Vulnerability and Adaptation of African Rural Populations to Hydro-Climate Change: Experience from Fishing Communities in the Inner Niger Delta (Mali)","volume":"115","author":"Morand","year":"2012","journal-title":"Clim. Chang."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"2239","DOI":"10.1080\/02626667.2017.1383608","article-title":"Future River Flows and Flood Extent in the Upper Niger and Inner Niger Delta: GCM-Related Uncertainty Using the CMIP5 Ensemble","volume":"62","author":"Thompson","year":"2017","journal-title":"Hydrol. Sci. J."},{"key":"ref_61","doi-asserted-by":"crossref","unstructured":"La\u00eb, R., and Mah\u00e9, G. (2002). Crue, Inondation et Production Halieutique. Un Mod\u00e8le Pr\u00e9dictif Des Captures Dans Le Delta Int\u00e9rieur Du Niger, Gestion Int\u00e9gr\u00e9e des Ressources Naturelles en Zones Inondables Tropicales.","DOI":"10.4000\/books.irdeditions.8654"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/16\/11\/1853\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T20:56:08Z","timestamp":1732049768000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/16\/11\/1853"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5,22]]},"references-count":61,"journal-issue":{"issue":"11","published-online":{"date-parts":[[2024,6]]}},"alternative-id":["rs16111853"],"URL":"https:\/\/doi.org\/10.3390\/rs16111853","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2024,5,22]]}}}