{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,13]],"date-time":"2024-08-13T11:09:11Z","timestamp":1723547351312},"reference-count":58,"publisher":"MDPI AG","issue":"7","license":[{"start":{"date-parts":[[2024,4,6]],"date-time":"2024-04-06T00:00:00Z","timestamp":1712361600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Delft University of Technology"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"This study presents the first azimuth cutoff analysis in Synthetic Aperture Radar (SAR) altimetry, aiming to assess its applicability in characterizing sea-state dynamics. In SAR imaging, the azimuth cutoff serves as a proxy for the shortest waves, in terms of wavelength, that can be detected by the satellite under certain wind and wave conditions. The magnitude of this parameter is closely related to the wave orbital velocity variance, a key parameter for characterizing wind-wave systems. We exploit wave modulations exhibited in the tail of fully-focused SAR waveforms and extract the azimuth cutoff from the radar signal through the analysis of its along-track autocorrelation function. We showcase the capability of Sentinel-6A in deriving these two parameters based on analyses in the spatial and wavenumber domains, accompanied by a discussion of the limitations. We use Level-1A high-resolution Sentinel-6A data from one repeat cycle (10 days) globally to verify our findings against wave modeled data. In the spatial domain analysis, the estimation of azimuth cutoff involves fitting a Gaussian function to the along-track autocorrelation function. Results reveal pronounced dependencies on wind speed and significant wave height, factors primarily determining the magnitude of the velocity variance. In extreme sea states, the parameters are underestimated by the altimeter, while in relatively calm sea states and in the presence of swells, a substantial overestimation trend is observed. We introduce an alternative approach to extract the azimuth cutoff by identifying the fall-off wavenumber in the wavenumber domain. Results indicate effective mitigation of swell-induced errors, with some additional sensitivity to extreme sea states compared to the spatial domain approach.<\/jats:p>","DOI":"10.3390\/rs16071292","type":"journal-article","created":{"date-parts":[[2024,4,8]],"date-time":"2024-04-08T07:11:33Z","timestamp":1712560293000},"page":"1292","source":"Crossref","is-referenced-by-count":2,"title":["Introducing the Azimuth Cutoff as an Independent Measure for Characterizing Sea-State Dynamics in SAR Altimetry"],"prefix":"10.3390","volume":"16","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3868-0676","authenticated-orcid":false,"given":"Ourania","family":"Altiparmaki","sequence":"first","affiliation":[{"name":"Astrodynamics and Space Missions, Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands"}]},{"given":"Samira","family":"Amraoui","sequence":"additional","affiliation":[{"name":"Collecte Localisation Satellites, Ramonville-Saint-Agne, 31520 Toulouse, France"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1921-8056","authenticated-orcid":false,"given":"Marcel","family":"Kleinherenbrink","sequence":"additional","affiliation":[{"name":"Geoscience and Remote Sensing, Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, The Netherlands"}]},{"given":"Thomas","family":"Moreau","sequence":"additional","affiliation":[{"name":"Collecte Localisation Satellites, Ramonville-Saint-Agne, 31520 Toulouse, France"}]},{"given":"Claire","family":"Maraldi","sequence":"additional","affiliation":[{"name":"Centre National d\u2019\u00c9tudes Spatiale, 31400 Toulouse, France"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2018-7373","authenticated-orcid":false,"given":"Pieter N. A. M.","family":"Visser","sequence":"additional","affiliation":[{"name":"Astrodynamics and Space Missions, Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands"}]},{"given":"Marc","family":"Naeije","sequence":"additional","affiliation":[{"name":"Astrodynamics and Space Missions, Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands"}]}],"member":"1968","published-online":{"date-parts":[[2024,4,6]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"687","DOI":"10.1109\/TAP.1980.1142398","article-title":"Radar altimeter mean return waveforms from near-normal-incidence ocean surface scattering","volume":"28","author":"Hayne","year":"1980","journal-title":"IEEE Trans. Antennas Propag."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"1578","DOI":"10.1109\/36.718861","article-title":"The delay\/Doppler radar altimeter","volume":"36","author":"Raney","year":"1998","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"995","DOI":"10.1029\/JC091iC01p00995","article-title":"On the joint distribution of surface elevation and slopes for a nonlinear random sea, with an application to radar altimetry","volume":"91","author":"Srokosz","year":"1986","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1109\/TGE.1971.271490","article-title":"Nanosecond radar observations of the ocean surface from a stable platform","volume":"9","author":"Yaplee","year":"1971","journal-title":"IEEE Trans. Geosci. Electron."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Pires, N., Fernandes, M.J., Gommenginger, C., and Scharroo, R. (2016). A Conceptually Simple Modeling Approach for Jason-1 Sea State Bias Correction Based on 3 Parameters Exclusively Derived from Altimetric Information. Remote Sens., 8.","DOI":"10.3390\/rs8070576"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"978","DOI":"10.1016\/j.asr.2019.11.040","article-title":"Sea state bias in altimetry measurements within the theory of similarity for wind-driven seas","volume":"68","author":"Badulin","year":"2021","journal-title":"Adv. Space Res."},{"key":"ref_7","first-page":"76","article-title":"Sea State Bias\u201420 Years On","volume":"Volume 614","author":"Danesy","year":"2006","journal-title":"ESA Special Publication"},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Cheng, Y., Xu, Q., Gao, L., Li, X., Zou, B., and Liu, T. (2019). Sea State Bias Variability in Satellite Altimetry Data. Remote Sens., 11.","DOI":"10.3390\/rs11101176"},{"key":"ref_9","unstructured":"Bronner, E., Guillot, A., Picot, N., and Noubel, J. (2013). SARAL\/AltiKa Products Handbook, CNES. No. CNES: SALP-MU-M-OP-15984-CN."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"829","DOI":"10.1029\/90JC02319","article-title":"The effect of the degree of wave development on the sea state bias in radar altimetry measurement","volume":"96","author":"Fu","year":"1991","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"24981","DOI":"10.1029\/94JC01430","article-title":"Estimating the sea state bias of the TOPEX and POSEIDON altimeters from crossover differences","volume":"99","author":"Gaspar","year":"1994","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Guo, J., Zhang, H., Li, Z., Zhu, C., and Liu, X. (2023). On Modelling Sea State Bias of Jason-2 Altimeter Data Based on Significant Wave Heights and Wind Speeds. Remote Sens., 15.","DOI":"10.3390\/rs15102666"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"348","DOI":"10.1080\/01490419.2010.487788","article-title":"Overview and Update of the Sea State Bias Corrections for the Jason-2, Jason-1 and TOPEX Missions","volume":"33","author":"Tran","year":"2010","journal-title":"Mar. Geod."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"2030","DOI":"10.1175\/1520-0426(2002)019<2030:ATPWSA>2.0.CO;2","article-title":"A Two-Parameter Wind Speed Algorithm for Ku-Band Altimeters","volume":"19","author":"Gourrion","year":"2002","journal-title":"J. Atmos. Ocean. Technol."},{"key":"ref_15","unstructured":"Gommenginger, C., Srokosz, M., Bellingham, C., Snaith, H., Pires, N., Fernandes, M., Tran, N., Vandemark, D., Moreau, T., and Labroue, S. (2018, January 24\u201329). Sea state bias: 25 years on. Proceedings of the Presentation at and Abstract in: 25 years of progress in radar altimetry, Ponta Delgada, Portugal."},{"key":"ref_16","unstructured":"Egido, A., and Ray, C. (2019, January 21\u201325). On the Effect of Surface Motion in SAR Altimeter Observations of the Open Ocean. Proceedings of the OSTST 2019, Chicago, IL, USA."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"853","DOI":"10.1016\/j.asr.2020.07.015","article-title":"Impact of vertical water particle motions on focused SAR altimetry","volume":"68","author":"Buchhaupt","year":"2021","journal-title":"Adv. Space Res."},{"key":"ref_18","doi-asserted-by":"crossref","unstructured":"Reale, F., Carratelli, E., Laiz, I., Di Leo, A., and Dentale, F. (2020). Wave Orbital Velocity Effects on Radar Doppler Altimeter for Sea Monitoring. J. Mar. Sci. Eng., 8.","DOI":"10.3390\/jmse8060447"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"e2021GL096224","DOI":"10.1029\/2021GL096224","article-title":"SAR altimetry data as a new source for swell monitoring","volume":"49","author":"Altiparmaki","year":"2022","journal-title":"Geophys. Res. Lett."},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Reale, F., Dentale, F., Carratelli, E.P., and Fenoglio-Marc, L. (2018). Influence of Sea State on Sea Surface Height Oscillation from Doppler Altimeter Measurements in the North Sea. Remote Sens., 10.","DOI":"10.3390\/rs10071100"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"2332","DOI":"10.1016\/j.asr.2022.12.034","article-title":"Conditional sea surface statistics and their impact on geophysical sea surface parameters retrieved from SAR altimetry signals","volume":"71","author":"Buchhaupt","year":"2023","journal-title":"Adv. Space Res."},{"key":"ref_22","first-page":"20-1","article-title":"Spaceborne synthetic aperture radar observations of ocean waves traveling into sea ice","volume":"107","author":"Lehner","year":"2002","journal-title":"J. Geophys. Res."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"1092","DOI":"10.1175\/1520-0426(2000)017<1092:TMSSOO>2.0.CO;2","article-title":"The Mean-Square Slope of Ocean Surface Waves and Its Effects on Radar Backscatter","volume":"17","author":"Liu","year":"2000","journal-title":"J. Atmos. Ocean. Technol."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"1310","DOI":"10.1109\/LGRS.2016.2583198","article-title":"Analysis of Dual-Frequency Ocean Backscatter Measurements at Ku- and Ka-Bands Using Near-Nadir Incidence GPM Radar Data","volume":"13","author":"Nouguier","year":"2016","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"838","DOI":"10.1364\/JOSA.44.000838","article-title":"Measurement of the roughness of the sea surface from photographs of the sun\u2019s glitter","volume":"44","author":"Cox","year":"1954","journal-title":"J. Opt. Soc. Am."},{"key":"ref_26","first-page":"198","article-title":"Statistics of the sea surface derived from sun glitter","volume":"13","author":"Cox","year":"1954","journal-title":"J. Mar. Res."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"7616","DOI":"10.1002\/2015JC011275","article-title":"Estimating wave orbital velocity through the azimuth cutoff from space-borne satellites","volume":"120","author":"Stopa","year":"2015","journal-title":"J. Geophys. Res. Oceans"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"4659","DOI":"10.1029\/JC090iC03p04659","article-title":"Theory of synthetic aperture radar ocean imaging: A MARSEN view","volume":"90","author":"Hasselmann","year":"1985","journal-title":"J. Geophys. Res."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"685","DOI":"10.1109\/TAP.1979.1142163","article-title":"The effect of orbital motions on synthetic aperture radar imagery of ocean waves Altimeter for Sea Monitoring","volume":"27","author":"Alpers","year":"1979","journal-title":"IEEE Trans. Antennas Propag."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"1031","DOI":"10.1029\/JC090iC01p01031","article-title":"SAR Imaging of Waves in Water and Ice Evidence for Velocity Bunching","volume":"90","author":"Lyzenga","year":"1985","journal-title":"J. Gheophysical Res."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1109\/JOE.1981.1145495","article-title":"Wave orbital velocity, fade, and SAR response to azimuth waves","volume":"6","author":"Raney","year":"1981","journal-title":"IEEE J. Ocean. Eng."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"7833","DOI":"10.1029\/97JC01579","article-title":"Analysis of ERS-1\/2 synthetic aperture radar wave mode imagettes","volume":"103","author":"Kerbaol","year":"1998","journal-title":"J. Geophys. Res."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"682","DOI":"10.1007\/BF02995562","article-title":"Wave and wind retrieval from sar images of the ocean","volume":"56","author":"Chapron","year":"2001","journal-title":"Ann. T\u00e9l\u00e9commun."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"1761","DOI":"10.1029\/JC088iC03p01761","article-title":"Large-and small-scale spatial evolution of digitally processed ocean wave spectra from SEASAT synthetic aperture radar","volume":"88","author":"Beal","year":"1983","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"559","DOI":"10.1109\/TGRS.1986.289671","article-title":"Comparison of Simulated and Measured Synthetic Aperture Radar Image Spectra with Buoy-Derived Ocean Wave Spectra During the Shuttle Imaging Radar B Mission","volume":"GE-24","author":"Alpers","year":"1986","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"5086","DOI":"10.1080\/01431161.2016.1226525","article-title":"Dependency of the Sentinel-1 azimuth wavelength cut-off on significant wave height and wind speed","volume":"37","author":"Grieco","year":"2016","journal-title":"Int. J. Remote Sens."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"16615","DOI":"10.1029\/96JC00798","article-title":"An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra","volume":"101","author":"Hasselmann","year":"1996","journal-title":"J. Geophys. Res."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1016\/j.asr.2020.09.037","article-title":"Exploiting the Sentinel-3 tandem phase dataset and azimuth oversampling to better characterize the sensitivity of SAR altimeter sea surface height to long ocean waves","volume":"67","author":"Rieu","year":"2021","journal-title":"Adv. Space Res."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"392","DOI":"10.1109\/TGRS.2016.2607122","article-title":"Fully-focused SAR altimetry: Theory and applications","volume":"55","author":"Egido","year":"2017","journal-title":"IEEE Trans. Geosci. Remote Sens"},{"key":"ref_40","doi-asserted-by":"crossref","unstructured":"Guccione, P., Scagliola, M., and Giudici, D. (2018). 2D Frequency Domain Fully Focused SAR Processing for High PRF Radar Altimeters. Remote Sens., 10.","DOI":"10.3390\/rs10121943"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"10713","DOI":"10.1029\/91JC00302","article-title":"On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion","volume":"96","author":"Hasselmann","year":"1991","journal-title":"J. Geophys. Res."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1007\/BF00913873","article-title":"The Two frequency Microwave Technique for Measuring Ocean\u2014Wave Spectra from an Airplane or Satellite","volume":"13","author":"Alpers","year":"1978","journal-title":"Bound.-Layer Meteorol."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"863","DOI":"10.1109\/TGRS.1986.289701","article-title":"Numerical Simulation of Synthetic Aperture Radar Image Spectra for Ocean Waves","volume":"GE-24","author":"Lyzenga","year":"1986","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_44","doi-asserted-by":"crossref","unstructured":"Kleinherenbrink, M., Ehlers, F., Hern\u00e1ndez, S., Nouguier, F., Altiparmaki, O., Schlembach, F., and Chapron, B. (IEEE Trans. Geosci. Remote Sens., 2024). Cross-spectral analysis of SAR altimetry waveform tails, IEEE Trans. Geosci. Remote Sens., under review.","DOI":"10.36227\/techrxiv.170327754.45281043\/v1"},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Rieu, P., Amraoui, S., and Restano, M. (2023, June 25). Standalone Multi-mission Altimetry Processor (SMAP) June 2021. Available online: https:\/\/github.com\/cls-obsnadir-dev\/SMAP-FFSAR.","DOI":"10.5270\/esa-cnes.sentinel-3.smap"},{"key":"ref_46","doi-asserted-by":"crossref","unstructured":"Amraoui, S., Guccione, P., Moreau, T., Alves, M., Altiparmaki, O., Peureux, C., Recchia, L., Maraldi, C., Boy, F., and Donlon, C. (2024). Optimal Configuration of Omega-Kappa FF-SAR Processing for Specular and Non-Specular Targets in Altimetric Data: The Sentinel-6 Michael Freilich Study Case. Remote Sens., 16.","DOI":"10.3390\/rs16061112"},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"1917","DOI":"10.1175\/2010JPO4324.1","article-title":"Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation","volume":"40","author":"Ardhuin","year":"2010","journal-title":"J. Phys. Oceanogr."},{"key":"ref_48","unstructured":"Janssen, P., Aouf, L., Behrens, A., Korres, G., Cavalieri, L., Christiensen, K., and Breivik, O. (2014). Final Report of work-package I in my wave project."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"1999","DOI":"10.1002\/qj.3803","article-title":"The ERA5 global reanalysis","volume":"146","author":"Hersbach","year":"2020","journal-title":"Q. J. R. Meteorol. Soc."},{"key":"ref_50","unstructured":"(2023). Product User Manual For Global Ocean Wave Analysis and Forecasting Product, EU Copernicus Marine Service, European Commission. Available online: https:\/\/catalogue.marine.copernicus.eu\/documents\/PUM\/CMEMS-GLO-PUM-001-027.pdf."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"594","DOI":"10.1002\/lom3.10271","article-title":"On estimation of coastal wave parameters and wave-induced shear stresses","volume":"16","author":"Xiong","year":"2018","journal-title":"Limnol. Oceanogr. Methods"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"15781","DOI":"10.1029\/97JC00467","article-title":"A unified directional spectrum for long and short wind-driven waves","volume":"102","author":"Elfouhaily","year":"1997","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"16411","DOI":"10.1029\/93JC00914","article-title":"Airborne synthetic aperture radar observations and simulations for waves in ice","volume":"98","author":"Vachon","year":"1993","journal-title":"Geophys. Res."},{"key":"ref_54","first-page":"109","article-title":"A New Method for Calibration of SAR Images","volume":"Volume 450","author":"Harris","year":"2000","journal-title":"Proceedings of the SAR Workshop: CEOS Committee on Earth Observation Satellites, Working Group on Calibration and Validation"},{"key":"ref_55","unstructured":"CORDIS (2014). MyWave: A Pan-European Concerted and Integrated Approach to Operational Wave Modelling and Forecasting\u2014A Complement to GMES MyOcean Services, European Commission. Available online: https:\/\/cordis.europa.eu\/project\/id\/284455\/reporting."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"e2020JC016564","DOI":"10.1029\/2020JC016564","article-title":"Surface Currents and Significant Wave Height Gradients: Matching Numerical Models and High-Resolution Altimeter Wave Heights in the Agulhas Current Region","volume":"126","author":"Marechal","year":"2021","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"112395","DOI":"10.1016\/j.rse.2021.112395","article-title":"The Copernicus Sentinel-6 mission: Enhanced continuity of satellite sea level measurements from space","volume":"258","author":"Donlon","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1007\/s00190-019-01337-8","article-title":"The second-order effect of Earth\u2019s rotation on CryoSat-2 fully-focused SAR processing","volume":"94","author":"Kleinherenbrink","year":"2020","journal-title":"J. Geod."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/16\/7\/1292\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,4,8]],"date-time":"2024-04-08T07:44:19Z","timestamp":1712562259000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/16\/7\/1292"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,4,6]]},"references-count":58,"journal-issue":{"issue":"7","published-online":{"date-parts":[[2024,4]]}},"alternative-id":["rs16071292"],"URL":"https:\/\/doi.org\/10.3390\/rs16071292","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,4,6]]}}}