{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,5,6]],"date-time":"2025-05-06T04:19:38Z","timestamp":1746505178274,"version":"3.37.3"},"reference-count":219,"publisher":"MDPI AG","issue":"5","license":[{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Institute of Information & Communications Technology Planning & Evaluation (IITP)","award":["IITP-2023-RS-2023-00254529"]},{"DOI":"10.13039\/501100003725","name":"National Research Foundation of Korea (NRF)","doi-asserted-by":"crossref","award":["2020R1A6A1A03038540"],"id":[{"id":"10.13039\/501100003725","id-type":"DOI","asserted-by":"crossref"}]},{"name":"MSIT, Korea","award":["IITP-2023-2021-0-01816"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Autonomous unmanned aerial vehicles (UAVs) have several advantages in various fields, including disaster relief, aerial photography and videography, mapping and surveying, farming, as well as defense and public usage. However, there is a growing probability that UAVs could be misused to breach vital locations such as airports and power plants without authorization, endangering public safety. Because of this, it is critical to accurately and swiftly identify different types of UAVs to prevent their misuse and prevent security issues arising from unauthorized access. In recent years, machine learning (ML) algorithms have shown promise in automatically addressing the aforementioned concerns and providing accurate detection and classification of UAVs across a broad range. This technology is considered highly promising for UAV systems. In this survey, we describe the recent use of various UAV detection and classification technologies based on ML and deep learning (DL) algorithms. Four types of UAV detection and classification technologies based on ML are considered in this survey: radio frequency-based UAV detection, visual data (images\/video)-based UAV detection, acoustic\/sound-based UAV detection, and radar-based UAV detection. Additionally, this survey report explores hybrid sensor- and reinforcement learning-based UAV detection and classification using ML. Furthermore, we consider method challenges, solutions, and possible future research directions for ML-based UAV detection. Moreover, the dataset information of UAV detection and classification technologies is extensively explored. This investigation holds potential as a study for current UAV detection and classification research, particularly for ML- and DL-based UAV detection approaches.<\/jats:p>","DOI":"10.3390\/rs16050879","type":"journal-article","created":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T16:19:24Z","timestamp":1709309964000},"page":"879","source":"Crossref","is-referenced-by-count":21,"title":["A Comprehensive Survey of Unmanned Aerial Vehicles Detection and Classification Using Machine Learning Approach: Challenges, Solutions, and Future Directions"],"prefix":"10.3390","volume":"16","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-6792-3825","authenticated-orcid":false,"given":"Md Habibur","family":"Rahman","sequence":"first","affiliation":[{"name":"Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea"},{"name":"Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6323-2613","authenticated-orcid":false,"given":"Mohammad Abrar Shakil","family":"Sejan","sequence":"additional","affiliation":[{"name":"Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea"},{"name":"Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1233-7482","authenticated-orcid":false,"given":"Md Abdul","family":"Aziz","sequence":"additional","affiliation":[{"name":"Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea"},{"name":"Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea"}]},{"ORCID":"https:\/\/orcid.org\/0009-0004-9419-0702","authenticated-orcid":false,"given":"Rana","family":"Tabassum","sequence":"additional","affiliation":[{"name":"Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea"},{"name":"Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea"}]},{"given":"Jung-In","family":"Baik","sequence":"additional","affiliation":[{"name":"Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea"},{"name":"Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3274-4982","authenticated-orcid":false,"given":"Hyoung-Kyu","family":"Song","sequence":"additional","affiliation":[{"name":"Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea"},{"name":"Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea"}]}],"member":"1968","published-online":{"date-parts":[[2024,3,1]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Wilson, R.L. (2014, January 23). Ethical issues with use of drone aircraft. Proceedings of the 2014 IEEE International Symposium on Ethics in Science, Technology and Engineering, Chicago, IL, USA.","DOI":"10.1109\/ETHICS.2014.6893424"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"3159","DOI":"10.1080\/01431161.2017.1292074","article-title":"Lightweight UAV digital elevation models and orthoimagery for environmental applications: Data accuracy evaluation and potential for river flood risk modelling","volume":"38","author":"Coveney","year":"2017","journal-title":"Int. J. Remote Sens."},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Alsalam, B.H.Y., Morton, K., Campbell, D., and Gonzalez, F. (2017, January 4\u201311). Autonomous UAV with vision based on-board decision making for remote sensing and precision agriculture. Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA.","DOI":"10.1109\/AERO.2017.7943593"},{"key":"ref_4","unstructured":"Amazon (2023, October 18). Amazon Prime Air Drone Delivery Fleet Gets FAA Approval. Available online: https:\/\/www.cnbc.com\/2020\/08\/31\/amazon-prime-now-drone-delivery-fleet-gets-faa-approval.html."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Reedha, R., Dericquebourg, E., Canals, R., and Hafiane, A. (2022). Transformer neural network for weed and crop classification of high resolution UAV images. Remote Sens., 14.","DOI":"10.3390\/rs14030592"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1109\/MNET.011.2000648","article-title":"On the localization of wireless targets: A drone surveillance perspective","volume":"35","author":"Bisio","year":"2021","journal-title":"IEEE Netw."},{"key":"ref_7","unstructured":"(2023, October 18). Civilian. Civilian Drone Crashes into ARMY Helicopter. Available online: https:\/\/nypost.com\/2017\/09\/22\/army-helicopter-hit-by-drone\/."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"101569","DOI":"10.1016\/j.pmcj.2022.101569","article-title":"Wavelet transform analytics for RF-based UAV detection and identification system using machine learning","volume":"82","author":"Medaiyese","year":"2022","journal-title":"Pervasive Mob. Comput."},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Birch, G.C., Griffin, J.C., and Erdman, M.K. (2015). Uas Detection Classification and Neutralization: Market Survey 2015, Sandia National Lab. (SNL-NM). Technical Report.","DOI":"10.2172\/1222445"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"3212","DOI":"10.1109\/TNNLS.2018.2876865","article-title":"Object detection with deep learning: A review","volume":"30","author":"Zhao","year":"2019","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"669","DOI":"10.1007\/s12065-020-00544-z","article-title":"Clustering method and sine cosine algorithm for image segmentation","volume":"15","author":"Khrissi","year":"2022","journal-title":"Evol. Intell."},{"key":"ref_12","first-page":"423","article-title":"An efficient image clustering technique based on fuzzy c-means and cuckoo search algorithm","volume":"12","author":"Khrissi","year":"2021","journal-title":"Int. J. Adv. Comput. Sci. Appl."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"87887","DOI":"10.1109\/ACCESS.2023.3292551","article-title":"An end-to-end deep learning framework for real-time denoising of heart sounds for cardiac disease detection in unseen noise","volume":"11","author":"Ali","year":"2023","journal-title":"IEEE Access"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"106812","DOI":"10.1016\/j.ijfatigue.2022.106812","article-title":"Deep learning regression-based stratified probabilistic combined cycle fatigue damage evaluation for turbine bladed disks","volume":"159","author":"Li","year":"2022","journal-title":"Int. J. Fatigue"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"15425","DOI":"10.1109\/TITS.2022.3170643","article-title":"Ensemble Deep Learning for Sustainable Multimodal UAV Classification","volume":"24","author":"McCoy","year":"2023","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Casabianca, P., and Zhang, Y. (2021). Acoustic-based UAV detection using late fusion of deep neural networks. Drones, 5.","DOI":"10.3390\/drones5030054"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"138669","DOI":"10.1109\/ACCESS.2019.2942944","article-title":"Machine learning-based drone detection and classification: State-of-the-art in research","volume":"7","author":"Taha","year":"2019","journal-title":"IEEE Access"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"9511","DOI":"10.1007\/s00521-022-07104-9","article-title":"Deep learning techniques to classify agricultural crops through UAV imagery: A review","volume":"34","author":"Bouguettaya","year":"2022","journal-title":"Neural Comput. Appl."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"4277","DOI":"10.3934\/era.2022218","article-title":"Machine learning methods for precision agriculture with UAV imagery: A review","volume":"30","author":"Shahi","year":"2022","journal-title":"Electron. Res. Arch."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"102152","DOI":"10.1016\/j.sysarc.2021.102152","article-title":"A survey of deep learning techniques for vehicle detection from UAV images","volume":"117","author":"Srivastava","year":"2021","journal-title":"J. Syst. Archit."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"6047","DOI":"10.1109\/TNNLS.2021.3080276","article-title":"Vehicle detection from UAV imagery with deep learning: A review","volume":"33","author":"Bouguettaya","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1297","DOI":"10.1007\/s10586-022-03627-x","article-title":"A survey on deep learning-based identification of plant and crop diseases from UAV-based aerial images","volume":"26","author":"Bouguettaya","year":"2023","journal-title":"Clust. Comput."},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Diez, Y., Kentsch, S., Fukuda, M., Caceres, M.L.L., Moritake, K., and Cabezas, M. (2021). Deep learning in forestry using uav-acquired rgb data: A practical review. Remote Sens., 13.","DOI":"10.3390\/rs13142837"},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Shahi, T.B., Xu, C.Y., Neupane, A., and Guo, W. (2023). Recent Advances in Crop Disease Detection Using UAV and Deep Learning Techniques. Remote Sens., 15.","DOI":"10.3390\/rs15092450"},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Bithas, P.S., Michailidis, E.T., Nomikos, N., Vouyioukas, D., and Kanatas, A.G. (2019). A survey on machine-learning techniques for UAV-based communications. Sensors, 19.","DOI":"10.3390\/s19235170"},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Yan, X., Fu, T., Lin, H., Xuan, F., Huang, Y., Cao, Y., Hu, H., and Liu, P. (2023). UAV Detection and Tracking in Urban Environments Using Passive Sensors: A Survey. Appl. Sci., 13.","DOI":"10.3390\/app132011320"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"141800","DOI":"10.1109\/ACCESS.2021.3119561","article-title":"Deep-learning for radar: A survey","volume":"9","author":"Geng","year":"2021","journal-title":"IEEE Access"},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Coluccia, A., Parisi, G., and Fascista, A. (2020). Detection and classification of multirotor drones in radar sensor networks: A review. Sensors, 20.","DOI":"10.3390\/s20154172"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"11439","DOI":"10.1109\/JSEN.2022.3171293","article-title":"On the detection of unauthorized drones\u2014Techniques and future perspectives: A review","volume":"22","author":"Khan","year":"2022","journal-title":"IEEE Sens. J."},{"key":"ref_30","doi-asserted-by":"crossref","unstructured":"Samaras, S., Diamantidou, E., Ataloglou, D., Sakellariou, N., Vafeiadis, A., Magoulianitis, V., Lalas, A., Dimou, A., Zarpalas, D., and Votis, K. (2019). Deep learning on multi sensor data for counter UAV applications\u2014A systematic review. Sensors, 19.","DOI":"10.3390\/s19224837"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"42635","DOI":"10.1109\/ACCESS.2021.3065926","article-title":"Survey on anti-drone systems: Components, designs, and challenges","volume":"9","author":"Park","year":"2021","journal-title":"IEEE Access"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"6099","DOI":"10.1109\/JSEN.2023.3242985","article-title":"RF-based drone classification under complex electromagnetic environments using deep learning","volume":"23","author":"Zhang","year":"2023","journal-title":"IEEE Sens. J."},{"key":"ref_33","doi-asserted-by":"crossref","unstructured":"Medaiyese, O.O., Syed, A., and Lauf, A.P. (2021, January 12\u201313). Machine learning framework for RF-based drone detection and identification system. Proceedings of the 2021 2nd International Conference On Smart Cities, Automation & Intelligent Computing Systems (ICON-SONICS), Tangerang, Indonesia.","DOI":"10.1109\/ICON-SONICS53103.2021.9617168"},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Swinney, C.J., and Woods, J.C. (2021, January 15\u201318). RF detection and classification of unmanned aerial vehicles in environments with wireless interference. Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece.","DOI":"10.1109\/ICUAS51884.2021.9476867"},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Akter, R., Doan, V.S., Tunze, G.B., Lee, J.M., and Kim, D.S. (2020, January 21\u201323). RF-based UAV surveillance system: A sequential convolution neural networks approach. Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea.","DOI":"10.1109\/ICTC49870.2020.9289281"},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Amorim, R., Wigard, J., Nguyen, H., Kovacs, I.Z., and Mogensen, P. (2027, January 4\u20138). Machine-learning identification of airborne UAV-UEs based on LTE radio measurements. Proceedings of the 2017 IEEE Globecom Workshops (GC Wkshps), Singapore.","DOI":"10.1109\/GLOCOMW.2017.8269067"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"24720","DOI":"10.1109\/ACCESS.2018.2831911","article-title":"A UAV detection algorithm based on an artificial neural network","volume":"6","author":"Zhang","year":"2018","journal-title":"IEEE Access"},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Ezuma, M., Erden, F., Anjinappa, C.K., Ozdemir, O., and Guvenc, I. (2019, January 2\u20139). Micro-UAV detection and classification from RF fingerprints using machine learning techniques. Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA.","DOI":"10.1109\/AERO.2019.8741970"},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Shorten, D., Williamson, A., Srivastava, S., and Murray, J.C. (2018, January 15\u201317). Localisation of Drone Controllers from RF Signals Using a Deep Learning Approach. Proceedings of the International Conference on Pattern Recognition and Artificial Intelligence, Union, NJ, USA.","DOI":"10.1145\/3243250.3243272"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1016\/j.future.2019.05.007","article-title":"RF-based drone detection and identification using deep learning approaches: An initiative towards a large open source drone database","volume":"100","author":"Mohamed","year":"2019","journal-title":"Future Gener. Comput. Syst."},{"key":"ref_41","doi-asserted-by":"crossref","unstructured":"Alam, S.S., Chakma, A., Rahman, M.H., Bin Mofidul, R., Alam, M.M., Utama, I.B.K.Y., and Jang, Y.M. (2023). RF-Enabled Deep-Learning-Assisted Drone Detection and Identification: An End-to-End Approach. Sensors, 23.","DOI":"10.3390\/s23094202"},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Mo, Y., Huang, J., and Qian, G. (2022). Deep learning approach to UAV detection and classification by using compressively sensed RF signal. Sensors, 22.","DOI":"10.3390\/s22083072"},{"key":"ref_43","doi-asserted-by":"crossref","unstructured":"Ashush, N., Greenberg, S., Manor, E., and Ben-Shimol, Y. (2023). Unsupervised Drones Swarm Characterization Using RF Signals Analysis and Machine Learning Methods. Sensors, 23.","DOI":"10.3390\/s23031589"},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1109\/TCCN.2021.3099114","article-title":"Combined RF-based drone detection and classification","volume":"8","author":"Basak","year":"2021","journal-title":"IEEE Trans. Cogn. Commun. Netw."},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Basak, S., Rajendran, S., Pollin, S., and Scheers, B. (2021, January 5\u20139). Drone classification from RF fingerprints using deep residual nets. Proceedings of the 2021 International Conference on COMmunication Systems & NETworkS (COMSNETS), Bangalore, India.","DOI":"10.1109\/COMSNETS51098.2021.9352891"},{"key":"ref_46","doi-asserted-by":"crossref","unstructured":"Nemer, I., Sheltami, T., Ahmad, I., Yasar, A.U.H., and Abdeen, M.A. (2021). RF-based UAV detection and identification using hierarchical learning approach. Sensors, 21.","DOI":"10.3390\/s21061947"},{"key":"ref_47","doi-asserted-by":"crossref","unstructured":"Al-Emadi, S., and Al-Senaid, F. (2020, January 2\u20135). Drone detection approach based on radio-frequency using convolutional neural network. Proceedings of the 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar.","DOI":"10.1109\/ICIoT48696.2020.9089489"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1109\/OJCOMS.2019.2955889","article-title":"Detection and classification of UAVs using RF fingerprints in the presence of Wi-Fi and Bluetooth interference","volume":"1","author":"Ezuma","year":"2019","journal-title":"IEEE Open J. Commun. Soc."},{"key":"ref_49","doi-asserted-by":"crossref","unstructured":"Basan, E.S., Tregubenko, M.D., Mudruk, N.N., and Abramov, E.S. (2021, January 19\u201321). Analysis of artificial intelligence methods for detecting drones based on radio frequency activity. Proceedings of the 2021 XV International Scientific-Technical Conference on Actual Problems Of Electronic Instrument Engineering (APEIE), Novosibirsk, Russia.","DOI":"10.1109\/APEIE52976.2021.9647562"},{"key":"ref_50","doi-asserted-by":"crossref","unstructured":"Zhao, X., Wang, L., Wang, Q., and Wang, J. (2022, January 16\u201320). A hierarchical framework for drone identification based on radio frequency machine learning. Proceedings of the 2022 IEEE International Conference on Communications Workshops (ICC Workshops), Seoul, Republic of Korea.","DOI":"10.1109\/ICCWorkshops53468.2022.9814482"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"e5377","DOI":"10.1002\/dac.5377","article-title":"Deep learning approach for investigation of temporal radio frequency signatures of drones","volume":"36","author":"Sohal","year":"2023","journal-title":"Int. J. Commun. Syst."},{"key":"ref_52","doi-asserted-by":"crossref","unstructured":"Liu, H. (July, January 28). Unmanned Aerial Vehicle Detection and Identification Using Deep Learning. Proceedings of the 2021 International Wireless Communications and Mobile Computing (IWCMC), Harbin City, China.","DOI":"10.1109\/IWCMC51323.2021.9498629"},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/LSENS.2023.3289145","article-title":"Time\u2013Frequency Multiscale Convolutional Neural Network for RF-Based Drone Detection and Identification","volume":"7","author":"Mandal","year":"2023","journal-title":"IEEE Sens. Lett."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"921","DOI":"10.1109\/OJVT.2023.3333676","article-title":"URANUS: Radio Frequency Tracking, Classification and Identification of Unmanned Aircraft Vehicles","volume":"4","author":"Gennaro","year":"2023","journal-title":"IEEE Open J. Veh. Technol."},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Inani, K.N., Sangwan, K., and Dhiraj (2023, January 11\u201312). Machine Learning based framework for Drone Detection and Identification using RF signals. Proceedings of the 2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT), Kottayam, India.","DOI":"10.1109\/ICITIIT57246.2023.10068637"},{"key":"ref_56","doi-asserted-by":"crossref","unstructured":"Basak, S., Rajendran, S., Pollin, S., and Scheers, B. (2023, January 19\u201322). Autoencoder based framework for drone RF signal classification and novelty detection. Proceedings of the 2023 25th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Republic of Korea.","DOI":"10.23919\/ICACT56868.2023.10079363"},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"104313","DOI":"10.1016\/j.dib.2019.104313","article-title":"DroneRF dataset: A dataset of drones for RF-based detection, classification and identification","volume":"26","author":"Allahham","year":"2019","journal-title":"Data Brief"},{"key":"ref_58","unstructured":"Ezuma, M., Erden, F., Anjinappa, C.K., Ozdemir, O., and Guvenc, I. (2020). Drone Remote Controller RF Signal Dataset. IEEE DataPort."},{"key":"ref_59","unstructured":"Instruments, N. (2023, December 24). USRP Software Defined Radio Reconfigurable Device. Available online: https:\/\/www.ni.com\/ko-kr\/shop\/model\/usrp-2943.html."},{"key":"ref_60","unstructured":"Medaiyese, O., Ezuma, M., Lauf, A., and Adeniran, A. (2022). Cardinal RF (CardRF): An Outdoor UAV\/UAS\/Drone RF Signals with Bluetooth and WiFi Signals Dataset. IEEE DataPort."},{"key":"ref_61","doi-asserted-by":"crossref","unstructured":"Uzundurukan, E., Dalveren, Y., and Kara, A. (2020). A database for the radio frequency fingerprinting of Bluetooth devices. Data, 5.","DOI":"10.3390\/data5020055"},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"15518","DOI":"10.1109\/TVT.2020.3042128","article-title":"RF fingerprinting unmanned aerial vehicles with non-standard transmitter waveforms","volume":"69","author":"Soltani","year":"2020","journal-title":"IEEE Trans. Veh. Technol."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"115928","DOI":"10.1016\/j.eswa.2021.115928","article-title":"Single and multiple drones detection and identification using RF based deep learning algorithm","volume":"187","author":"Pokrajac","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"49696","DOI":"10.1109\/ACCESS.2022.3172787","article-title":"RF-UAVNet: High-performance convolutional network for RF-based drone surveillance systems","volume":"10","author":"Pham","year":"2022","journal-title":"IEEE Access"},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"176","DOI":"10.1109\/JRFID.2022.3157653","article-title":"Hierarchical learning framework for UAV detection and identification","volume":"6","author":"Medaiyese","year":"2022","journal-title":"IEEE J. Radio Freq. Identif."},{"key":"ref_66","doi-asserted-by":"crossref","unstructured":"Shi, Z., Huang, M., Zhao, C., Huang, L., Du, X., and Zhao, Y. (2017, January 21\u201325). Detection of LSSUAV using hash fingerprint based SVDD. Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France.","DOI":"10.1109\/ICC.2017.7996844"},{"key":"ref_67","doi-asserted-by":"crossref","unstructured":"Zhao, C., Chen, C., Cai, Z., Shi, M., Du, X., and Guizani, M. (2018, January 9\u201313). Classification of small UAVs based on auxiliary classifier Wasserstein GANs. Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates.","DOI":"10.1109\/GLOCOM.2018.8647973"},{"key":"ref_68","doi-asserted-by":"crossref","unstructured":"Liang, Y., Zhao, M., Liu, X., Jiang, J., Lu, G., and Jia, T. (2023). Image Splicing Compression Algorithm Based on the Extended Kalman Filter for Unmanned Aerial Vehicles Communication. Drones, 7.","DOI":"10.3390\/drones7080488"},{"key":"ref_69","doi-asserted-by":"crossref","unstructured":"Aledhari, M., Razzak, R., Parizi, R.M., and Srivastava, G. (2021, January 25\u201328). Sensor fusion for drone detection. Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland.","DOI":"10.1109\/VTC2021-Spring51267.2021.9448699"},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1109\/MNET.011.2000204","article-title":"Deep Learning and Blockchain with Edge Computing for 5G-Enabled Drone Identification and Flight Mode Detection","volume":"35","author":"Gumaei","year":"2021","journal-title":"IEEE Netw."},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"4381","DOI":"10.1109\/TIV.2023.3296227","article-title":"Robust Adversarial Attacks Detection Based on Explainable Deep Reinforcement Learning for UAV Guidance and Planning","volume":"8","author":"Hickling","year":"2023","journal-title":"IEEE Trans. Intell. Veh."},{"key":"ref_72","unstructured":"Rana, B., and Singh, Y. (2021). Unmanned Aerial Vehicles for Internet of Things (IoT) Concepts, Techniques, and Applications, Wiley."},{"key":"ref_73","doi-asserted-by":"crossref","unstructured":"Seidaliyeva, U., Alduraibi, M., Ilipbayeva, L., and Almagambetov, A. (2020, January 9\u201311). Detection of Loaded and Unloaded UAV Using Deep Neural Network. Proceedings of the 2020 Fourth IEEE International Conference on Robotic Computing (IRC), Taichung, Taiwan.","DOI":"10.1109\/IRC.2020.00093"},{"key":"ref_74","doi-asserted-by":"crossref","unstructured":"Liu, H., Fan, K., Ouyang, Q., and Li, N. (2021). Real-time small drones detection based on pruned yolov4. Sensors, 21.","DOI":"10.3390\/s21103374"},{"key":"ref_75","first-page":"1","article-title":"Deep learning-based strategies for the detection and tracking of drones using several cameras","volume":"11","author":"Unlu","year":"2019","journal-title":"IPSJ Trans. Comput. Vis. Appl."},{"key":"ref_76","doi-asserted-by":"crossref","unstructured":"Mahdavi, F., and Rajabi, R. (2020, January 23\u201324). Drone Detection Using Convolutional Neural Networks. Proceedings of the 2020 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), Mashhad, Iran.","DOI":"10.1109\/ICSPIS51611.2020.9349620"},{"key":"ref_77","doi-asserted-by":"crossref","unstructured":"Behera, D.K., and Raj, A.B. (2020, January 13\u201315). Drone Detection and Classification Using Deep Learning. Proceedings of the 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India.","DOI":"10.1109\/ICICCS48265.2020.9121150"},{"key":"ref_78","doi-asserted-by":"crossref","unstructured":"Shi, Q., and Li, J. (2020, January 14\u201316). Objects Detection of UAV for Anti-UAV Based on YOLOv4. Proceedings of the 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology ICCASIT, Weihai, China.","DOI":"10.1109\/ICCASIT50869.2020.9368788"},{"key":"ref_79","doi-asserted-by":"crossref","unstructured":"Wei Xun, D.T., Lim, Y.L., and Srigrarom, S. (2021, January 20\u201322). Drone detection using YOLOv3 with transfer learning on NVIDIA Jetson TX2. Proceedings of the 2021 Second International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), Bangkok, Thailand.","DOI":"10.1109\/ICA-SYMP50206.2021.9358449"},{"key":"ref_80","doi-asserted-by":"crossref","unstructured":"Isaac-Medina, B.K., Poyser, M., Organisciak, D., Willcocks, C.G., Breckon, T.P., and Shum, H.P. (2021, January 11\u201317). Unmanned aerial vehicle visual detection and tracking using deep neural networks: A performance benchmark. Proceedings of the IEEE\/CVF International Conference on Computer Vision, Virtual.","DOI":"10.1109\/ICCVW54120.2021.00142"},{"key":"ref_81","doi-asserted-by":"crossref","unstructured":"Singha, S., and Aydin, B. (2021). Automated drone detection using YOLOv4. Drones, 5.","DOI":"10.3390\/drones5030095"},{"key":"ref_82","doi-asserted-by":"crossref","unstructured":"Aker, C., and Kalkan, S. (September, January 29). Using deep networks for drone detection. Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Lecce, Italy.","DOI":"10.1109\/AVSS.2017.8078539"},{"key":"ref_83","doi-asserted-by":"crossref","unstructured":"Saqib, M., Khan, S.D., Sharma, N., and Blumenstein, M. (September, January 29). A Study on Detecting Drones Using Deep Convolutional Neural Networks. Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Lecce, Italy.","DOI":"10.1109\/AVSS.2017.8078541"},{"key":"ref_84","unstructured":"Wu, M., Xie, W., Shi, X., Shao, P., and Shi, Z. (2018). Machine Learning and Intelligent Communications: Third International Conference, MLICOM 2018, Hangzhou, China, 6\u20138 July 2018, Springer. Proceedings 3."},{"key":"ref_85","doi-asserted-by":"crossref","unstructured":"Chen, Y., Aggarwal, P., Choi, J., and Kuo, C.C.J. (2017, January 12\u201315). A deep learning approach to drone monitoring. Proceedings of the 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Kuala Lumpur, Malaysia.","DOI":"10.1109\/APSIPA.2017.8282120"},{"key":"ref_86","doi-asserted-by":"crossref","first-page":"1020","DOI":"10.1109\/LRA.2021.3056059","article-title":"Air-to-air visual detection of micro-UAVs: An experimental evaluation of deep learning","volume":"6","author":"Zheng","year":"2021","journal-title":"IEEE Robot. Autom. Lett."},{"key":"ref_87","doi-asserted-by":"crossref","unstructured":"Samadzadegan, F., Dadrass Javan, F., Ashtari Mahini, F., and Gholamshahi, M. (2022). Detection and recognition of drones based on a deep convolutional neural network using visible imagery. Aerospace, 9.","DOI":"10.3390\/aerospace9010031"},{"key":"ref_88","doi-asserted-by":"crossref","unstructured":"Dewangan, V., Saxena, A., Thakur, R., and Tripathi, S. (2023). Application of Image Processing Techniques for UAV Detection Using Deep Learning and Distance-Wise Analysis. Drones, 7.","DOI":"10.3390\/drones7030174"},{"key":"ref_89","doi-asserted-by":"crossref","unstructured":"Phung, K.P., Lu, T.H., Nguyen, T.T., Le, N.L., Nguyen, H.H., and Hoang, V.P. (2021, January 14\u201316). Multi-model deep learning drone detection and tracking in complex background conditions. Proceedings of the 2021 International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh City, Vietnam.","DOI":"10.1109\/ATC52653.2021.9598317"},{"key":"ref_90","doi-asserted-by":"crossref","unstructured":"Coluccia, A., Fascista, A., Schumann, A., Sommer, L., Dimou, A., Zarpalas, D., M\u00e9ndez, M., De la Iglesia, D., Gonz\u00e1lez, I., and Mercier, J.P. (2021). Drone vs. bird detection: Deep learning algorithms and results from a grand challenge. Sensors, 21.","DOI":"10.3390\/s21082824"},{"key":"ref_91","doi-asserted-by":"crossref","unstructured":"Hamadi, R., Ghazzai, H., and Massoud, Y. (2023, January 19\u201321). Image-based Automated Framework for Detecting and Classifying Unmanned Aerial Vehicles. Proceedings of the 2023 IEEE International Conference on Smart Mobility (SM), Thuwal, Saudi Arabia.","DOI":"10.1109\/SM57895.2023.10112531"},{"key":"ref_92","unstructured":"Kostadinovshalon (2023, December 24). UAV Detection Tracking Benchmark. Available online: https:\/\/github.com\/KostadinovShalon\/UAVDetectionTrackingBenchmark."},{"key":"ref_93","unstructured":"Kaggle (2023, December 24). Kaggle Datsets. Available online: https:\/\/www.kaggle.com\/datasets."},{"key":"ref_94","unstructured":"(2023, December 24). USC. Usc Drone Dataset. Available online: https:\/\/github.com\/chelicynly\/A-Deep-Learning-Approach-to-Drone-Monitoring."},{"key":"ref_95","unstructured":"(2023, December 24). Det-Fly. Det-Fly Dataset. Available online: https:\/\/github.com\/Jake-WU\/Det-Fly."},{"key":"ref_96","unstructured":"(2023, December 24). Drone. Drone Dataset. Available online: https:\/\/www.kaggle.com\/datasets\/dasmehdixtr\/drone-dataset-uav."},{"key":"ref_97","doi-asserted-by":"crossref","unstructured":"Li, J., Ye, D.H., Chung, T., Kolsch, M., Wachs, J., and Bouman, C. (2016, January 9\u201314). Multi-target detection and tracking from a single camera in Unmanned Aerial Vehicles (UAVs). Proceedings of the 2016 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea.","DOI":"10.1109\/IROS.2016.7759733"},{"key":"ref_98","doi-asserted-by":"crossref","unstructured":"Dwibedi, D., Misra, I., and Hebert, M. (2017, January 22\u201329). Cut, paste and learn: Surprisingly easy synthesis for instance detection. Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy.","DOI":"10.1109\/ICCV.2017.146"},{"key":"ref_99","doi-asserted-by":"crossref","unstructured":"Ashraf, M.W., Sultani, W., and Shah, M. (2021, January 19\u201325). Dogfight: Detecting drones from drones videos. Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, Virtual Conference.","DOI":"10.1109\/CVPR46437.2021.00699"},{"key":"ref_100","unstructured":"Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv."},{"key":"ref_101","doi-asserted-by":"crossref","unstructured":"Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014, January 23\u201328). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA.","DOI":"10.1109\/CVPR.2014.81"},{"key":"ref_102","doi-asserted-by":"crossref","first-page":"1904","DOI":"10.1109\/TPAMI.2015.2389824","article-title":"Spatial pyramid pooling in deep convolutional networks for visual recognition","volume":"37","author":"He","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_103","first-page":"91","article-title":"Faster r-cnn: Towards real-time object detection with region proposal networks","volume":"28","author":"Ren","year":"2015","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"ref_104","doi-asserted-by":"crossref","unstructured":"Long, J., Shelhamer, E., and Darrell, T. (2015, January 11\u201312). Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA.","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"ref_105","unstructured":"Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (July, January 26). You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA."},{"key":"ref_106","unstructured":"Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., and Berg, A.C. (2016). Computer Vision\u2013ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11\u201314 October 2016, Springer. Proceedings, Part I 14."},{"key":"ref_107","doi-asserted-by":"crossref","unstructured":"Rizzoli, G., Barbato, F., Caligiuri, M., and Zanuttigh, P. (2023, January 2\u20136). SynDrone-Multi-Modal UAV Dataset for Urban Scenarios. Proceedings of the IEEE\/CVF International Conference on Computer Vision, Paris, France.","DOI":"10.1109\/ICCVW60793.2023.00235"},{"key":"ref_108","doi-asserted-by":"crossref","unstructured":"de Curt\u00f2, J., de Zarz\u00e0, I., and Calafate, C.T. (2023). Semantic scene understanding with large language models on unmanned aerial vehicles. Drones, 7.","DOI":"10.3390\/drones7020114"},{"key":"ref_109","doi-asserted-by":"crossref","first-page":"4021","DOI":"10.1109\/JIOT.2022.3162300","article-title":"LocateUAV: Unmanned aerial vehicle location estimation via contextual analysis in an IoT environment","volume":"10","author":"Dilshad","year":"2022","journal-title":"IEEE Internet Things J."},{"key":"ref_110","doi-asserted-by":"crossref","first-page":"100452","DOI":"10.1016\/j.cosrev.2021.100452","article-title":"Developing future human-centered smart cities: Critical analysis of smart city security, Data management, and Ethical challenges","volume":"43","author":"Ahmad","year":"2022","journal-title":"Comput. Sci. Rev."},{"key":"ref_111","doi-asserted-by":"crossref","unstructured":"Iqbal, D., and Buhnova, B. (2022, January 9\u201312). Model-based approach for building trust in autonomous drones through digital twins. Proceedings of the 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Prague, Czech Republic.","DOI":"10.1109\/SMC53654.2022.9945227"},{"key":"ref_112","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1007\/s11042-022-12964-3","article-title":"Drone sound detection system based on feature result-level fusion using deep learning","volume":"82","author":"Dong","year":"2023","journal-title":"Multimed. Tools Appl."},{"key":"ref_113","doi-asserted-by":"crossref","first-page":"108773","DOI":"10.1016\/j.apacoust.2022.108773","article-title":"Development of a new Light-Weight Convolutional Neural Network for acoustic-based amateur drone detection","volume":"193","year":"2022","journal-title":"Appl. Acoust."},{"key":"ref_114","doi-asserted-by":"crossref","unstructured":"Jeon, S., Shin, J.W., Lee, Y.J., Kim, W.H., Kwon, Y., and Yang, H.Y. (September, January 28). Empirical study of drone sound detection in real-life environment with deep neural networks. Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos, Greece.","DOI":"10.23919\/EUSIPCO.2017.8081531"},{"key":"ref_115","doi-asserted-by":"crossref","first-page":"60","DOI":"10.2352\/ISSN.2470-1173.2017.10.IMAWM-168","article-title":"Drone detection by acoustic signature identification","volume":"2017","author":"Bernardini","year":"2017","journal-title":"Electron. Imaging"},{"key":"ref_116","first-page":"5078","article-title":"SVM-based drone sound recognition using the combination of HLA and WPT techniques in practical noisy environment","volume":"13","author":"He","year":"2019","journal-title":"KSII Trans. Internet Inf. Syst. (TIIS)"},{"key":"ref_117","doi-asserted-by":"crossref","unstructured":"Yang, B., Matson, E.T., Smith, A.H., Dietz, J.E., and Gallagher, J.C. (2019, January 25\u201327). UAV detection system with multiple acoustic nodes using machine learning models. Proceedings of the 2019 Third IEEE International Conference on Robotic Computing (IRC), Naples, Italy.","DOI":"10.1109\/IRC.2019.00103"},{"key":"ref_118","doi-asserted-by":"crossref","unstructured":"Kim, J., Park, C., Ahn, J., Ko, Y., Park, J., and Gallagher, J.C. (2017, January 13\u201315). Real-time UAV sound detection and analysis system. Proceedings of the 2017 IEEE Sensors Applications Symposium (SAS), Glassboro, NJ, USA.","DOI":"10.1109\/SAS.2017.7894058"},{"key":"ref_119","doi-asserted-by":"crossref","unstructured":"Al-Emadi, S., Al-Ali, A., Mohammad, A., and Al-Ali, A. (2019, January 24\u201328). Audio based drone detection and identification using deep learning. Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco.","DOI":"10.1109\/IWCMC.2019.8766732"},{"key":"ref_120","doi-asserted-by":"crossref","first-page":"236","DOI":"10.1016\/j.comcom.2020.02.065","article-title":"Amateur Drones Detection: A machine learning approach utilizing the acoustic signals in the presence of strong interference","volume":"154","author":"Uddin","year":"2020","journal-title":"Comput. Commun."},{"key":"ref_121","doi-asserted-by":"crossref","first-page":"2526","DOI":"10.1109\/TVT.2019.2893615","article-title":"Machine learning inspired sound-based amateur drone detection for public safety applications","volume":"68","author":"Anwar","year":"2019","journal-title":"IEEE Trans. Veh. Technol."},{"key":"ref_122","doi-asserted-by":"crossref","unstructured":"Seo, Y., Jang, B., and Im, S. (2018, January 27\u201330). Drone detection using convolutional neural networks with acoustic STFT features. Proceedings of the 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Auckland, New Zealand.","DOI":"10.1109\/AVSS.2018.8639425"},{"key":"ref_123","doi-asserted-by":"crossref","unstructured":"Al-Emadi, S., Al-Ali, A., and Al-Ali, A. (2021). Audio-based drone detection and identification using deep learning techniques with dataset enhancement through generative adversarial networks. Sensors, 21.","DOI":"10.3390\/s21154953"},{"key":"ref_124","doi-asserted-by":"crossref","unstructured":"Salman, S., Mir, J., Farooq, M.T., Malik, A.N., and Haleemdeen, R. (2021, January 12\u201316). Machine learning inspired efficient audio drone detection using acoustic features. Proceedings of the 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad, Pakistan.","DOI":"10.1109\/IBCAST51254.2021.9393232"},{"key":"ref_125","doi-asserted-by":"crossref","unstructured":"Baron, V., Bouley, S., Muschinowski, M., Mars, J., and Nicolas, B. (2019, January 9\u201312). Drone localization and identification using an acoustic array and supervised learning. Proceedings of the Artificial Intelligence and Machine Learning in Defense Applications, Strasbourg, France.","DOI":"10.1117\/12.2533039"},{"key":"ref_126","doi-asserted-by":"crossref","unstructured":"Ohlenbusch, M., Ahrens, A., Rollwage, C., and Bitzer, J. (2021, January 18\u201321). Robust drone detection for acoustic monitoring applications. Proceedings of the 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands.","DOI":"10.23919\/Eusipco47968.2020.9287433"},{"key":"ref_127","doi-asserted-by":"crossref","unstructured":"Dumitrescu, C., Minea, M., Costea, I.M., Cosmin Chiva, I., and Semenescu, A. (2020). Development of an acoustic system for UAV detection. Sensors, 20.","DOI":"10.3390\/s20174870"},{"key":"ref_128","doi-asserted-by":"crossref","unstructured":"Ahmed, C.A., Batool, F., Haider, W., Asad, M., and Hamdani, S.H.R. (2022, January 3\u20134). Acoustic Based Drone Detection via Machine Learning. Proceedings of the 2022 International Conference on IT and Industrial Technologies (ICIT), Chiniot, Pakistan.","DOI":"10.1109\/ICIT56493.2022.9989229"},{"key":"ref_129","doi-asserted-by":"crossref","unstructured":"Alaparthy, V., Mandal, S., and Cummings, M. (2021, January 6\u201313). A comparison of machine learning and human performance in the real-time acoustic detection of drones. Proceedings of the IEEE Aerospace, Big Sky, MT, USA.","DOI":"10.1109\/AERO50100.2021.9438533"},{"key":"ref_130","doi-asserted-by":"crossref","unstructured":"Mandal, S., Chen, L., Alaparthy, V., and Cummings, M.L. (2020, January 6\u201310). Acoustic detection of drones through real-time audio attribute prediction. Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA.","DOI":"10.2514\/6.2020-0491"},{"key":"ref_131","doi-asserted-by":"crossref","unstructured":"Wang, Y., Fagian, F.E., Ho, K.E., and Matson, E.T. (2021, January 15\u201317). A feature engineering focused system for acoustic uav detection. Proceedings of the 2021 Fifth IEEE International Conference on Robotic Computing (IRC), Taichung, Taiwan.","DOI":"10.1109\/IRC52146.2021.00031"},{"key":"ref_132","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1121\/10.0020292","article-title":"Estimation of number of unmanned aerial vehicles in a scene utilizing acoustic signatures and machine learning","volume":"154","author":"AN","year":"2023","journal-title":"J. Acoust. Soc. Am."},{"key":"ref_133","doi-asserted-by":"crossref","unstructured":"Tejera-Berengue, D., Zhu-Zhou, F., Utrilla-Manso, M., Gil-Pita, R., and Rosa-Zurera, M. (2023, January 18\u201320). Acoustic-Based Detection of UAVs Using Machine Learning: Analysis of Distance and Environmental Effects. Proceedings of the 2023 IEEE Sensors Applications Symposium (SAS), Ottawa, ON, Canada.","DOI":"10.1109\/SAS58821.2023.10254127"},{"key":"ref_134","doi-asserted-by":"crossref","first-page":"33336","DOI":"10.1109\/ACCESS.2023.3262702","article-title":"A Stethoscope for Drones: Transformers-Based Methods for UAVs Acoustic Anomaly Detection","volume":"11","author":"Anidjar","year":"2023","journal-title":"IEEE Access"},{"key":"ref_135","unstructured":"Al-Emadi, S. (2023, December 24). DroneAudioDataset. Available online: https:\/\/github.com\/saraalemadi\/DroneAudioDataset."},{"key":"ref_136","doi-asserted-by":"crossref","unstructured":"Piczak, K.J. (2015, January 26\u201330). ESC: Dataset for environmental sound classification. Proceedings of the 23rd ACM international conference on Multimedia, New York, NY, USA.","DOI":"10.1145\/2733373.2806390"},{"key":"ref_137","unstructured":"Warden, P. (2018). Speech commands: A dataset for limited-vocabulary speech recognition. arXiv."},{"key":"ref_138","unstructured":"(2023, December 24). Datasets. Datasetslink. Available online: https:\/\/www.soundsnap.com\/tags."},{"key":"ref_139","unstructured":"(2023, December 24). Datasets. Datasetslink. Available online: https:\/\/freesound.org\/browse\/tags\/."},{"key":"ref_140","unstructured":"Van Grootel, M., Andringa, T.C., and Krijnders, J. (2009, January 23\u201326). DARES-G1: Database of annotated real-world everyday sounds. Proceedings of the NAG\/DAGA International Conference on Acoustics, Rotterdam, The Netherlands."},{"key":"ref_141","first-page":"142","article-title":"Histogram of gradients of time\u2013frequency representations for audio scene classification","volume":"23","author":"Rakotomamonjy","year":"2014","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"key":"ref_142","doi-asserted-by":"crossref","unstructured":"Kolamunna, H., Li, J., Dahanayaka, T., Seneviratne, S., Thilakaratne, K., Zomaya, A.Y., and Seneviratne, A. (2020, January 8\u201310). Acousticprint: Acoustic signature based open set drone identification. Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks, Linz, Austria.","DOI":"10.1145\/3395351.3401700"},{"key":"ref_143","unstructured":"Dumitrescu, C., Minea, M., and Ciotirnae, P. UAV detection employing sensor data fusion and artificial intelligence. Proceedings of the International Conference on Information Systems Architecture and Technology."},{"key":"ref_144","doi-asserted-by":"crossref","unstructured":"Kim, K., Nalluri, S., Kashinath, A., Wang, Y., Mohan, S., Pajic, M., and Li, B. (2020). Security analysis against spoofing attacks for distributed UAVs. Decentralized Iot Syst. Secur.","DOI":"10.14722\/diss.2020.23011"},{"key":"ref_145","doi-asserted-by":"crossref","unstructured":"Hoffmann, F., Ritchie, M., Fioranelli, F., Charlish, A., and Griffiths, H. (2016, January 2\u20136). Micro-Doppler based detection and tracking of UAVs with multistatic radar. Proceedings of the 2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, USA.","DOI":"10.1109\/RADAR.2016.7485236"},{"key":"ref_146","doi-asserted-by":"crossref","unstructured":"Jahangir, M., Ahmad, B.I., and Baker, C.J. (2020, January 28\u201330). Robust drone classification using two-stage decision trees and results from SESAR SAFIR trials. Proceedings of the 2020 IEEE International Radar Conference (RADAR), Washington, DC, USA.","DOI":"10.1109\/RADAR42522.2020.9114870"},{"key":"ref_147","doi-asserted-by":"crossref","first-page":"606","DOI":"10.1016\/j.icte.2022.04.012","article-title":"CNN-32DC: An improved radar-based drone recognition system based on Convolutional Neural Network","volume":"8","author":"Garcia","year":"2022","journal-title":"ICT Express"},{"key":"ref_148","doi-asserted-by":"crossref","unstructured":"Dey, A., Cabanes, Y., Rajan, S., Balaji, B., Damini, A., and Chanchlani, R. (2023, January 18\u201320). Radar-Based Drone Detection Using Complex-Valued Convolutional Neural Network. Proceedings of the 2023 IEEE Sensors Applications Symposium (SAS), Ottawa, ON, Canada.","DOI":"10.1109\/SAS58821.2023.10254135"},{"key":"ref_149","first-page":"1","article-title":"DIAT-RadSATNet\u2014A Novel Lightweight DCNN Architecture for Micro-Doppler-Based Small Unmanned Aerial Vehicle (SUAV) Targets\u2019 Detection and Classification","volume":"71","author":"Kumawat","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"ref_150","doi-asserted-by":"crossref","first-page":"6285","DOI":"10.1109\/TGRS.2020.3028654","article-title":"Micro-Doppler Signature-Based Detection, Classification, and Localization of Small UAV With Long Short-Term Memory Neural Network","volume":"59","author":"Sun","year":"2021","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_151","unstructured":"Park, J., Park, J.S., and Park, S.O. (2020). Small drone classification with light CNN and new micro-Doppler signature extraction method based on A-SPC technique. arXiv."},{"key":"ref_152","first-page":"1","article-title":"Deep learning-based UAV detection in pulse-Doppler radar","volume":"60","author":"Wang","year":"2021","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_153","doi-asserted-by":"crossref","first-page":"7047","DOI":"10.1049\/joe.2019.0551","article-title":"Multi-time frequency analysis and classification of a micro-drone carrying payloads using multistatic radar","volume":"2019","author":"Patel","year":"2019","journal-title":"J. Eng."},{"key":"ref_154","doi-asserted-by":"crossref","first-page":"586","DOI":"10.1049\/iet-rsn.2019.0105","article-title":"Exploitation of multipath micro-Doppler signatures for drone classification","volume":"14","author":"Zhang","year":"2020","journal-title":"IET Radar Sonar Navig."},{"key":"ref_155","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1109\/LGRS.2016.2624820","article-title":"Drone classification using convolutional neural networks with merged Doppler images","volume":"14","author":"Kim","year":"2016","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_156","doi-asserted-by":"crossref","unstructured":"Bj\u00f6rklund, S., and Wadstr\u00f6mer, N. (2019, January 23\u201327). Target detection and classification of small drones by deep learning on radar micro-doppler. Proceedings of the 2019 International Radar Conference (RADAR), Toulon, France.","DOI":"10.1109\/RADAR41533.2019.171294"},{"key":"ref_157","doi-asserted-by":"crossref","first-page":"161431","DOI":"10.1109\/ACCESS.2021.3115805","article-title":"Deep learning-based drone classification using radar cross section signatures at mmWave frequencies","volume":"9","author":"Fu","year":"2021","journal-title":"IEEE Access"},{"key":"ref_158","doi-asserted-by":"crossref","unstructured":"Barbaresco, F., Brooks, D., and Adnet, C. (2020, January 21\u201325). Machine and deep learning for drone radar recognition by micro-doppler and kinematic criteria. Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy.","DOI":"10.1109\/RadarConf2043947.2020.9266371"},{"key":"ref_159","doi-asserted-by":"crossref","unstructured":"Kawaguchi, D., Nakamura, R., and Hadama, H. (2021, January 25\u201328). Evaluation on a drone classification method using UWB radar image recognition with deep learning. Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland.","DOI":"10.1109\/VTC2021-Spring51267.2021.9448946"},{"key":"ref_160","doi-asserted-by":"crossref","unstructured":"Mendis, G.J., Randeny, T., Wei, J., and Madanayake, A. (2016, January 1\u20133). Deep learning based doppler radar for micro UAS detection and classification. Proceedings of the MILCOM 2016\u20142016 IEEE Military Communications Conference, Baltimore, MD, USA.","DOI":"10.1109\/MILCOM.2016.7795448"},{"key":"ref_161","doi-asserted-by":"crossref","unstructured":"Park, D., Lee, S., Park, S., and Kwak, N. (2021). Radar-spectrogram-based UAV classification using convolutional neural networks. Sensors, 21.","DOI":"10.3390\/s21010210"},{"key":"ref_162","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1109\/MAES.2019.2933972","article-title":"Deep learning for classification of mini-UAVs using micro-Doppler spectrograms in cognitive radar","volume":"34","author":"Huizing","year":"2019","journal-title":"IEEE Aerosp. Electron. Syst. Mag."},{"key":"ref_163","doi-asserted-by":"crossref","first-page":"213","DOI":"10.5916\/jamet.2021.45.4.213","article-title":"Drone movement classification based on deep learning using micro-doppler signature images","volume":"45","author":"Lee","year":"2021","journal-title":"J. Adv. Mar. Eng. Technol."},{"key":"ref_164","doi-asserted-by":"crossref","first-page":"593","DOI":"10.1049\/iet-rsn.2019.0307","article-title":"DopplerNet: A convolutional neural network for recognising targets in real scenarios using a persistent range\u2014Doppler radar","volume":"14","author":"Roldan","year":"2020","journal-title":"IET Radar Sonar Navig."},{"key":"ref_165","unstructured":"Rahman, S., and Robertson, D.A. (May, January 27). Multiple drone classification using millimeter-wave CW radar micro-Doppler data. Proceedings of the Radar Sensor Technology XXIV, Anaheim, CA, USA."},{"key":"ref_166","doi-asserted-by":"crossref","unstructured":"Haifawi, H., Fioranelli, F., Yarovoy, A., and van der Meer, R. (2023, January 1\u20135). Drone Detection & Classification with Surveillance \u2018Radar On-The-Move\u2019and YOLO. Proceedings of the 2023 IEEE Radar Conference (RadarConf23), San Antonio, TX, USA.","DOI":"10.1109\/RadarConf2351548.2023.10149588"},{"key":"ref_167","doi-asserted-by":"crossref","unstructured":"Dale, H., Baker, C., Antoniou, M., and Jahangir, M. (2020, January 28\u201330). An initial investigation into using convolutional neural networks for classification of drones. Proceedings of the 2020 IEEE International Radar Conference (RADAR), Washington, DC, USA.","DOI":"10.1109\/RADAR42522.2020.9114745"},{"key":"ref_168","doi-asserted-by":"crossref","unstructured":"G\u00e9rard, J., Tomasik, J., Morisseau, C., Rimmel, A., and Vieillard, G. (2021, January 18\u201321). Micro-Doppler signal representation for drone classification by deep learning. Proceedings of the 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands.","DOI":"10.23919\/Eusipco47968.2020.9287525"},{"key":"ref_169","doi-asserted-by":"crossref","first-page":"8639","DOI":"10.1109\/JSEN.2023.3254525","article-title":"Echoformer: Transformer architecture based on radar echo characteristics for UAV detection","volume":"23","author":"Yang","year":"2023","journal-title":"IEEE Sens. J."},{"key":"ref_170","doi-asserted-by":"crossref","unstructured":"Raval, D., Hunter, E., Hudson, S., Damini, A., and Balaji, B. (2021). Convolutional neural networks for classification of drones using radars. Drones, 5.","DOI":"10.3390\/drones5040149"},{"key":"ref_171","doi-asserted-by":"crossref","first-page":"160135","DOI":"10.1109\/ACCESS.2021.3130231","article-title":"Classification of bird and drone targets based on motion characteristics and random forest model using surveillance radar data","volume":"9","author":"Liu","year":"2021","journal-title":"IEEE Access"},{"key":"ref_172","doi-asserted-by":"crossref","unstructured":"Fraser, B., Perrusqu\u00eda, A., Panagiotakopoulos, D., and Guo, W. (2023, January 9\u201321). Hybrid Deep Neural Networks for Drone High Level Intent Classification using Non-Cooperative Radar Data. Proceedings of the 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Tenerife, Canary Islands, Spain.","DOI":"10.1109\/ICECCME57830.2023.10252859"},{"key":"ref_173","doi-asserted-by":"crossref","first-page":"2222","DOI":"10.1109\/TMTT.2023.3231371","article-title":"Model-Based Data Augmentation Applied to Deep Learning Networks for Classification of Micro-Doppler Signatures Using FMCW Radar","volume":"71","author":"Rojhani","year":"2023","journal-title":"IEEE Trans. Microw. Theory Tech."},{"key":"ref_174","doi-asserted-by":"crossref","first-page":"623","DOI":"10.1109\/TRS.2023.3322607","article-title":"A Hyper-Parameters-Tuned R-PCA+SVM Technique for sUAV Targets Classification Using the Range-\/Micro-Doppler Signatures","volume":"1","author":"Hasan","year":"2023","journal-title":"IEEE Trans. Radar Syst."},{"key":"ref_175","doi-asserted-by":"crossref","unstructured":"Gomez, S., Johnson, A., and Ramesh Babu, P. (2023, January 1\u20132). Classification of Radar Targets Based on Micro-Doppler Features Using High Frequency High Resolution Radar Signatures. Proceedings of the 2023 International Conference on Network, Multimedia and Information Technology (NMITCON), Bengaluru, India.","DOI":"10.1109\/NMITCON58196.2023.10276375"},{"key":"ref_176","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/LGRS.2021.3102039","article-title":"DIAT-\u03bcSAT: Small aerial targets\u2019 micro-Doppler signatures and their classification using CNN","volume":"19","author":"Kumawat","year":"2021","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_177","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1109\/MMM.2018.2862558","article-title":"Radar taking off: New capabilities for UAVs","volume":"19","author":"Roos","year":"2018","journal-title":"IEEE Microw. Mag."},{"key":"ref_178","doi-asserted-by":"crossref","first-page":"48958","DOI":"10.1109\/ACCESS.2020.2979339","article-title":"Analyzing radar cross section signatures of diverse drone models at mmWave frequencies","volume":"8","author":"Semkin","year":"2020","journal-title":"IEEE Access"},{"key":"ref_179","unstructured":"Database, R.D. (2023, December 30). Real Doppler RAD-DAR Database. Available online: https:\/\/www.kaggle.com\/datasets\/iroldan\/real-doppler-raddar-database."},{"key":"ref_180","unstructured":"Whelan, J., Sangarapillai, T., Minawi, O., Almehmadi, A., and El-Khatib, K. (2020). UAV Attack Dataset. IEEE DataPort."},{"key":"ref_181","doi-asserted-by":"crossref","first-page":"515","DOI":"10.1177\/0278364920966642","article-title":"Alfa: A dataset for uav fault and anomaly detection","volume":"40","author":"Keipour","year":"2021","journal-title":"Int. J. Robot. Res."},{"key":"ref_182","unstructured":"Street, M. (2023, December 24). Drone Identification and Tracking. Available online: https:\/\/www.kaggle.com\/competitions\/icmcis-drone-tracking."},{"key":"ref_183","unstructured":"Rodrigues, T., Patrikar, J., Choudhry, A., Feldgoise, J., Arcot, V., Gahlaut, A., Lau, S., Moon, B., Wagner, B., and Scott Matthews, H. (2020). Data Collected with Package Delivery Quadcopter Drone, Carnegie Mellon University."},{"key":"ref_184","doi-asserted-by":"crossref","unstructured":"Perrusquia, A., Tovar, C., Soria, A., and Martinez, J.C. (2016, January 26\u201330). Robust controller for aircraft roll control system using data flight parameters. Proceedings of the 2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico.","DOI":"10.1109\/ICEEE.2016.7751210"},{"key":"ref_185","doi-asserted-by":"crossref","first-page":"441","DOI":"10.1049\/el.2017.4317","article-title":"Detection of multiple micro-drones via cadence velocity diagram analysis","volume":"54","author":"Zhang","year":"2018","journal-title":"Electron. Lett."},{"key":"ref_186","doi-asserted-by":"crossref","first-page":"68791","DOI":"10.1109\/ACCESS.2023.3293124","article-title":"CNN-Based UAV Detection and Classification Using Sensor Fusion","volume":"11","author":"Lee","year":"2023","journal-title":"IEEE Access"},{"key":"ref_187","doi-asserted-by":"crossref","first-page":"16043","DOI":"10.1109\/JSEN.2021.3075909","article-title":"Localization and activity classification of unmanned aerial vehicle using mmWave FMCW radars","volume":"21","author":"Rai","year":"2021","journal-title":"IEEE Sens. J."},{"key":"ref_188","doi-asserted-by":"crossref","unstructured":"Le, H., Doan, V.S., Nguyen, H.H., Huynh-The, T., Le-Ha, K., Hoang, V.P., and Le, D.P. (2020, January 2\u20136). Micro-Doppler-radar-based UAV detection using inception-residual neural network. Proceedings of the 2020 International Conference on Advanced Technologies for Communications (ATC), Nha Trang, Vietnam.","DOI":"10.1109\/ATC50776.2020.9255454"},{"key":"ref_189","doi-asserted-by":"crossref","unstructured":"Aouto, A., Jun, T., Lee, J.M., and Kim, D.S. (2023, January 4\u20137). DopeNet: Range\u2013Doppler Radar-based UAV Detection Using Convolutional Neural Network. Proceedings of the 2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN), Paris, France.","DOI":"10.1109\/ICUFN57995.2023.10200675"},{"key":"ref_190","doi-asserted-by":"crossref","unstructured":"Ezuma, M., Anjinappa, C.K., Semkin, V., and Guvenc, I. (2021). Comparative analysis of radar cross section based UAV classification techniques. arXiv.","DOI":"10.1109\/JSEN.2022.3194527"},{"key":"ref_191","doi-asserted-by":"crossref","first-page":"1946","DOI":"10.1109\/LGRS.2020.3011114","article-title":"Improved Drone Classification Using Polarimetric Merged-Doppler Images","volume":"18","author":"Kim","year":"2021","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_192","unstructured":"Ezuma, M.C. (2022). Uav Detection and Classification Using Radar, Radio Frequency and Machine Learning Techniques, North Carolina State University."},{"key":"ref_193","doi-asserted-by":"crossref","unstructured":"Schwalb, J., Menon, V., Tenhundfeld, N., Weger, K., Mesmer, B., and Gholston, S. (2022, January 17\u201319). A Study of Drone-Based AI for Enhanced Human-AI Trust and Informed Decision Making in Human-AI Interactive Virtual Environments. Proceedings of the 2022 IEEE 3rd International Conference on Human-Machine Systems (ICHMS), Orlando, FL, USA.","DOI":"10.1109\/ICHMS56717.2022.9980625"},{"key":"ref_194","doi-asserted-by":"crossref","first-page":"30536","DOI":"10.1109\/ACCESS.2022.3159698","article-title":"6G NR-U based wireless infrastructure UAV: Standardization, opportunities, challenges and future scopes","volume":"10","author":"Bajracharya","year":"2022","journal-title":"IEEE Access"},{"key":"ref_195","doi-asserted-by":"crossref","unstructured":"Samaras, S., Magoulianitis, V., Dimou, A., Zarpalas, D., and Daras, P. (2019, January 23\u201325). UAV classification with deep learning using surveillance radar data. Proceedings of the International Conference on Computer Vision Systems, Thessaloniki, Greece.","DOI":"10.1007\/978-3-030-34995-0_68"},{"key":"ref_196","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1109\/MSP.2017.2743240","article-title":"Deep reinforcement learning: A brief survey","volume":"34","author":"Arulkumaran","year":"2017","journal-title":"IEEE Signal Process. Mag."},{"key":"ref_197","doi-asserted-by":"crossref","unstructured":"Azar, A.T., Koubaa, A., Ali Mohamed, N., Ibrahim, H.A., Ibrahim, Z.F., Kazim, M., Ammar, A., Benjdira, B., Khamis, A.M., and Hameed, I.A. (2021). Drone deep reinforcement learning: A review. Electronics, 10.","DOI":"10.3390\/electronics10090999"},{"key":"ref_198","unstructured":"Masadeh, A., Alhafnawi, M., Salameh, H.A.B., Musa, A., and Jararweh, Y. (2022). Reinforcement learning-based security\/safety uav system for intrusion detection under dynamic and uncertain target movement. IEEE Trans. Eng. Manag."},{"key":"ref_199","doi-asserted-by":"crossref","unstructured":"\u00c7etin, E., Barrado, C., and Pastor, E. (2020). Counter a drone in a complex neighborhood area by deep reinforcement learning. Sensors, 20.","DOI":"10.3390\/s20082320"},{"key":"ref_200","doi-asserted-by":"crossref","unstructured":"Akhloufi, M.A., Arola, S., and Bonnet, A. (2019). Drones chasing drones: Reinforcement learning and deep search area proposal. Drones, 3.","DOI":"10.3390\/drones3030058"},{"key":"ref_201","doi-asserted-by":"crossref","unstructured":"\u00c7etin, E., Barrado, C., and Pastor, E. (2022). Countering a Drone in a 3D Space: Analyzing Deep Reinforcement Learning Methods. Sensors, 22.","DOI":"10.3390\/s22228863"},{"key":"ref_202","doi-asserted-by":"crossref","unstructured":"Svanstr\u00f6m, F., Englund, C., and Alonso-Fernandez, F. (2021, January 10\u201315). Real-time drone detection and tracking with visible, thermal and acoustic sensors. Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy.","DOI":"10.1109\/ICPR48806.2021.9413241"},{"key":"ref_203","doi-asserted-by":"crossref","unstructured":"Liu, H., Wei, Z., Chen, Y., Pan, J., Lin, L., and Ren, Y. (2017, January 19\u201321). Drone detection based on an audio-assisted camera array. Proceedings of the 2017 IEEE Third International Conference on Multimedia Big Data (BigMM), Laguna Hills, CA, USA.","DOI":"10.1109\/BigMM.2017.57"},{"key":"ref_204","doi-asserted-by":"crossref","unstructured":"Park, S., Shin, S., Kim, Y., Matson, E.T., Lee, K., Kolodzy, P.J., Slater, J.C., Scherreik, M., Sam, M., and Gallagher, J.C. (2015, January 1\u20134). Combination of radar and audio sensors for identification of rotor-type unmanned aerial vehicles (uavs). Proceedings of the 2015 IEEE SENSORS, Busan, Republic of Korea.","DOI":"10.1109\/ICSENS.2015.7370533"},{"key":"ref_205","unstructured":"Diamantidou, E., Lalas, A., Votis, K., and Tzovaras, D. (2019). Computer Vision Systems: 12th International Conference, ICVS 2019, Thessaloniki, Greece, 23\u201325 September 2019, Springer. Proceedings 12."},{"key":"ref_206","doi-asserted-by":"crossref","unstructured":"Mehta, V., Dadboud, F., Bolic, M., and Mantegh, I. (2023, January 18\u201320). A Deep Learning Approach for Drone Detection and Classification Using Radar and Camera Sensor Fusion. Proceedings of the 2023 IEEE Sensors Applications Symposium (SAS), Ottawa, ON, Canada.","DOI":"10.1109\/SAS58821.2023.10254123"},{"key":"ref_207","doi-asserted-by":"crossref","unstructured":"Kim, J., Lee, D., Kim, Y., Shin, H., Heo, Y., Wang, Y., and Matson, E.T. (2022, January 5\u20137). Deep Learning Based Malicious Drone Detection Using Acoustic and Image Data. Proceedings of the 2022 Sixth IEEE International Conference on Robotic Computing (IRC), Naples, Italy.","DOI":"10.1109\/IRC55401.2022.00024"},{"key":"ref_208","unstructured":"(2023, December 30). DroneDetectionThesis. Drone Detection Dataset. Available online: https:\/\/github.com\/DroneDetectionThesis\/Drone-detection-dataset."},{"key":"ref_209","doi-asserted-by":"crossref","unstructured":"Rahimi, A.M., Ruschel, R., and Manjunath, B. (2016, January 27\u201330). Uav sensor fusion with latent-dynamic conditional random fields in coronal plane estimation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA.","DOI":"10.1109\/CVPR.2016.490"},{"key":"ref_210","doi-asserted-by":"crossref","unstructured":"Xie, X., Yang, W., Cao, G., Yang, J., Zhao, Z., Chen, S., Liao, Q., and Shi, G. (2018, January 13\u201316). Real-time vehicle detection from UAV imagery. Proceedings of the 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM), Xi\u2019an, China.","DOI":"10.1109\/BigMM.2018.8499466"},{"key":"ref_211","doi-asserted-by":"crossref","unstructured":"Ntizikira, E., Lei, W., Alblehai, F., Saleem, K., and Lodhi, M.A. (2023). Secure and Privacy-Preserving Intrusion Detection and Prevention in the Internet of Unmanned Aerial Vehicles. Sensors, 23.","DOI":"10.3390\/s23198077"},{"key":"ref_212","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1016\/j.jpdc.2019.04.009","article-title":"Cooperative unmanned aerial vehicles with privacy preserving deep vision for real-time object identification and tracking","volume":"131","author":"Silva","year":"2019","journal-title":"J. Parallel Distrib. Comput."},{"key":"ref_213","doi-asserted-by":"crossref","first-page":"1020","DOI":"10.1109\/COMST.2021.3067354","article-title":"A Survey on Standards for Interoperability and Security in the Internet of Things","volume":"23","author":"Lee","year":"2021","journal-title":"IEEE Commun. Surv. Tutor."},{"key":"ref_214","doi-asserted-by":"crossref","first-page":"124451","DOI":"10.1109\/ACCESS.2020.3006191","article-title":"Adaptive inattentional framework for video object detection with reward-conditional training","volume":"8","author":"Sampedro","year":"2020","journal-title":"IEEE Access"},{"key":"ref_215","unstructured":"Jiang, N., Wang, K., Peng, X., Yu, X., Wang, Q., Xing, J., Li, G., Zhao, J., Guo, G., and Han, Z. (2021). Anti-UAV: A large multi-modal benchmark for UAV tracking. arXiv."},{"key":"ref_216","doi-asserted-by":"crossref","unstructured":"Park, J., Kim, D.H., Shin, Y.S., and Lee, S.h. (2017, January 18\u201321). A comparison of convolutional object detectors for real-time drone tracking using a PTZ camera. Proceedings of the 2017 17th International Conference on Control, Automation and Systems (ICCAS), Jeju, Republic of Korea.","DOI":"10.23919\/ICCAS.2017.8204318"},{"key":"ref_217","first-page":"423","article-title":"Multimodal machine learning: A survey and taxonomy","volume":"41","author":"Ahuja","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_218","doi-asserted-by":"crossref","first-page":"2256","DOI":"10.1109\/TGRS.2020.3004353","article-title":"Super-resolution mapping based on spatial-spectral correlation for spectral imagery","volume":"59","author":"Wang","year":"2020","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_219","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/j.rse.2018.04.050","article-title":"Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery","volume":"214","author":"Huang","year":"2018","journal-title":"Remote Sens. Environ."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/16\/5\/879\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,21]],"date-time":"2025-01-21T16:17:40Z","timestamp":1737476260000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/16\/5\/879"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,3,1]]},"references-count":219,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2024,3]]}},"alternative-id":["rs16050879"],"URL":"https:\/\/doi.org\/10.3390\/rs16050879","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2024,3,1]]}}}