{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,28]],"date-time":"2024-08-28T09:43:54Z","timestamp":1724838234191},"reference-count":75,"publisher":"MDPI AG","issue":"21","license":[{"start":{"date-parts":[[2023,11,6]],"date-time":"2023-11-06T00:00:00Z","timestamp":1699228800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["42192532","42174099"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Fundamental Research Funds for the Central Universities"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"During gravity field modeling, the conventional acceleration approach rarely incorporates KBR inter-satellite range rate data from the GRACE mission. To propose an improved acceleration method, this study introduces initial orbital position and velocity vectors to be estimated along with a combination of Cowell, KSG, and Adams integrators. In addition to achieving a full-rank design matrix regarding orbit corrections when constructing observation equations, the proposed method is capable of utilizing range rate observations for gravity field estimation. To verify the reliability of this approach, GRACE data from April 2002 to December 2016 was used to calculate a time series of monthly gravity solutions up to a degree and order of 96, referred to as Tongji-Acc RL06 in this paper. The computed time series are compared with the official models (i.e., CSR RL06, GFZ RL06, and JPL RL06) in terms of geoid degree variances, signal contents over distinct areas, and noise levels in desert regions. The investigations lead to the following conclusions: (a) the geoid degree variances indicate that Tongji-Acc RL06 exhibits comparable signal levels (approximately below 20 degrees) to the other three models while demonstrating lower noise at higher degrees (above 40 degrees); (b) the analysis over the globe, typical river basins, and land\u2013ice regions illustrates that the solutions derived using the proposed acceleration method agree well with the official models based on the dynamic approach; (c) especially over the two large-scale river basins (i.e., Amazon and Zambezi) and another two small-scale river basins (i.e., Tennessee and Irrawaddy), Tongji-Acc RL06 significantly improves the SNR values; and (d) in the cases of the Sahara and Karakum deserts, Tongji-Acc RL06 achieves noise reductions of over 55.8% and 61.5% relative to CSR RL06, respectively. In general, the signal and noise analyses demonstrate that the proposed acceleration-based approach can effectively extract gravity field signals from KBR inter-satellite range rate observations with improved SNR, while significantly reducing the high-frequency noise.<\/jats:p>","DOI":"10.3390\/rs15215260","type":"journal-article","created":{"date-parts":[[2023,11,6]],"date-time":"2023-11-06T18:24:53Z","timestamp":1699295093000},"page":"5260","source":"Crossref","is-referenced-by-count":2,"title":["An Improved Acceleration Approach by Utilizing K-Band Range Rate Observations"],"prefix":"10.3390","volume":"15","author":[{"given":"Zhanglin","family":"Shen","sequence":"first","affiliation":[{"name":"College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China"}]},{"given":"Qiujie","family":"Chen","sequence":"additional","affiliation":[{"name":"College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China"}]},{"given":"Yunzhong","family":"Shen","sequence":"additional","affiliation":[{"name":"College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China"}]}],"member":"1968","published-online":{"date-parts":[[2023,11,6]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"1414","DOI":"10.1016\/j.asr.2008.05.004","article-title":"Precise accelerometry onboard the GRACE gravity field satellite mission","volume":"42","author":"Flury","year":"2008","journal-title":"Adv. Space Res."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"L09607","DOI":"10.1029\/2004GL019920","article-title":"The gravity recovery and climate experiment: Mission overview and early results","volume":"31","author":"Tapley","year":"2004","journal-title":"Geophys. Res. Lett."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"931","DOI":"10.2514\/1.A34326","article-title":"GRACE-FO: The Gravity Recovery and Climate Experiment Follow-On Mission","volume":"56","author":"Kornfeld","year":"2019","journal-title":"J. Spacecr. Rocket."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"031101","DOI":"10.1103\/PhysRevLett.123.031101","article-title":"In-orbit performance of the GRACE Follow-on laser ranging interferometer","volume":"123","author":"Abich","year":"2019","journal-title":"Phys. Rev. Lett."},{"key":"ref_5","unstructured":"Bettadpur, S. (2018). UTCSR Level-2 Processing Standards Document for Level-2 Product Release 0006, 1\u201316, Center for Space Research, The University of Texas at Austin."},{"key":"ref_6","unstructured":"Yuan, D. (2018). JPL Level-2 Processing Standards Document for Level-2 Product Release 06, 1\u201316, Jet Propulsion Laboratory, California Institute of Technology."},{"key":"ref_7","unstructured":"Dahle, C., Flechtner, F., Murb\u00f6ck, M., Michalak, G., Neumayer, H., Abrykosov, O., Reinhold, A., and K\u00f6nig, R. (2018). GFZ Level-2 Processing Standards Document for Level-2 Product Release 06, GFZ German Research Centre for Geosciences."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"9332","DOI":"10.1029\/2019JB017415","article-title":"ITSG-Grace2018: Overview and evaluation of a new GRACE-only gravity field time series","volume":"124","author":"Kvas","year":"2019","journal-title":"J. Geophys. Res. Solid Earth."},{"key":"ref_9","first-page":"769","article-title":"DEOS Mass Transport model (DMT-1) based on GRACE satellite data: Methodology and validation","volume":"181","author":"Liu","year":"2010","journal-title":"Geophys. J. Int."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"658","DOI":"10.1126\/science.1128661","article-title":"Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake","volume":"313","author":"Han","year":"2006","journal-title":"Science"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"L24312","DOI":"10.1029\/2011GL049975","article-title":"Contribution of satellite gravimetry to understanding seismic source processes of the 2011 Tohoku-Oki earthquake","volume":"38","author":"Han","year":"2011","journal-title":"Geophys. Res. Lett."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"30205","DOI":"10.1029\/98JB02844","article-title":"Time variability of the earths gravity field hydrological and oceanic effects and their possible detection using grace","volume":"103","author":"Wahr","year":"1998","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"474","DOI":"10.1016\/j.scib.2021.11.010","article-title":"Quantifying the major drivers for the expanding lakes in the interior Tibetan Plateau","volume":"67","author":"Zhou","year":"2022","journal-title":"Sci. Bull."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"110837","DOI":"10.1016\/j.ecolind.2023.110837","article-title":"Spatial and wavelet analysis of precipitation and river discharge during operation of the Three Gorges Dam, China","volume":"154","author":"Yin","year":"2023","journal-title":"Ecol. Indic."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.jog.2008.03.007","article-title":"Use of GRACE determined secular gravity rates for glacial isostatic adjustment studies in North-America","volume":"46","author":"Wal","year":"2008","journal-title":"J. Geodyn."},{"key":"ref_16","unstructured":"Gunter, B.C., Wittwer, T., Stolk, W., Klees, R., and Ditmar, P. (2012). Geodesy for Planet Earth, Proceedings of the 2009 IAG Symposium, Buenos Aires, Argentina, 31 August 31\u20134 September 2009, Springer."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"1286","DOI":"10.1126\/science.1130776","article-title":"Recent Greenland ice mass loss by drainage system from satellite gravity observations","volume":"314","author":"Luthcke","year":"2006","journal-title":"Science"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1007\/s00190-012-0580-5","article-title":"Estimation of mass change trends in the Earth\u2019s system on the basis of GRACE satellite data, with application to Greenland","volume":"87","author":"Siemes","year":"2013","journal-title":"J. Geod."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"1190","DOI":"10.1093\/gji\/ggv220","article-title":"A modified acceleration-based monthly gravity field solution from grace data","volume":"202","author":"Chen","year":"2015","journal-title":"Geophys. J. Int."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1007\/s00190-003-0362-1","article-title":"A technique for modeling the Earth\u2019s gravity field on the basis of satellite accelerations","volume":"78","author":"Ditmar","year":"2004","journal-title":"J. Geod."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"586","DOI":"10.1007\/s00190-005-0008-6","article-title":"DEOS_CHAMP-01C_70\u2019: A model of the Earth\u2019s gravity field computed from accelerations of the CHAMP satellite","volume":"79","author":"Ditmar","year":"2006","journal-title":"J. Geod."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.jog.2016.10.005","article-title":"A high resolution model of linear trend in mass variations from DMT-2: Added value of accounting for coloured noise in GRACE data","volume":"103","author":"Farahani","year":"2017","journal-title":"J. Geodyn."},{"key":"ref_23","unstructured":"Mayer-G\u00fcrr, T. (2006). Gravitationsfeldbestimmung aus der Analyse kurzer Bahnb\u00f6gen am Beispiel der Satellitenmissionen CHAMP und GRACE. [Ph.D. Thesis, University of Bonn]."},{"key":"ref_24","first-page":"193","article-title":"ITG-Grace02s: A GRACE gravity field derived from range measurements of short arcs","volume":"Volume 18","author":"Eicker","year":"2007","journal-title":"Gravity Field of the Earth, Proceedings of the 1st International Symposium of the International Gravity Field Service (IGFS), Istanbul, Turkey, 28 August\u20131 September"},{"key":"ref_25","unstructured":"Mayer-G\u00fcrr, T., Zehentner, N., Klinger, B., and Kvas, A. (2014, January 29). ITSG-Grace2014: A new GRACE gravity field release computed in Graz. Proceedings of the Oral Presentation at the GRACE Science Team Meeting, Potsdam, Germany."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"941","DOI":"10.1016\/j.asr.2015.05.034","article-title":"Tongji-GRACE01: A GRACE-only Static Gravity Field Model Recovered from GRACE Level-1B Data using Modified Short Arc Approach","volume":"56","author":"Chen","year":"2015","journal-title":"Adv. Space Res."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"6010","DOI":"10.1029\/2018JB016596","article-title":"An optimized short-arc approach: Methodology and application to develop refined time series of Tongji-grace2018 GRACE monthly solutions","volume":"124","author":"Chen","year":"2019","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1023\/A:1008313405488","article-title":"The determination of gravitational potential differences from satellite-to-satellite tracking","volume":"75","author":"Jekeli","year":"1999","journal-title":"Celest. Mech. Dyn. Astron."},{"key":"ref_29","unstructured":"Han, S.C. (2003). Efficient Global Gravity Field Determination from Satellite-to-Satellite Tracking. [Ph.D. Thesis, School of the Ohio State University]."},{"key":"ref_30","unstructured":"Rummel, R. (1982). Gravity Parameter Estimation from Large Data Sets Using Stabilized Integral Formulas and a Numerical Integration Based on Discrete Point Data, Department of Geodetic Science and Surveying, Ohio State University."},{"key":"ref_31","unstructured":"Shen, Y.Z. (2000). Study of Recovering Gravitational Potential Model from the Ephemerides of CHAMP, The Institute of Geodesy and Geophysics, Chinese Academy of Science. (In Chinese)."},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Austen, G., Grafarend, E.W., and Reubelt, T. (2002). Analysis of the Earth\u2019s Gravitational Field from Semi-Continuous Ephemeris of a Low Earth Orbiting GPS-Tracked Satellite of Type CHAMP, GRACE or GOCE, Springer.","DOI":"10.1007\/978-3-662-04709-5_51"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"B07","DOI":"10.1002\/cjg2.726","article-title":"Simulation of recovery of the geopotential model based on inter-satellite acceleration data in the low-low satellite to satellite tracking gravity mission","volume":"48","author":"Shen","year":"2005","journal-title":"Chin. J. Geophys."},{"key":"ref_34","first-page":"331","article-title":"Decorrelation filtering method for recovering the Earth\u2019s gravity field based on satellite acceleration","volume":"39","author":"Ning","year":"2010","journal-title":"J. Geod. Geoinf. Sci."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"1169","DOI":"10.1007\/s10712-022-09701-8","article-title":"Revisiting Force Model Error Modeling in GRACE Gravity Field Recovery","volume":"43","author":"Nie","year":"2022","journal-title":"Surv. Geophys."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Liu, X. (2008). Global Gravity Field Recovery from Satellite-to-Satellite Tracking Data with the Acceleration Approach. [Ph.D. Dissertation, Delft University of Technology].","DOI":"10.54419\/rmsi6z"},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Ray, R.D., Luthcke, S.B., and Boy, J.-P. (2009). Qualitative comparisons of global ocean tide models by analysis of intersatellite ranging data. J. Geophys. Res. Ocean., 114.","DOI":"10.1029\/2009JC005362"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"e2021JB022489","DOI":"10.1029\/2021JB022489","article-title":"ANU GRACE Data Analysis: Orbit Modeling, Regularization and Inter-satellite Range Acceleration Observations","volume":"127","author":"Allgeyer","year":"2022","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_39","unstructured":"J\u00f8rgen, B.-J., and Gutin, G. (2002). Theory, Algorithms and Applications, Springer Science & Business Media."},{"key":"ref_40","unstructured":"Shampine, L., and Gordon, M. (1975). Computer Solution of Ordinary Differential Equations, The Initial Value Problem, W.H.Freeman and Company."},{"key":"ref_41","first-page":"637","article-title":"Investigation of the motion of Halley\u2019s comert from 1759 to 1910. Appendix to Greenwich Observation for 1909","volume":"18","author":"Cowell","year":"1910","journal-title":"Edinburgh"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"843","DOI":"10.1007\/s00190-013-0650-3","article-title":"The static gravity field model DGM-1S from GRACE and GOCE data: Computation, validation and an analysis of GOCE mission\u2019s added value","volume":"87","author":"Farahani","year":"2013","journal-title":"J. Geod."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"1833","DOI":"10.1016\/j.asr.2010.11.041","article-title":"GRACE gravity field modeling with an investigation on correlation between nuisance parameters and gravity field coefficients","volume":"47","author":"Zhao","year":"2011","journal-title":"Adv. Space Res."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"661","DOI":"10.1007\/s00190-010-0402-6","article-title":"The celestial mechanics approach: Application to data of the GRACE mission","volume":"84","author":"Beutler","year":"2010","journal-title":"J. Geod."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"99","DOI":"10.5194\/essd-13-99-2021","article-title":"GOCO06s\u2014A satellite-only global gravity field model","volume":"13","author":"Kvas","year":"2021","journal-title":"Earth Syst. Sci. Data"},{"key":"ref_46","doi-asserted-by":"crossref","unstructured":"Montenbruck, O., and Gill, E. (2000). Satellite Orbits: Models, Methods, and Applications, Springer.","DOI":"10.1007\/978-3-642-58351-3"},{"key":"ref_47","first-page":"1","article-title":"The planetary and lunar ephemeris DE 421","volume":"42","author":"Folkner","year":"2009","journal-title":"IPN Prog. Rep."},{"key":"ref_48","unstructured":"Petit, G., and Luzum, B. (2010). IERS Conventions. (No. IERS-TN-36), Bureau International Des Poids et Mesures Sevres."},{"key":"ref_49","unstructured":"Carrere, L., Lyard, F., Cancet, M., and Guillot, A. (2015, January 12\u201317). FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region. Proceedings of the Egu General Assembly Conference, Vienna, Austria."},{"key":"ref_50","unstructured":"Rieser, D., Mayer-G\u00fcrr, T., Savcenko, R., Bosch, W., W\u00fcnsch, J., Dahle, C., and Flechtner, F. (2023, June 05). The Ocean Tide Model EOT11a in Spherical Harmonics Representation. Technical Note. Available online: https:\/\/www.tugraz.at\/fileadmin\/user_upload\/Institute\/IFG\/satgeo\/pdf\/TN_EOT11a.pdf."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"7-1","DOI":"10.1029\/2001JC001224","article-title":"Observing the pole tide with satellite altimetry","volume":"107","author":"Desai","year":"2002","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1093\/gji\/ggx302","article-title":"A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06","volume":"211","author":"Dobslaw","year":"2017","journal-title":"Geophys. J. Int."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"L02402","DOI":"10.1029\/2005GL024846","article-title":"Monthly spherical harmonic gravity feldsolutions determined from GRACE inter-satellite range-ratedata alone","volume":"33","author":"Luthcke","year":"2006","journal-title":"Geophys. Res. Lett."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"6111","DOI":"10.1029\/2018JB015641","article-title":"Tongji-Grace02s and Tongji-Grace02k: High-precision static GRACE-only global Earth\u2019s gravity field models derived by refined data processing strategies","volume":"123","author":"Chen","year":"2018","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"1196","DOI":"10.1093\/gji\/ggw081","article-title":"AIUB-RL02: An improved time-series of monthly gravity fields from GRACE data","volume":"205","author":"Meyer","year":"2016","journal-title":"Geophys. J. Int."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"e2021JB022392","DOI":"10.1029\/2021JB022392","article-title":"Time variable Earth gravity field models from the first spaceborne laser ranging interferometer","volume":"126","author":"Pie","year":"2021","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_57","unstructured":"Jekeli, C. (1981). Alternative Methods to Smooth the Earth\u2019s Gravity Field, Department of Geodetic Science and Surveying, Ohio State University. Report 327."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"903","DOI":"10.1007\/s00190-009-0308-3","article-title":"Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model","volume":"83","author":"Kusche","year":"2009","journal-title":"J. Geod."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"859","DOI":"10.1038\/ngeo694","article-title":"Accelerated Antarctic ice loss from satellite gravity measurements","volume":"2","author":"Chen","year":"2009","journal-title":"Nat. Geosci."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"B08410","DOI":"10.1029\/2007JB005338","article-title":"Estimating geocenter variations from a combination of GRACE and ocean model output","volume":"113","author":"Swenson","year":"2008","journal-title":"J. Geophys. Res."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"B09402","DOI":"10.1029\/2004JB003028","article-title":"Variations in the Earth\u2019s oblateness during the past 28 years","volume":"109","author":"Cheng","year":"2004","journal-title":"J. Geophys. Res."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"423","DOI":"10.1007\/s00190-015-0884-3","article-title":"Modeling of present-day atmosphere and ocean non-tidal de-aliasing errors for future gravity mission simulations","volume":"90","author":"Dobslaw","year":"2016","journal-title":"J. Geod."},{"key":"ref_63","doi-asserted-by":"crossref","unstructured":"Chen, J.L., Wilson, C.R., and Tapley, B.D. (2011). Interannual variability of Greenland ice losses from satellite gravimetry. J. Geophys. Res., 116.","DOI":"10.1029\/2010JB007789"},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"e2022WR033519","DOI":"10.1029\/2022WR033519","article-title":"Effects of Agricultural Large-And Medium-Sized Reservoirs on Hydrologic Processes in the Arid Shiyang River Basin, Northwest China","volume":"59","author":"Sang","year":"2023","journal-title":"Water Resour. Res."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"162559","DOI":"10.1016\/j.scitotenv.2023.162559","article-title":"Urbanization and agriculture intensification jointly enlarge the spatial inequality of river water quality","volume":"878","author":"Li","year":"2023","journal-title":"Sci. Total Environ."},{"key":"ref_66","doi-asserted-by":"crossref","unstructured":"Liu, Z., Xu, J., Liu, M., Yin, Z., Liu, X., Yin, L., and Zheng, W. (2023). Remote sensing and geostatistics in urban water-resource monitoring: A review. Mar. Freshw. Res.","DOI":"10.1071\/MF22167"},{"key":"ref_67","doi-asserted-by":"crossref","unstructured":"Mohamed, A., Abdelrady, A., Alarifi, S.S., and Othman, A. (2023). Geophysical and Remote Sensing Assessment of Chad\u2019s Groundwater Resources. Remote Sens., 15.","DOI":"10.3390\/rs15030560"},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"613","DOI":"10.3189\/2013JoG12J147","article-title":"Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution","volume":"59","author":"Luthcke","year":"2013","journal-title":"J. Glaciol."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"e2022EA002699","DOI":"10.1029\/2022EA002699","article-title":"WHU-GRACE-GPD01s: A series of constrained monthly gravity field solutions derived from GRACE-based geopotential differences","volume":"10","author":"Zhong","year":"2023","journal-title":"Earth Space Sci."},{"key":"ref_70","doi-asserted-by":"crossref","unstructured":"Kurtenbach, E., Mayer-G\u00fcrr, T., and Eicker, A. (2009). Deriving daily snapshots of the Earth\u2019s gravity field from GRACE L1B data using Kalman filtering. Geophys. Res. Lett., 36.","DOI":"10.1029\/2009GL039564"},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"503","DOI":"10.1007\/s00190-016-0889-6","article-title":"An improved GRACE monthly gravity field solution by modeling the non-conservative acceleration and attitude observation errors","volume":"90","author":"Chen","year":"2016","journal-title":"J. Geod."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1029\/2004GL019779","article-title":"Time-variable gravity from GRACE: First results","volume":"31","author":"Wahr","year":"2004","journal-title":"Geophys. Res. Lett."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"1165","DOI":"10.1007\/s00190-012-0572-5","article-title":"High-frequency signal and noise estimates of CSR GRACE RL04","volume":"86","author":"Bonin","year":"2012","journal-title":"J. Geod."},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1016\/j.gloplacha.2014.02.007","article-title":"Long-term groundwater variations in Northwest India from satellite gravity measurements","volume":"116","author":"Chen","year":"2014","journal-title":"Glob. Planet. Change"},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1007\/s12145-018-0368-0","article-title":"GRAMAT: A comprehensive Matlab toolbox for estimating global mass variations from GRACE satellite data","volume":"12","author":"Feng","year":"2018","journal-title":"Earth Sci. Inform."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/21\/5260\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,25]],"date-time":"2023-12-25T10:44:18Z","timestamp":1703501058000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/21\/5260"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11,6]]},"references-count":75,"journal-issue":{"issue":"21","published-online":{"date-parts":[[2023,11]]}},"alternative-id":["rs15215260"],"URL":"https:\/\/doi.org\/10.3390\/rs15215260","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,11,6]]}}}