{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T16:16:36Z","timestamp":1740154596095,"version":"3.37.3"},"reference-count":88,"publisher":"MDPI AG","issue":"19","license":[{"start":{"date-parts":[[2023,10,5]],"date-time":"2023-10-05T00:00:00Z","timestamp":1696464000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"ESA-ESRIN and Copernicus","award":["4000135181\/21\/I-DT"]},{"name":"ESA-ESRIN","award":["4000128960\/19\/I-NS"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"The Copernicus Sentinel-3 Surface Topography Mission (STM) Land Altimetry provides valuable surface elevation information over inland waters, sea ice, and land ice, thanks to its synthetic aperture radar (SAR) altimeter and its orbit that covers high-latitude polar regions. To ensure that these measurements are reliable and to maximise the return on investment, adequate validation of the geophysical retrieval methods, processing algorithms, and corrections must be performed using independent observations. The EU-ESA project St3TART (started July 2021) aims to generalise the concept of Fiducial Reference Measurements (FRMs) for the Copernicus Sentinel-3 STM. This work has gathered existing data, made new observations during field campaigns, and ensured that these observations meet the criteria of FRM standards so that they can be used to validate Sentinel-3 STM Land Altimetry products operationally. A roadmap for the operational provision of the FRM, including the definition, consolidation, and identification of the most relevant and cost-effective methods and protocols to be maintained, supported, or implemented, has been developed. The roadmap includes guidelines for SI traceability, definitions of FRM measurement procedures, processing methods, and uncertainty budget estimations.<\/jats:p>","DOI":"10.3390\/rs15194826","type":"journal-article","created":{"date-parts":[[2023,10,5]],"date-time":"2023-10-05T13:14:22Z","timestamp":1696511662000},"page":"4826","source":"Crossref","is-referenced-by-count":2,"title":["Towards Operational Fiducial Reference Measurement (FRM) Data for the Calibration and Validation of the Sentinel-3 Surface Topography Mission over Inland Waters, Sea Ice, and Land Ice"],"prefix":"10.3390","volume":"15","author":[{"given":"Elodie","family":"Da Silva","sequence":"first","affiliation":[{"name":"NOVELTIS, 31670 Lab\u00e8ge, France"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3517-1486","authenticated-orcid":false,"given":"Emma R.","family":"Woolliams","sequence":"additional","affiliation":[{"name":"NPL, National Physical Laboratory, Teddington TW11 0LW, UK"}]},{"given":"Nicolas","family":"Picot","sequence":"additional","affiliation":[{"name":"CNES, Centre National d\u2019Etudes Spatiales, 31401 Toulouse, France"}]},{"ORCID":"https:\/\/orcid.org\/0009-0006-5237-863X","authenticated-orcid":false,"given":"Jean-Christophe","family":"Poisson","sequence":"additional","affiliation":[{"name":"vorteX.io, 31670 Lab\u00e8ge, France"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4468-8033","authenticated-orcid":false,"given":"Henriette","family":"Skourup","sequence":"additional","affiliation":[{"name":"DTU Space, National Space Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8883-1620","authenticated-orcid":false,"given":"Geir","family":"Moholdt","sequence":"additional","affiliation":[{"name":"NPI, Norwegian Polar Institute, 9296 Troms\u00f8, Norway"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3751-1387","authenticated-orcid":false,"given":"Sara","family":"Fleury","sequence":"additional","affiliation":[{"name":"LEGOS, Laboratoire d'Etudes en G\u00e9ophysique et Oc\u00e9anographie Spatiales, 31400 Toulouse, France"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6018-7183","authenticated-orcid":false,"given":"Sajedeh","family":"Behnia","sequence":"additional","affiliation":[{"name":"NPL, National Physical Laboratory, Teddington TW11 0LW, UK"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-6024-9498","authenticated-orcid":false,"given":"Vincent","family":"Favier","sequence":"additional","affiliation":[{"name":"IGE, Institut des G\u00e9osciences de l'Environnement, Universit\u00e9 Grenoble Alpes, 38000 Grenoble, France"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4432-4205","authenticated-orcid":false,"given":"Laurent","family":"Arnaud","sequence":"additional","affiliation":[{"name":"IGE, Institut des G\u00e9osciences de l'Environnement, Universit\u00e9 Grenoble Alpes, 38000 Grenoble, France"}]},{"given":"J\u00e9r\u00e9mie","family":"Aublanc","sequence":"additional","affiliation":[{"name":"CLS, Collecte Localisation Satellites, 31520 Ramonville-Saint-Agne, France"}]},{"ORCID":"https:\/\/orcid.org\/0009-0004-1145-1429","authenticated-orcid":false,"given":"Valentin","family":"Fouqueau","sequence":"additional","affiliation":[{"name":"vorteX.io, 31670 Lab\u00e8ge, France"}]},{"given":"Nicolas","family":"Taburet","sequence":"additional","affiliation":[{"name":"CLS, Collecte Localisation Satellites, 31520 Ramonville-Saint-Agne, France"}]},{"given":"Julien","family":"Renou","sequence":"additional","affiliation":[{"name":"CLS, Collecte Localisation Satellites, 31520 Ramonville-Saint-Agne, France"}]},{"given":"Herv\u00e9","family":"Yesou","sequence":"additional","affiliation":[{"name":"SERTIT, Service R\u00e9gional de Traitement d'Image et de T\u00e9l\u00e9d\u00e9tection, 67000 Strasbourg, France"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3487-1659","authenticated-orcid":false,"given":"Angelica","family":"Tarpanelli","sequence":"additional","affiliation":[{"name":"CNR-IRPI, Consiglio Nazionale delle Ricerche\u2014Istituto di Ricerca per la Protezione Idrologica, 06100 Perugia, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5149-5395","authenticated-orcid":false,"given":"Stefania","family":"Camici","sequence":"additional","affiliation":[{"name":"CNR-IRPI, Consiglio Nazionale delle Ricerche\u2014Istituto di Ricerca per la Protezione Idrologica, 06100 Perugia, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3426-347X","authenticated-orcid":false,"given":"Ren\u00e9e Mie","family":"Fredensborg Hansen","sequence":"additional","affiliation":[{"name":"DTU Space, National Space Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0035-1869","authenticated-orcid":false,"given":"Karina","family":"Nielsen","sequence":"additional","affiliation":[{"name":"DTU Space, National Space Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark"}]},{"given":"Fr\u00e9d\u00e9ric","family":"Vivier","sequence":"additional","affiliation":[{"name":"LOCEAN, Laboratoire d'Oc\u00e9anographie et du Climat: Exp\u00e9rimentations et Approches Num\u00e9riques, 75005 Paris, France"}]},{"given":"Fran\u00e7ois","family":"Boy","sequence":"additional","affiliation":[{"name":"CNES, Centre National d\u2019Etudes Spatiales, 31401 Toulouse, France"}]},{"given":"Roger","family":"Fj\u00f8rtoft","sequence":"additional","affiliation":[{"name":"CNES, Centre National d\u2019Etudes Spatiales, 31401 Toulouse, France"}]},{"given":"Mathilde","family":"Cancet","sequence":"additional","affiliation":[{"name":"NOVELTIS, 31670 Lab\u00e8ge, France"}]},{"given":"Ramiro","family":"Ferrari","sequence":"additional","affiliation":[{"name":"NOVELTIS, 31670 Lab\u00e8ge, France"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1475-5853","authenticated-orcid":false,"given":"Ghislain","family":"Picard","sequence":"additional","affiliation":[{"name":"IGE, Institut des G\u00e9osciences de l'Environnement, Universit\u00e9 Grenoble Alpes, 38000 Grenoble, France"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4200-0848","authenticated-orcid":false,"given":"Mohammad J.","family":"Tourian","sequence":"additional","affiliation":[{"name":"GIS, Institute of Geodesy, University of Stuttgart, 70174 Stuttgart, Germany"}]},{"given":"Nicolaas","family":"Sneeuw","sequence":"additional","affiliation":[{"name":"GIS, Institute of Geodesy, University of Stuttgart, 70174 Stuttgart, Germany"}]},{"given":"Eric","family":"Munesa","sequence":"additional","affiliation":[{"name":"NOVELTIS, 31670 Lab\u00e8ge, France"}]},{"given":"Michel","family":"Calzas","sequence":"additional","affiliation":[{"name":"DT-INSU, 29280 Plouzan\u00e9, France"}]},{"given":"Adrien","family":"Paris","sequence":"additional","affiliation":[{"name":"Hydro Matters, 31460 Le Faget, France"}]},{"given":"Emmanuel","family":"Le Meur","sequence":"additional","affiliation":[{"name":"IGE, Institut des G\u00e9osciences de l'Environnement, Universit\u00e9 Grenoble Alpes, 38000 Grenoble, France"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5304-1055","authenticated-orcid":false,"given":"Antoine","family":"Rabatel","sequence":"additional","affiliation":[{"name":"IGE, Institut des G\u00e9osciences de l'Environnement, Universit\u00e9 Grenoble Alpes, 38000 Grenoble, France"}]},{"ORCID":"https:\/\/orcid.org\/0009-0002-9933-8302","authenticated-orcid":false,"given":"Guillaume","family":"Valladeau","sequence":"additional","affiliation":[{"name":"vorteX.io, 31670 Lab\u00e8ge, France"}]},{"given":"Pascal","family":"Bonnefond","sequence":"additional","affiliation":[{"name":"SYRTE, Observatoire de Paris\u2014Universit\u00e9 PSL, CNRS, 75000 Paris, France"}]},{"given":"Sylvie","family":"Labroue","sequence":"additional","affiliation":[{"name":"CLS, Collecte Localisation Satellites, 31520 Ramonville-Saint-Agne, France"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6685-3415","authenticated-orcid":false,"given":"Ole","family":"Andersen","sequence":"additional","affiliation":[{"name":"DTU Space, National Space Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark"}]},{"given":"Mahmoud","family":"El Hajj","sequence":"additional","affiliation":[{"name":"NOVELTIS, 31670 Lab\u00e8ge, France"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2802-3920","authenticated-orcid":false,"given":"Filomena","family":"Catapano","sequence":"additional","affiliation":[{"name":"Rhea Group, 00044 Frascati, Italy"}]},{"given":"Pierre","family":"F\u00e9m\u00e9nias","sequence":"additional","affiliation":[{"name":"ESA ESRIN, European Space Agency, 00044 Frascati, Italy"}]}],"member":"1968","published-online":{"date-parts":[[2023,10,5]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.rse.2011.07.024","article-title":"The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission","volume":"120","author":"Donlon","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_2","unstructured":"(2023, August 04). Sentinel-3\u2014Overview\u2014Sentinel Online. Available online: https:\/\/copernicus.eu\/missions\/sentinel-3\/overview."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"1578","DOI":"10.1109\/36.718861","article-title":"The delay\/Doppler radar altimeter","volume":"36","author":"Raney","year":"1998","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"841","DOI":"10.1016\/j.asr.2005.07.027","article-title":"CryoSat: A mission to determine the fluctuations in Earth\u2019s land and marine ice fields","volume":"37","author":"Wingham","year":"2005","journal-title":"Adv. Space Res."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Quartly, G.D., Nencioli, F., Raynal, M., Bonnefond, P., Garcia, P.N., Garcia-Mond\u00e9jar, A., de la Cruz, A.F., Cr\u00e9taux, J.-F., Taburet, N., and Frery, M.-L. (2020). The Roles of the S3MPC: Monitoring, Validation and Evolution of Sentinel-3 Altimetry Observations. Remote Sens., 12.","DOI":"10.3390\/rs12111763"},{"key":"ref_6","unstructured":"Donlon, C. (2023, October 03). Sentinel-3 Mission Requirements Traceability Document (MRTD). Available online: https:\/\/sentinel.esa.int\/documents\/247904\/1848151\/sentinel-3-mission-requirements-traceability."},{"key":"ref_7","unstructured":"Goryl, P., Donlan, C., and Fox, N. Fiducial Reference Measurements (FRM): What are they?, Remote Sens., (under review). No. Special issue on Copernicus Sentinels Missions Calibration Validation, FRM and innovation approaches in satellite-data quality assessment."},{"key":"ref_8","unstructured":"(2023, June 07). QA4EO Home. Available online: https:\/\/www.qa4eo.org\/."},{"key":"ref_9","unstructured":"(2023, August 04). SENTINEL3 ST3TART. Available online: https:\/\/sentinel3-st3tart.noveltis.fr\/."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"032002","DOI":"10.1088\/1681-7575\/ab1705","article-title":"Applying principles of metrology to historical Earth observations from satellites","volume":"56","author":"Mittaz","year":"2019","journal-title":"Metrologia"},{"key":"ref_11","unstructured":"BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML (2023, October 03). Evaluation of Measurement Data\u2014Guide to the Expression of Uncertainty in Measurement. Available online: https:\/\/www.bipm.org\/documents\/20126\/2071204\/JCGM_100_2008_E.pdf."},{"key":"ref_12","unstructured":"(2023, August 04). User Guides\u2014Sentinel-3 Altimetry\u2014Processing Levels\u2014Sentinel Online. Available online: https:\/\/sentinels.copernicus.eu\/web\/sentinel\/user-guides\/sentinel-3-altimetry\/processing-levels."},{"key":"ref_13","unstructured":"(2023, October 03). ESA-Fundamental-Data-Records-for-Atmospheric-Composition-(FDR4ATMOS)-Status-and-Updates. Available online: https:\/\/earth.esa.int\/eogateway\/documents\/20142\/1484253\/ESA-Fundamental-Data-Records-for-Atmospheric-Composition-%28FDR4ATMOS%29-status-and-updates.pdf."},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Mertikas, S.P., Donlon, C., F\u00e9m\u00e9nias, P., Mavrocordatos, C., Galanakis, D., Tripolitsiotis, A., Frantzis, X., Tziavos, I.N., Vergos, G., and Guinle, T. (2018). Fifteen Years of Cal\/Val Service to Reference Altimetry Missions: Calibration of Satellite Altimetry at the Permanent Facilities in Gavdos and Crete, Greece. Remote Sens., 10.","DOI":"10.3390\/rs10101557"},{"key":"ref_15","unstructured":"(2023, August 08). Surface Topography Mission (STM) SRAL\/MWR L2 Algorithms Definition, Accuracy and Specification|EUMETSAT. Available online: https:\/\/www-cdn.eumetsat.int\/files\/2020-04\/pdf_s3_alt_level_2_adas.pdf."},{"key":"ref_16","unstructured":"Wingham, D.J., Rapley, C.G., and Griffiths, H. (1986, January 8\u201311). New techniques in satellite altimeter tracking systems. Proceedings of the IGARSS 1986, Z\u00fcrich, Switzerland."},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Abileah, R., Scozzari, A., and Vignudelli, S. (2017). Envisat RA-2 Individual Echoes: A Unique Dataset for a Better Understanding of Inland Water Altimetry Potentialities. Remote Sens., 9.","DOI":"10.3390\/rs9060605"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"915","DOI":"10.1080\/01431169408954124","article-title":"Sea ice altimeter processing scheme at the EODC","volume":"15","author":"Laxon","year":"1994","journal-title":"Int. J. Remote Sens."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"20679","DOI":"10.1029\/91JC01915","article-title":"Multifrequency polarimetric synthetic aperture radar observations of sea ice","volume":"96","author":"Drinkwater","year":"1991","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"947","DOI":"10.1038\/nature02050","article-title":"High interannual variability of sea ice thickness in the Arctic region","volume":"425","author":"Laxon","year":"2003","journal-title":"Nature"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"L22502","DOI":"10.1029\/2008GL035710","article-title":"Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum","volume":"35","author":"Giles","year":"2008","journal-title":"Geophys. Res. Lett."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1203","DOI":"10.1016\/j.asr.2017.10.051","article-title":"Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data","volume":"62","author":"Tilling","year":"2018","journal-title":"Adv. Space Res."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"732","DOI":"10.1002\/grl.50193","article-title":"CryoSat-2 estimates of Arctic sea ice thickness and volume","volume":"40","author":"Laxon","year":"2013","journal-title":"Geophys. Res. Lett."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"1607","DOI":"10.5194\/tc-8-1607-2014","article-title":"Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation","volume":"8","author":"Ricker","year":"2014","journal-title":"Cryosphere"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"218","DOI":"10.1016\/S0034-4257(99)00105-4","article-title":"Synergistic Remote Sensing of Lake Chad Variability of Basin Inundation","volume":"72","author":"Birkett","year":"2000","journal-title":"Remote Sens. Environ."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"1098","DOI":"10.1016\/j.crte.2006.08.002","article-title":"Lake studies from satellite radar altimetry","volume":"338","author":"Birkett","year":"2006","journal-title":"Comptes Rendus Geosci."},{"key":"ref_27","first-page":"843","article-title":"Benefits of the Open-Loop Tracking Command (OLTC): Extending conventional nadir altimetry to inland waters monitoring","volume":"68","author":"Boy","year":"2019","journal-title":"Adv. Space Res."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"2160","DOI":"10.1016\/j.rse.2010.04.020","article-title":"Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions","volume":"114","author":"Calmant","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"2789","DOI":"10.5194\/tc-12-2789-2018","article-title":"Three years of sea ice freeboard, snow depth, and ice thickness of the Weddell Sea from Operation IceBridge and CryoSat-2","volume":"12","author":"Kwok","year":"2018","journal-title":"Cryosphere"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"1035","DOI":"10.5194\/tc-7-1035-2013","article-title":"Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data","volume":"7","author":"Kurtz","year":"2013","journal-title":"Cryosphere"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1123","DOI":"10.1002\/2017JC013233","article-title":"Comparison of Freeboard Retrieval and Ice Thickness Calculation From ALS, ASIRAS, and CryoSat-2 in the Norwegian Arctic to Field Measurements Made During the N-ICE2015 Expedition","volume":"123","author":"King","year":"2018","journal-title":"J. Geophys. Res. Oceans"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"10,462","DOI":"10.1002\/2017GL075434","article-title":"Ice and Snow Thickness Variability and Change in the High Arctic Ocean Observed by In Situ Measurements","volume":"44","author":"Haas","year":"2017","journal-title":"Geophys. Res. Lett."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"L15501","DOI":"10.1029\/2009GL039035","article-title":"Decline in Arctic sea ice thickness from submarine and ICESat records: 1958\u20132008","volume":"36","author":"Kwok","year":"2009","journal-title":"Geophys. Res. Lett."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"2189","DOI":"10.5194\/tc-14-2189-2020","article-title":"Satellite-based sea ice thickness changes in the Laptev Sea from 2002 to 2017: Comparison to mooring observations","volume":"14","author":"Belter","year":"2020","journal-title":"Cryosphere"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"e2019JC016039","DOI":"10.1029\/2019JC016039","article-title":"Arctic Sea Ice Volume Export Through Fram Strait From 1992 to 2014","volume":"125","author":"Spreen","year":"2020","journal-title":"J. Geophys. Res. Oceans"},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Khvorostovsky, K., Hendricks, S., and Rinne, E. (2020). Surface Properties Linked to Retrieval Uncertainty of Satellite Sea-Ice Thickness with Upward-Looking Sonar Measurements. Remote Sens., 12.","DOI":"10.3390\/rs12183094"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"5202","DOI":"10.1002\/jgrc.20393","article-title":"Thinning of Arctic sea ice observed in Fram Strait: 1990\u20132011","volume":"118","author":"Hansen","year":"2013","journal-title":"J. Geophys. Res. Oceans"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"205","DOI":"10.3189\/172756406781811727","article-title":"Ice mass-balance buoys: A tool for measuring and attributing changes in the thickness of the Arctic sea-ice cover","volume":"44","author":"Perovich","year":"2006","journal-title":"Ann. Glaciol."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"962","DOI":"10.1080\/17538947.2018.1545877","article-title":"Snow depth and ice thickness derived from SIMBA ice mass balance buoy data using an automated algorithm","volume":"12","author":"Liao","year":"2018","journal-title":"Int. J. Digit. Earth"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"e2020RG000712","DOI":"10.1029\/2020RG000712","article-title":"The Scientific Legacy of NASA\u2019s Operation IceBridge","volume":"59","author":"MacGregor","year":"2021","journal-title":"Rev. Geophys."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"1539","DOI":"10.5194\/tc-8-1539-2014","article-title":"Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2","volume":"8","author":"Helm","year":"2014","journal-title":"Cryosphere"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"665","DOI":"10.5194\/tc-13-665-2019","article-title":"The Reference Elevation Model of Antarctica","volume":"13","author":"Howat","year":"2019","journal-title":"Cryosphere"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"709","DOI":"10.5194\/tc-13-709-2019","article-title":"Sentinel-3 Delay-Doppler altimetry over Antarctica","volume":"13","author":"McMillan","year":"2019","journal-title":"Cryosphere"},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"1239","DOI":"10.1126\/science.aaz5845","article-title":"Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes","volume":"368","author":"Smith","year":"2020","journal-title":"Science"},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Chupin, C., Ballu, V., Testut, L., Tranchant, Y.-T., Calzas, M., Poirier, E., Coulombier, T., Laurain, O., Bonnefond, P., and Team FOAM Project (2020). Mapping Sea Surface Height Using New Concepts of Kinematic GNSS Instruments. Remote Sens., 12.","DOI":"10.3390\/rs12162656"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TGRS.2021.3137034","article-title":"Improving Sentinel-3 SAR Mode Processing Over Lake Using Numerical Simulations","volume":"60","author":"Boy","year":"2021","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_47","doi-asserted-by":"crossref","unstructured":"Cr\u00e9taux, J.-F., Berg\u00e9-Nguyen, M., Calmant, S., Jamangulova, N., Satylkanov, R., Lyard, F., Perosanz, F., Verron, J., Montazem, A.S., and Le Guilcher, G. (2018). Absolute Calibration or Validation of the Altimeters on the Sentinel-3A and the Jason-3 over Lake Issykkul (Kyrgyzstan). Remote Sens., 10.","DOI":"10.3390\/rs10111679"},{"key":"ref_48","unstructured":"Poisson, J.-C., and The St3TART Hydro Group (2023, October 03). TD-1 FRM Protocols and Procedure for S3 STM Inland Water Products\u2019. Available online: https:\/\/sentinel3-st3tart.noveltis.fr\/wp-content\/uploads\/2023\/06\/NOV-FE-0899-NT-042_TD-1-Inland-FRM-Standard-procedures-and-protocols_V3.2.pdf."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"160018","DOI":"10.1038\/sdata.2016.18","article-title":"The FAIR Guiding Principles for scientific data management and stewardship","volume":"3","author":"Wilkinson","year":"2016","journal-title":"Sci. Data"},{"key":"ref_50","unstructured":"Belter, H.J., Janout, M.A., H\u00f6lemann, J.A., and Krumpen, T. (2020). Daily mean sea ice draft from moored upward-looking Acoustic Doppler Current Profilers (ADCPs) in the Laptev Sea from 2003 to 2016. Pangaea."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1007\/s00382-017-3607-z","article-title":"Comparison of Arctic sea ice thickness and snow depth estimates from CFSR with in situ observations","volume":"50","author":"Sato","year":"2017","journal-title":"Clim. Dyn."},{"key":"ref_52","unstructured":"Perovich, D.K., Richter-Menge, J.A., and Polashenski, C. (2023, October 03). Observing and Understanding Climate Change: Monitoring the Mass Balance, Motion, and Thickness of Arctic Sea Ice. Available online: http:\/\/imb-crrel-dartmouth.org\/results\/."},{"key":"ref_53","unstructured":"Nicolaus, M., Riemann-Campe, K., Bliss, A., Hutchings, J.K., Granskog, M.A., Haas, C., Hoppmann, M., Kanzow, T., Krishfield, R.A., and Lei, R. (2021). Drift Trajectory of the Site LM of the Distributed Network of MOSAiC 2019\/2020, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research."},{"key":"ref_54","unstructured":"Skourup, H., Olesen, A.V., Sandberg S\u00f8rensen, L., Simonsen, S., Hvidegaard, S.M., Hansen, N., Olesen, A.F., Coccia, A., Macedo, K., and Helm, V. (2023, October 03). ESA CryoVEx\/KAREN and EU ICE-ARC 2017. Available online: https:\/\/earth.esa.int\/eogateway\/documents\/20142\/1526226\/CryoVEx2017-final-report.pdf."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1109\/TGRS.2009.2028237","article-title":"Field Investigations of Ku-Band Radar Penetration Into Snow Cover on Antarctic Sea Ice","volume":"48","author":"Willatt","year":"2009","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"5029","DOI":"10.1002\/2014GL060369","article-title":"Evidence of Arctic sea ice thinning from direct observations","volume":"41","author":"Renner","year":"2014","journal-title":"Geophys. Res. Lett."},{"key":"ref_57","first-page":"1","article-title":"MOSAiC Expedition: Airborne Surveys with Research Aircraft POLAR 5 and POLAR 6 in 2020","volume":"754","author":"Herber","year":"2021","journal-title":"Ber. Zur Polar-Und Meeresforsch. Rep. Polar Mar. Res."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"523","DOI":"10.5194\/tc-10-523-2016","article-title":"Recent summer sea ice thickness surveys in Fram Strait and associated ice volume fluxes","volume":"10","author":"Krumpen","year":"2016","journal-title":"Cryosphere"},{"key":"ref_59","unstructured":"Skourup, H., Fleury, S., Poisson, J.-C., Fouqueau, V., Vivier, F., and Louren\u00e7o, A. (2023, October 03). TD-13-2 Final Campaign Report for Sea Ice. Available online: https:\/\/sentinel3-st3tart.noveltis.fr\/wp-content\/uploads\/2023\/06\/NOV-FE-0899-NT-102_TD-13-2_-V2.1-SeaIceFinalCampaignReport.pdf."},{"key":"ref_60","unstructured":"Moholdt, G., Favier, V., and Aublanc, J. (2023, October 03). TD-3 FRM Protocols and Procedure for S3 STM Land Ice Products. Available online: https:\/\/sentinel3-st3tart.noveltis.fr\/wp-content\/uploads\/2023\/06\/NOV-FE-0899-NT-044-V4.1-TD-3-Land-Ice-FRM-Standard-procedures-and-protocols.pdf."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"5698","DOI":"10.1002\/2013GL057652","article-title":"Estimation of ICESat intercampaign elevation biases from comparison of lidar data in East Antarctica","volume":"40","author":"Hofton","year":"2013","journal-title":"Geophys. Res. Lett."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"L04502","DOI":"10.1029\/2005GL025147","article-title":"ASIRAS airborne radar resolves internal annual layers in the dry-snow zone of Greenland","volume":"33","author":"Hawley","year":"2006","journal-title":"Geophys. Res. Lett."},{"key":"ref_63","doi-asserted-by":"crossref","unstructured":"S\u00f8rensen, L.S., Simonsen, S.B., Langley, K., Gray, L., Helm, V., Nilsson, J., Stenseng, L., Skourup, H., Forsberg, R., and Davidson, M.W.J. (2018). Validation of CryoSat-2 SARIn Data over Austfonna Ice Cap Using Airborne Laser Scanner Measurements. Remote Sens., 10.","DOI":"10.3390\/rs10091354"},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"112805","DOI":"10.1016\/j.rse.2021.112805","article-title":"CryoSat-2 interferometric mode calibration and validation: A case study from the Austfonna ice cap, Svalbard","volume":"269","author":"Morris","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"103344","DOI":"10.1016\/j.coldregions.2021.103344","article-title":"Intercomparison of UAV platforms for mapping snow depth distribution in complex alpine terrain","volume":"190","author":"Revuelto","year":"2021","journal-title":"Cold Reg. Sci. Technol."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"3303","DOI":"10.1007\/s00024-017-1748-y","article-title":"Multitemporal Accuracy and Precision Assessment of Unmanned Aerial System Photogrammetry for Slope-Scale Snow Depth Maps in Alpine Terrain","volume":"175","author":"Adams","year":"2017","journal-title":"Pure Appl. Geophys."},{"key":"ref_67","doi-asserted-by":"crossref","unstructured":"Avanzi, F., Bianchi, A., Cina, A., De Michele, C., Maschio, P., Pagliari, D., Passoni, D., Pinto, L., Piras, M., and Rossi, L. (2018). Centimetric Accuracy in Snow Depth Using Unmanned Aerial System Photogrammetry and a MultiStation. Remote Sens., 10.","DOI":"10.3390\/rs10050765"},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"1075","DOI":"10.5194\/tc-10-1075-2016","article-title":"Mapping snow depth in alpine terrain with unmanned aerial systems (UAS): Potential and limitations","volume":"10","author":"Adams","year":"2016","journal-title":"Cryosphere"},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"3117","DOI":"10.5194\/tc-13-3117-2019","article-title":"Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements","volume":"13","author":"Lefeuvre","year":"2019","journal-title":"Cryosphere"},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"4188","DOI":"10.1109\/JSTARS.2020.3010069","article-title":"UAV-Based Photogrammetry and LiDAR for the Characterization of Ice Morphology Evolution","volume":"13","author":"Li","year":"2020","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"1033","DOI":"10.1109\/TGRS.2011.2167339","article-title":"A Sensor Package for Ice Surface Observations Using Small Unmanned Aircraft Systems","volume":"50","author":"Crocker","year":"2011","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"3819","DOI":"10.5194\/essd-13-3819-2021","article-title":"Programme for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data","volume":"13","author":"Fausto","year":"2021","journal-title":"Earth Syst. Sci. Data"},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"F03017","DOI":"10.1029\/2010JF001939","article-title":"Modeling the mass and surface heat budgets in a coastal blue ice area of Adelie Land, Antarctica","volume":"116","author":"Favier","year":"2011","journal-title":"J. Geophys. Res. Earth Surf."},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1007\/s00382-011-1103-4","article-title":"A 40-year accumulation dataset for Adelie Land, Antarctica and its application for model validation","volume":"38","author":"Agosta","year":"2011","journal-title":"Clim. Dyn."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"893","DOI":"10.3189\/2013JoG13J051","article-title":"Using airborne Ku-band altimeter waveforms to investigate winter accumulation and glacier facies on Austfonna, Svalbard","volume":"59","author":"Hawley","year":"2013","journal-title":"J. Glaciol."},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"1895","DOI":"10.5194\/tc-9-1895-2015","article-title":"CryoSat-2 delivers monthly and inter-annual surface elevation change for Arctic ice caps","volume":"9","author":"Gray","year":"2015","journal-title":"Cryosphere"},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"2164","DOI":"10.1093\/gji\/ggy235","article-title":"A new global GPS data set for testing and improving modelled GIA uplift rates","volume":"214","author":"Schumacher","year":"2018","journal-title":"Geophys. J. Int."},{"key":"ref_78","doi-asserted-by":"crossref","unstructured":"Dahl-Jensen, T.S., Citterio, M., Jakobsen, J., Ahlstr\u00f8m, A.P., Larson, K.M., and Khan, S.A. (2022). Snow Depth Measurements by GNSS-IR at an Automatic Weather Station, NUK-K. Remote Sens., 14.","DOI":"10.3390\/rs14112563"},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"112534","DOI":"10.1016\/j.rse.2021.112534","article-title":"Radar altimeter waveform simulations in Antarctica with the Snow Microwave Radiative Transfer Model (SMRT)","volume":"263","author":"Larue","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"1495","DOI":"10.5194\/tc-10-1495-2016","article-title":"Design of a scanning laser meter for monitoring the spatio-temporal evolution of snow depth and its application in the Alps and in Antarctica","volume":"10","author":"Picard","year":"2016","journal-title":"Cryosphere"},{"key":"ref_81","unstructured":"(2023, June 07). Beaufort Gyre Exploration Project. Available online: https:\/\/www2.whoi.edu\/site\/beaufortgyre\/."},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"2235","DOI":"10.5194\/tc-14-2235-2020","article-title":"The Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) high-priority candidate mission","volume":"14","author":"Kern","year":"2020","journal-title":"Cryosphere"},{"key":"ref_83","doi-asserted-by":"crossref","unstructured":"Vanin, F., Laberinti, P., Donlon, C., Fiorelli, B., Barat, I., Sole, M.P., Palladino, M., Eggers, P., Rudolph, T., and Galeazzi, C. (October, January 26). Copernicus Imaging Microwave Radiometer (CIMR): System Aspects and Technological Challenges. Proceedings of the IGARSS 2020\u20142020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA.","DOI":"10.1109\/IGARSS39084.2020.9324259"},{"key":"ref_84","unstructured":"Moholdt, G., Favier, V., and Aublanc, J. (2023, October 03). TD-6-3\u2014Roadmap for S3 STM Land FRM Operational Provision over Land Ice. Available online: https:\/\/sentinel3-st3tart.noveltis.fr\/wp-content\/uploads\/2023\/06\/NOV-FE-0899-NT-052_TD-6-Land-Ice-Roadmap_V4.1.pdf."},{"key":"ref_85","unstructured":"(2023, June 07). RINGS Ice Sheet Margin. Available online: https:\/\/www.scar.org\/science\/rings\/home\/."},{"key":"ref_86","unstructured":"Skourup, H., Woolliams, E., Fredensborg Hansen, R.M., Fleury, S., and Behnia, S. (2023, October 03). TD-2 FRM Protocols and Procedure for S3 STM Sea Ice Products. Available online: https:\/\/sentinel3-st3tart.noveltis.fr\/wp-content\/uploads\/2023\/06\/NOV-FE-0899-NT-043-V4.1-TD-2-Sea-Ice-FRM-Standard-procedures-and-protocols.pdf."},{"key":"ref_87","unstructured":"Poisson, J.-C., and The St3TART Hydro Group (2023, October 03). TD-6-1\u2014Roadmap for S3 STM Land FRM Operational Provision for Inland Waters. Available online: https:\/\/sentinel3-st3tart.noveltis.fr\/wp-content\/uploads\/2023\/06\/NOV-FE-0899-NT-050_TD6-Roadmap-for-Inland-Waters_V4.1.pdf."},{"key":"ref_88","unstructured":"Skourup, H., Fleury, S., and Sea Ice Team (2023, October 03). TD-6-2\u2014Roadmap for S3 STM Land FRM Operational Provision for Sea Ice. Available online: https:\/\/sentinel3-st3tart.noveltis.fr\/wp-content\/uploads\/2023\/06\/NOV-FE-0899-NT-051_V4.1_TD-6_Roadmap_SeaIce.pdf."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/19\/4826\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,5]],"date-time":"2023-10-05T13:49:12Z","timestamp":1696513752000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/19\/4826"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10,5]]},"references-count":88,"journal-issue":{"issue":"19","published-online":{"date-parts":[[2023,10]]}},"alternative-id":["rs15194826"],"URL":"https:\/\/doi.org\/10.3390\/rs15194826","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2023,10,5]]}}}