{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,11,17]],"date-time":"2023-11-17T15:31:01Z","timestamp":1700235061504},"reference-count":45,"publisher":"MDPI AG","issue":"14","license":[{"start":{"date-parts":[[2023,7,24]],"date-time":"2023-07-24T00:00:00Z","timestamp":1690156800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100004329","name":"Slovenian Research Agency","doi-asserted-by":"publisher","award":["P2-0065"],"id":[{"id":"10.13039\/501100004329","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"The despeckling of synthetic aperture radar images using two different convolutional neural network architectures is presented in this paper. The first method presents a novel Siamese convolutional neural network with a dilated convolutional network in each branch. Recently, attention mechanisms have been introduced to convolutional networks to better model and recognize features. Therefore, we propose a novel design for a convolutional neural network using an attention mechanism for an encoder\u2013decoder-type network. The framework consists of a multiscale spatial attention network to improve the modeling of semantic information at different spatial levels and an additional attention mechanism to optimize feature propagation. Both proposed methods are different in design but they provide comparable despeckling results in subjective and objective measurements in terms of correlated speckle noise. The experimental results are evaluated on both synthetically generated speckled images and real SAR images. The methods proposed in this paper are able to despeckle SAR images and preserve SAR features.<\/jats:p>","DOI":"10.3390\/rs15143698","type":"journal-article","created":{"date-parts":[[2023,7,25]],"date-time":"2023-07-25T05:27:32Z","timestamp":1690262852000},"page":"3698","source":"Crossref","is-referenced-by-count":1,"title":["Despeckling of SAR Images Using Residual Twin CNN and Multi-Resolution Attention Mechanism"],"prefix":"10.3390","volume":"15","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6469-3577","authenticated-orcid":false,"given":"Bla\u017e","family":"Pongrac","sequence":"first","affiliation":[{"name":"Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia"}]},{"given":"Du\u0161an","family":"Gleich","sequence":"additional","affiliation":[{"name":"Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia"}]}],"member":"1968","published-online":{"date-parts":[[2023,7,24]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"6","DOI":"10.1109\/MGRS.2013.2277512","article-title":"A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images","volume":"1","author":"Argenti","year":"2013","journal-title":"IEEE Geosci. Remote Sens. Mag."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1109\/TPAMI.1980.4766994","article-title":"Digital image enhancement and noise filtering by using local statistics","volume":"PAMI-2","author":"Lee","year":"1980","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1109\/TPAMI.1985.4767641","article-title":"Adaptive noise smoothing filter for Images with Signal dependent noise","volume":"7","author":"Kuan","year":"1985","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1109\/TPAMI.1982.4767223","article-title":"A model for radar images and its application to adaptive digital filtering of multiplicative noise","volume":"PAMI-4","author":"Frost","year":"1982","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1109\/TGRS.2008.2002881","article-title":"Improved Sigma Filter for Speckle Filtering of SAR Imagery","volume":"47","author":"Lee","year":"2009","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"2001","DOI":"10.1109\/TGRS.2011.2169679","article-title":"Evaluation of Bayesian Despeckling and Texture Extraction Methods Based on Gauss Markov and Auto-Binomial Gibbs Random Fields: Application to TerraSAR-X Data","volume":"50","author":"Molina","year":"2012","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1109\/LGRS.2011.2158798","article-title":"Fast MAP Despeckling Based on Laplacian Gaussian Modeling of Wavelet Coefficients","volume":"50","author":"Argenti","year":"2012","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"606","DOI":"10.1109\/TGRS.2011.2161586","article-title":"A Nonlocal SAR Image Denoising Algorithm Based on LLMMSE Wavelet Shrinkage","volume":"50","author":"Parrilli","year":"2012","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"2661","DOI":"10.1109\/TIP.2009.2029593","article-title":"Iterative Weighted Maximum Likelihood Denoising with Probabilistic Patch-Based Weights","volume":"18","author":"Deledalle","year":"2009","journal-title":"IEEE Trans. Image Process."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"2131","DOI":"10.1109\/JSTARS.2016.2543303","article-title":"Scattering-Based SARBM3D","volume":"9","author":"Martino","year":"2016","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1596","DOI":"10.1109\/TGRS.2013.2252907","article-title":"Benchmarking Framework for SAR Despeckling","volume":"52","author":"Martino","year":"2014","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1126\/science.1127647","article-title":"Reducing the Dimensionality of Data with Neural Networks","volume":"313","author":"Hinton","year":"2006","journal-title":"Science"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1109\/LGRS.2015.2498644","article-title":"Efficient Saliency-Based Object Detection in Remote Sensing Images Using Deep Belief Networks","volume":"13","author":"Diao","year":"2016","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"3142","DOI":"10.1109\/TIP.2017.2662206","article-title":"Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising","volume":"26","author":"Zhang","year":"2017","journal-title":"IEEE Trans. Image Process."},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Shi, W., Caballero, J., Husz\u00e1r, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D., and Wang, Z. (2016, January 27\u201330). Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA.","DOI":"10.1109\/CVPR.2016.207"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1109\/TPAMI.2015.2439281","article-title":"Image super-resolution using deep convolutional networks","volume":"38","author":"Dong","year":"2016","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Image Recognition. arXiv.","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref_18","unstructured":"Ioffe, S., and Szegedy, C.B.N. (2016). Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv."},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Chierchia, G., Cozzolino, D., Poggi, G., and Verdoliva, L. (2017, January 23\u201328). SAR image despeckling through convolutional neural networks. Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA.","DOI":"10.1109\/IGARSS.2017.8128234"},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Wang, P., Zhang, H., and Patel, V. (2017). SAR Image Despeckling Using a Convolutional Neural Network. arXiv.","DOI":"10.1109\/LSP.2017.2758203"},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Zhang, Q., Yang, Z., Yuan, Q., Li, J., Ma, X., Shen, H., and Zhang, L. (2017). Learning a Dilated Residual Network for SAR Image Despeckling. arXiv.","DOI":"10.3390\/rs10020196"},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Lattari, F., Leon, B.G., Asaro, F., Rucci, A., Prati, C., and Matteucci, M. (2019). Deep Learning for SAR Image Despeckling. Remote Sens., 11.","DOI":"10.3390\/rs11131532"},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Cozzolino, D., Verdoliva, L., Scarpa, G., and Poggi, G. (2020). Nonlocal CNN SAR Image Despeckling. Remote Sens., 12.","DOI":"10.3390\/rs12061006"},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Liu, G., Kang, H., Wang, Q., Tian, Y., and Wan, B. (2021). Contourlet-CNN for SAR Image Despeckling. Remote Sens., 13.","DOI":"10.3390\/rs13040764"},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Mullissa, A.G., Persello, C., and Reiche, J. (2021). Despeckling Polarimetric SAR Data Using a Multi-Stream Complex-Valued Fully Convolutional Network. arXiv.","DOI":"10.1109\/LGRS.2021.3066311"},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., and Tang, X. (2017, January 21\u201326). Residual Attention Network for Image Classification. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA.","DOI":"10.1109\/CVPR.2017.683"},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Dai, T., Cai, J., Zhang, Y., Xia, S.T., and Zhang, L. (2019, January 15\u201320). Second-Order Attention Network for Single Image Super-Resolution. Proceedings of the 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA.","DOI":"10.1109\/CVPR.2019.01132"},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Li, J., Li, Y., Xiao, Y., and Bai, Y. (2019). HDRANet: Hybrid Dilated Residual Attention Network for SAR Image Despeckling. Remote Sens., 11.","DOI":"10.3390\/rs11242921"},{"key":"ref_29","first-page":"4002005","article-title":"Spatial and Transform Domain CNN for SAR Image Despeckling","volume":"19","author":"Liu","year":"2022","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_30","first-page":"5214213","article-title":"MRDDANet: A Multiscale Residual Dense Dual Attention Network for SAR Image Denoising","volume":"60","author":"Liu","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1109\/TGRS.2020.2993319","article-title":"SAR Image Despeckling Employing a Recursive Deep CNN Prior","volume":"59","author":"Shen","year":"2021","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1016\/j.neucom.2022.04.066","article-title":"SAR-DRDNet: A SAR image despeckling network with detail recovery","volume":"493","author":"Wu","year":"2022","journal-title":"Neurocomputing"},{"key":"ref_33","unstructured":"Singh, P., Shankar, A., and Diwakar, M. (2022). Environment, Development and Sustainability, Springer."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"4005305","DOI":"10.1109\/LGRS.2023.3270799","article-title":"SAR Despeckling Using a Denoising Diffusion Probabilistic Model","volume":"20","author":"Perera","year":"2023","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Perera, M.V., Bandara, W.G.C., Valanarasu, J.M.J., and Patel, V.M. (2022). SAR Despeckling Using Overcomplete Convolutional Networks. arXiv.","DOI":"10.1109\/IGARSS46834.2022.9884632"},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Perera, M.V., Bandara, W.G.C., Valanarasu, J.M.J., and Patel, V.M. (2022). Transformer-based SAR Image Despeckling. arXiv.","DOI":"10.1109\/IGARSS46834.2022.9884596"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1109\/JSTARS.2021.3132027","article-title":"SAR Image Despeckling Using Continuous Attention Module","volume":"15","author":"Ko","year":"2022","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"6483","DOI":"10.1080\/01431161.2022.2142076","article-title":"Self-calibrated dilated convolutional neural networks for SAR image despeckling","volume":"43","author":"Yuan","year":"2022","journal-title":"Int. J. Remote Sens."},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Wang, C., Yin, Z., Ma, X., and Yang, Z. (2022). SAR Image Despeckling Based on Block-Matching and Noise-Referenced Deep Learning Method. Remote Sens., 14.","DOI":"10.3390\/rs14040931"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"1145","DOI":"10.1364\/JOSA.66.001145","article-title":"Some fundamental properties of speckle","volume":"66","author":"Goodman","year":"1976","journal-title":"J. Opt. Soc. Am."},{"key":"ref_41","unstructured":"Kingma, D.P., and Ba, J. (2014). Adam: A Method for Stochastic Optimization. arXiv."},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Ronneberger, O., Fischer, P., and Brox, T. (2015, January 5\u20139). U-net: Convolutional networks for biomedical image segmentation. Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany.","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1142\/S0218001493000339","article-title":"Signature verification using a siamese time delay neural network","volume":"7","author":"Bromley","year":"1993","journal-title":"Int. J. Pattern Recognit. Artif. Intell."},{"key":"ref_44","doi-asserted-by":"crossref","unstructured":"Wang, Q., Wu, B., Zhu, P.F., Li, P., Zuo, W., and Hu, Q. (2020, January 13\u201319). ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. Proceedings of the 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA.","DOI":"10.1109\/CVPR42600.2020.01155"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1109\/TCI.2016.2644865","article-title":"Loss Functions for Image Restoration With Neural Networks","volume":"3","author":"Zhao","year":"2017","journal-title":"IEEE Trans. Comput. Imaging"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/14\/3698\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,26]],"date-time":"2023-07-26T04:45:54Z","timestamp":1690346754000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/14\/3698"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7,24]]},"references-count":45,"journal-issue":{"issue":"14","published-online":{"date-parts":[[2023,7]]}},"alternative-id":["rs15143698"],"URL":"https:\/\/doi.org\/10.3390\/rs15143698","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,7,24]]}}}