{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,19]],"date-time":"2024-10-19T12:10:10Z","timestamp":1729339810397,"version":"3.27.0"},"reference-count":40,"publisher":"MDPI AG","issue":"9","license":[{"start":{"date-parts":[[2023,4,28]],"date-time":"2023-04-28T00:00:00Z","timestamp":1682640000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["42106175"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003453","name":"Natural Science Foundation of Guangdong Province","doi-asserted-by":"publisher","award":["2022A1515011299"],"id":[{"id":"10.13039\/501100003453","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Australian Research Council Funding","award":["DP220102969"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"To increase data availability and accuracy in the coastal zone, especially in the last 5 km to the coast, we present a SCMR (Seamless Combination of Multiple Retrackers) processing strategy to combine sea surface height (SSH) estimates from waveform retrackers of SGDR MLE4, ALES, WLS3 and MB4 for Jason-3 and Saral missions, and of SAMOSA and SAMOSA+ for Sentinel-3A mission in the Australian coastal zone. The SCMR does not require the waveform classification result. It includes two steps: (1) estimating and removing the SSH bias due mainly to the significant wave height (SWH) difference-dependent height differences, and (2) determining the optimal along-track SSH profile by using the Dijkstra algorithm. In the study region, the results show that the SCMR increases the data availability by up to 15% in the last 5 km to the coast and reduces the noise level by 28\u201334% at the spatial scales < 2.5 km. The validation results against tide gauges show that SCMR-derived SSH estimates achieve a better accuracy than that from any single retracker, with the improvement percentage of 6.26% and 4.94% over 0\u201310 km and 20\u2013100 km distance bands, respectively.<\/jats:p>","DOI":"10.3390\/rs15092329","type":"journal-article","created":{"date-parts":[[2023,4,28]],"date-time":"2023-04-28T09:46:06Z","timestamp":1682675166000},"page":"2329","source":"Crossref","is-referenced-by-count":5,"title":["A New Method to Combine Coastal Sea Surface Height Estimates from Multiple Retrackers by Using the Dijkstra Algorithm"],"prefix":"10.3390","volume":"15","author":[{"given":"Fukai","family":"Peng","sequence":"first","affiliation":[{"name":"College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9595-8032","authenticated-orcid":false,"given":"Xiaoli","family":"Deng","sequence":"additional","affiliation":[{"name":"School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4688-6260","authenticated-orcid":false,"given":"Maofei","family":"Jiang","sequence":"additional","affiliation":[{"name":"CAS Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences (CAS), Beijing 100190, China"}]},{"given":"Salvatore","family":"Dinardo","sequence":"additional","affiliation":[{"name":"European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), Eumetsat Allee 1, 64295 Darmstadt, Germany"}]},{"given":"Yunzhong","family":"Shen","sequence":"additional","affiliation":[{"name":"College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China"}]}],"member":"1968","published-online":{"date-parts":[[2023,4,28]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Deng, X., and Featherstone, W.E. (2006). A coastal retracking system for satellite radar altimeter waveforms: Application to ERS-2 around Australia. J. Geophys. Res. Ocean., 111.","DOI":"10.1029\/2005JC003039"},{"key":"ref_2","unstructured":"Jain, M. (2015). Improved Sea-Level Determination in the Arctic Regions through Development of Tolerant Altimetry Retracking. [Ph.D. Thesis, DTU Space]."},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Idris, N.H., Deng, X., Din, A.H.M., and Idris, N.H. (2017). CAWRES: A waveform retracking fuzzy expert system for optimizing coastal sea levels from Jason-1 and Jason-2 satellite altimetry data. Remote Sens., 9.","DOI":"10.3390\/rs9060603"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"112539","DOI":"10.1016\/j.rse.2021.112539","article-title":"Quantifying the precision of retracked Jason-2 sea level data in the 0\u20135 km Australian coastal zone","volume":"263","author":"Peng","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1080\/01431161.2012.701350","article-title":"A coastal altimetry retracking strategy based on waveform classification and sub-waveform extraction","volume":"33","author":"Yang","year":"2012","journal-title":"Int. J. Remote Sens."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1080\/01490419.2017.1381656","article-title":"A new retracking technique for Brown peaky altimetric waveforms","volume":"41","author":"Peng","year":"2018","journal-title":"Mar. Geod."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.rse.2014.02.008","article-title":"ALES: A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry","volume":"145","author":"Passaro","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"5299","DOI":"10.1109\/TGRS.2018.2813061","article-title":"Development of an Envisat altimetry processor providing sea level continuity between open ocean and Arctic leads","volume":"56","author":"Poisson","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1007\/BF01386390","article-title":"A note on two problems in connexion with graphs","volume":"1","author":"Dijkstra","year":"1959","journal-title":"Numer. Math."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1016\/j.rse.2017.07.024","article-title":"STAR: Spatio-temporal altimeter waveform retracking using sparse representation and conditional random fields","volume":"201","author":"Roscher","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Oettershagen, L., Uebbing, B., Charfreitag, J., Mutzel, P., and Kusche, J. (2021, January 19\u201330). mSTAR: Multicriteria Spatio Temporal Altimetry Retracking. Proceedings of the EGU General Assembly Conference, Virtual.","DOI":"10.5194\/egusphere-egu21-9504"},{"key":"ref_12","unstructured":"Cipollini, P., Calafat, F.M., Jevrejeva, S., Melet, A., and Prandi, P. (2017). Integrative Study of the Mean Sea Level and Its Components, Springer."},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Bonnefond, P., Verron, J., Aublanc, J., Babu, K.N., Berge-Nguyen, M., Cancet, M., and Watson, C. (2018). The benefits of the Ka-band as evidenced from the SARAL\/AltiKa altimetric mission: Quality assessment and unique characteristics of AltiKa data. Remote Sens., 10.","DOI":"10.3390\/rs10010083"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"1371","DOI":"10.1016\/j.asr.2017.12.018","article-title":"Coastal SAR and PLRM altimetry in German Bight and west Baltic Sea","volume":"62","author":"Dinardo","year":"2018","journal-title":"Adv. Space Res."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"2641","DOI":"10.1016\/j.asr.2015.02.014","article-title":"The German Bight: A validation of CryoSat-2 altimeter data in SAR mode","volume":"55","author":"Dinardo","year":"2015","journal-title":"Adv. Space Res."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"456","DOI":"10.1016\/j.rse.2018.02.074","article-title":"ALES+: Adapting a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters","volume":"211","author":"Passaro","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"208","DOI":"10.3390\/s6030208","article-title":"AltiKa: A Ka-band altimetry payload and system for operational altimetry during the GMES period","volume":"6","author":"Vincent","year":"2006","journal-title":"Sensors"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"4120","DOI":"10.1109\/JSTARS.2015.2418251","article-title":"Validation and intercomparison of SARAL\/AltiKa and PISTACH-derived coastal wave heights using in-situ measurements","volume":"8","author":"Hithin","year":"2015","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"112081","DOI":"10.1016\/j.rse.2020.112081","article-title":"Improving precision of high-rate altimeter sea level anomalies by removing the sea state bias and intra-1-Hz covariant error","volume":"251","author":"Peng","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"ref_20","unstructured":"Deng, X., Griffin, D.A., Ridgway, K., Church, J.A., Featherstone, W.E., White, N.J., and Cahill, M. (2011). Coastal Altimetry, Springer."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"e2019JB018034","DOI":"10.1029\/2019JB018034","article-title":"Present-day vertical land motion of Australia from GPS observations and geophysical models","volume":"125","author":"Riddell","year":"2020","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"432","DOI":"10.2112\/JCR-SI50-083.1","article-title":"Waves and climate change on the Australian coast","volume":"50","author":"Hemer","year":"2007","journal-title":"J. Coast. Res."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"2022","DOI":"10.1073\/pnas.1717312115","article-title":"Climate-change\u2013driven accelerated sea-level rise detected in the altimeter era","volume":"115","author":"Nerem","year":"2018","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_24","unstructured":"Dinardo, S. (2020). Techniques and Applications for Satellite SAR Altimetry over Water, Land and Ice. [Ph.D. Thesis, Technische Universit\u00e4t]."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"5889","DOI":"10.1029\/2017JC013503","article-title":"Gauging the improvement of recent mean sea surface models: A new approach for identifying and quantifying their errors","volume":"123","author":"Pujol","year":"2018","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"596","DOI":"10.1016\/j.rse.2018.11.042","article-title":"Wind-induced cross-strait sea level variability in the strait of Gibraltar from coastal altimetry and in-situ measurements","volume":"221","author":"Gonzalez","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Fernandes, M.J., and L\u00e1zaro, C. (2016). GPD+ wet tropospheric corrections for CryoSat-2 and GFO altimetry missions. Remote Sens., 8.","DOI":"10.3390\/rs8100851"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1111\/j.1365-246X.1971.tb01803.x","article-title":"New computations of the tide-generating potential","volume":"23","author":"Cartwright","year":"1971","journal-title":"Geophys. J. Int."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1111\/j.1365-246X.1973.tb03420.x","article-title":"Corrected tables of tidal harmonics","volume":"33","author":"Cartwright","year":"1973","journal-title":"Geophys. J. Int."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"1233","DOI":"10.1007\/s00190-015-0848-7","article-title":"Revisiting the pole tide for and from satellite altimetry","volume":"89","author":"Desai","year":"2015","journal-title":"J. Geod."},{"key":"ref_31","unstructured":"Gommenginger, C., Thibaut, P., Fenoglio-Marc, L., Quartly, G., Deng, X., G\u00f3mez-Enri, J., Challenor, P., and Gao, Y. (2011). Coastal Altimetry, Springer."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"e2019RG000672","DOI":"10.1029\/2019RG000672","article-title":"Understanding of contemporary regional sea-level change and the implications for the future","volume":"58","author":"Hamlington","year":"2020","journal-title":"Rev. Geophys."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1080\/01490410490465210","article-title":"Improving the Jason-1 ground retracking to better account for attitude effects","volume":"27","author":"Amarouche","year":"2004","journal-title":"Mar. Geod."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"1319","DOI":"10.1007\/s10712-019-09569-1","article-title":"Satellite altimetry measurements of sea level in the coastal zone","volume":"40","author":"Vignudelli","year":"2019","journal-title":"Surv. Geophys."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s43247-022-00448-z","article-title":"Sea level along the world\u2019s coastlines can be measured by a network of virtual altimetry stations","volume":"3","author":"Cazenave","year":"2022","journal-title":"Commun. Earth Environ."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1080\/714044519","article-title":"Comparison of the Ku-Band range noise level and the relative sea-state bias of the Jason-1, TOPEX, and Poseidon-1 radar altimeters","volume":"26","author":"Vincent","year":"2003","journal-title":"Mar. Geod."},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Jiang, M., Xu, K., and Wang, J. (2023). Evaluation of Sentinel-6 altimetry data over ocean. Remote Sens., 15.","DOI":"10.3390\/rs15010012"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"3809","DOI":"10.1109\/TGRS.2019.2957649","article-title":"Validation of Sentinel-3A SRAL Coastal Sea Level Data at High Posting Rate: 80-Hz","volume":"58","author":"Aldarias","year":"2020","journal-title":"IEEE Transact. Geosci. Remote Sens."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"2398","DOI":"10.1016\/j.asr.2021.01.049","article-title":"The X-TRACK\/ALES multi-mission processing system: New advances in altimetry towards the coast","volume":"67","author":"Birol","year":"2021","journal-title":"Adv. Space Res."},{"key":"ref_40","doi-asserted-by":"crossref","unstructured":"Schlembach, F., Passaro, M., Quartly, G.D., Kurekin, A., Nencioli, F., Dodet, G., Pioll\u00e9, J.-F., Ardhuin, F., Bidlot, J., and Schwatke, C. (2020). Round Robin Assessment of Radar Altimeter Low Resolution Mode and Delay-Doppler Retracking Algorithms for Significant Wave Height. Remote Sens., 12.","DOI":"10.3390\/rs12081254"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/9\/2329\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,19]],"date-time":"2024-10-19T11:28:26Z","timestamp":1729337306000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/9\/2329"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4,28]]},"references-count":40,"journal-issue":{"issue":"9","published-online":{"date-parts":[[2023,5]]}},"alternative-id":["rs15092329"],"URL":"https:\/\/doi.org\/10.3390\/rs15092329","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2023,4,28]]}}}