{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T16:16:24Z","timestamp":1740154584164,"version":"3.37.3"},"reference-count":76,"publisher":"MDPI AG","issue":"7","license":[{"start":{"date-parts":[[2023,3,28]],"date-time":"2023-03-28T00:00:00Z","timestamp":1679961600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"This work presents an algorithm based on a neural network (NN) for cloud detection to detect clouds and their thermodynamic phase using spectral observations from spaceborne microwave radiometers. A standalone cloud detection algorithm over the ocean and land has been developed to distinguish clear sky versus ice and liquid clouds from microwave sounder (MWS) observations. The MWS instrument\u2014scheduled to be onboard the first satellite of the Eumetsat Polar System Second-Generation (EPS-SG) series, MetOp-SG A1\u2014has a direct inheritance from advanced microwave sounding unit A (AMSU-A) and the microwave humidity sounder (MHS) microwave instruments. Real observations from the MWS sensor are not currently available as its launch is foreseen in 2024. Thus, a simulated dataset of atmospheric states and associated MWS synthetic observations have been produced through radiative transfer calculations with ERA5 real atmospheric profiles and surface conditions. The developed algorithm has been validated using spectral observations from the AMSU-A and MHS sounders. While ERA5 atmospheric profiles serve as references for the model development and its validation, observations from AVHRR cloud mask products provide references for the AMSU-A\/MHS model evaluation. The results clearly show the NN algorithm\u2019s high skills to detect clear, ice and liquid cloud conditions against a benchmark. In terms of overall accuracy, the NN model features 92% (88%) on the ocean and 87% (85%) on land, for the MWS (AMSU-A\/MHS)-simulated dataset, respectively.<\/jats:p>","DOI":"10.3390\/rs15071798","type":"journal-article","created":{"date-parts":[[2023,3,28]],"date-time":"2023-03-28T10:15:15Z","timestamp":1679998515000},"page":"1798","source":"Crossref","is-referenced-by-count":4,"title":["A Cloud Detection Neural Network Approach for the Next Generation Microwave Sounder Aboard EPS MetOp-SG A1"],"prefix":"10.3390","volume":"15","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-2588-6082","authenticated-orcid":false,"given":"Salvatore","family":"Larosa","sequence":"first","affiliation":[{"name":"Institute of Methodologies for Environmental Analysis, National Research Council (IMAA\/CNR), 85100 Potenza, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5962-223X","authenticated-orcid":false,"given":"Domenico","family":"Cimini","sequence":"additional","affiliation":[{"name":"Institute of Methodologies for Environmental Analysis, National Research Council (IMAA\/CNR), 85100 Potenza, Italy"},{"name":"Center of Excellence Telesensing of Environment and Model Prediction of Severe Events (CETEMPS), University of L\u2019Aquila, 67100 L\u2019Aquila, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6814-193X","authenticated-orcid":false,"given":"Donatello","family":"Gallucci","sequence":"additional","affiliation":[{"name":"Institute of Methodologies for Environmental Analysis, National Research Council (IMAA\/CNR), 85100 Potenza, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9892-0582","authenticated-orcid":false,"given":"Francesco","family":"Di Paola","sequence":"additional","affiliation":[{"name":"Institute of Methodologies for Environmental Analysis, National Research Council (IMAA\/CNR), 85100 Potenza, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2630-8727","authenticated-orcid":false,"given":"Saverio Teodosio","family":"Nilo","sequence":"additional","affiliation":[{"name":"Institute of Methodologies for Environmental Analysis, National Research Council (IMAA\/CNR), 85100 Potenza, Italy"}]},{"given":"Elisabetta","family":"Ricciardelli","sequence":"additional","affiliation":[{"name":"Institute of Methodologies for Environmental Analysis, National Research Council (IMAA\/CNR), 85100 Potenza, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6304-4655","authenticated-orcid":false,"given":"Ermann","family":"Ripepi","sequence":"additional","affiliation":[{"name":"Institute of Methodologies for Environmental Analysis, National Research Council (IMAA\/CNR), 85100 Potenza, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0544-073X","authenticated-orcid":false,"given":"Filomena","family":"Romano","sequence":"additional","affiliation":[{"name":"Institute of Methodologies for Environmental Analysis, National Research Council (IMAA\/CNR), 85100 Potenza, Italy"}]}],"member":"1968","published-online":{"date-parts":[[2023,3,28]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"112971","DOI":"10.1016\/j.rse.2022.112971","article-title":"Machine learning-based retrieval of day and night cloud macrophysical parameters over East Asia using Himawari-8 data","volume":"273","author":"Yang","year":"2022","journal-title":"Remote Sens. Environ."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"111583","DOI":"10.1016\/j.rse.2019.111583","article-title":"High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8\/AHI next-generation geostationary satellite","volume":"239","author":"Letu","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"1705","DOI":"10.1016\/j.jqsrt.2007.12.023","article-title":"A strong ice cloud event as seen by a microwave satellite sensor: Simulations and observations","volume":"109","author":"Sreerekha","year":"2008","journal-title":"J. Quant. Spectrosc. Radiat. Transf."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1029\/2002RS002626","article-title":"Sensitivity of microwave radiances at 85\u2013183 GHz to precipitating ice particles","volume":"38","author":"Bennartz","year":"2003","journal-title":"Radio Sci."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"D08210","DOI":"10.1029\/2006JD007745","article-title":"Multilayered cloud parameters retrievals from combined infrared and microwave satellite observations","volume":"112","author":"Romano","year":"2007","journal-title":"J. Geophys. Res."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"1191","DOI":"10.1002\/qj.3202","article-title":"All sky satellite data assimilation at operational weather forecasting centres","volume":"144","author":"Geer","year":"2018","journal-title":"Q. J. R. Meteorol. Soc."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"108137","DOI":"10.1016\/j.jqsrt.2022.108137","article-title":"On the accuracy of RTTOV-SCATT for radiative transfer at all-sky microwave and submillimeter frequencies","volume":"283","author":"Barlakas","year":"2022","journal-title":"J. Quant. Spectrosc. Radiat. Transf."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1175\/MWR-D-12-00079.1","article-title":"Evaluating Added Benefits of Assimilating GOES Imager Radiance Data in GSI for Coastal QPFs","volume":"141","author":"Qin","year":"2013","journal-title":"Mon. Weather Rev."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"731","DOI":"10.1002\/qj.2960","article-title":"Impacts from assimilation of one data stream of AMSU-A and MHS radiances on quantitative precipitation forecasts","volume":"143","author":"Zou","year":"2017","journal-title":"Q. J. R. Meteorol. Soc."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"2024","DOI":"10.1002\/qj.830","article-title":"Observation errors in all-sky assimilation","volume":"137","author":"Geer","year":"2011","journal-title":"Q. J. R. Meteorol. Soc."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1439","DOI":"10.1007\/s00382-013-1958-7","article-title":"Uncertainty of AMSU-A derived temperature trends in relationship with clouds and precipitation over ocean","volume":"43","author":"Weng","year":"2014","journal-title":"Clim. Dyn."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"32141","DOI":"10.1029\/1998JD200032","article-title":"Discriminating clear sky from clouds with MODIS","volume":"103","author":"Ackerman","year":"1998","journal-title":"J. Geophys. Res."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"1073","DOI":"10.1175\/2007JTECHA1053.1","article-title":"Cloud Detection with MODIS. Part II: Validation","volume":"25","author":"Ackerman","year":"2008","journal-title":"J. Atmos. Ocean. Technol."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"4707","DOI":"10.1080\/01431160500166128","article-title":"MSG\/SEVIRI cloud mask and type from SAFNWC","volume":"26","author":"Derrien","year":"2005","journal-title":"Int. J. Remote Sens."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"2741","DOI":"10.1016\/j.rse.2008.01.015","article-title":"Physical and statistical approaches for cloud identification using meteosat second generation-spinning enhanced visible and infrared imager data","volume":"112","author":"Ricciardelli","year":"2008","journal-title":"Remote Sens. Environ."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"2301","DOI":"10.5194\/amt-6-2301-2013","article-title":"A neural network algorithm for cloud fraction estimation using NASA-Aura OMI VIS radiance measurements","volume":"6","author":"Saponaro","year":"2013","journal-title":"Atmos. Meas. Technol."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.rse.2019.03.039","article-title":"A cloud detection algorithm for satellite imagery based on deep learning","volume":"229","author":"Jeppesen","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"1349","DOI":"10.1080\/01431161.2019.1667548","article-title":"Satellite data cloud detection using deep learning supported by hyperspectral data","volume":"41","author":"Sun","year":"2020","journal-title":"Int. J. Remote Sens."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"4247","DOI":"10.1080\/01431160110114547","article-title":"Generating cloudmasks in spatial high-resolution observations of clouds using texture and radiance information","volume":"23","author":"Schroder","year":"2002","journal-title":"Int. J. Remote Sens."},{"key":"ref_20","unstructured":"English, S.J., Renshaw, R.J., Dibben, P.C., and Eyre, J.R. (1997, January 20\u201326). The AAPP module for identifying precipitation, ice cloud, liquid water and surface type on the AMSU-A grid. Proceedings of the 9th International TOVS Study Conference, Igls, Austria."},{"key":"ref_21","unstructured":"Geer, A.J., Bauer, P., and English, S.J. (2012). Assimilating AMSU-A Temperature Sounding Channels in the Presence of Cloud and Precipitation, European Centre for Medium-Range Weather Forecasts."},{"key":"ref_22","unstructured":"Lawrence, H., Bormann, N., Lu, Q., Geer, A., and English, S. (2023, February 18). An Evaluation of FY-3C MWHS-2 at ECMWF, EUMETSAT\/ECMWF Fellowship Programme Research Report, 2015, Volume 37. Available online: https:\/\/www.ecmwf.int\/node\/10668."},{"key":"ref_23","unstructured":"Weston, P., Geer, A.J., and Bormann, N. Investigations into the Assimilation of AMSU-A in the Presence of Cloud and Precipitation, European Centre for Medium-Range Weather Forecasts. EUMETSAT\/ECMWF Technical Report 2019."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1007\/s13351-016-5076-4","article-title":"Development and initial assessment of a new land indexfor microwave humidity sounder cloud detection","volume":"30","author":"Qin","year":"2016","journal-title":"J. Meteorol. Res."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"2347","DOI":"10.1175\/MWR-D-10-05012.1","article-title":"A Land and Ocean Microwave Cloud Classification Algorithm Derived from AMSU-A and -B, Trained Using MSG-SEVIRI Infrared and Visible Observations","volume":"139","author":"Aires","year":"2011","journal-title":"Mon. Weather Rev."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"1415","DOI":"10.1007\/s00376-021-0326-5","article-title":"Use of Microwave Radiances from Metop-C and Fengyun-3 C\/D Satellites for a Northern European Limited-area Data Assimilation System","volume":"38","author":"Lindskog","year":"2021","journal-title":"Adv. Atmos. Sci."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"4709","DOI":"10.1175\/MWR-D-15-0445.1","article-title":"All-Sky Microwave Radiance Assimilation in NCEP\u2019s GSI Analysis System","volume":"144","author":"Zhu","year":"2016","journal-title":"Mon. Weather Rev."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"2287","DOI":"10.1175\/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2","article-title":"The use of TOVS Cloud-Cleared Radiances in the NCEP SSI Analysis System","volume":"126","author":"Derber","year":"1998","journal-title":"Mon. Weather Rev."},{"key":"ref_29","doi-asserted-by":"crossref","unstructured":"Wu, Z., Li, J., and Qin, Z. (2021). Development and Evaluation of a New Method for AMSU-A Cloud Detection over Land. Remote Sens., 13.","DOI":"10.3390\/rs13183646"},{"key":"ref_30","doi-asserted-by":"crossref","unstructured":"Wu, J., Qin, Z., Li, J., and Wu, Z. (2022). Development and Evaluation of AMSU-A Cloud Detection over the Tibetan Plateau. Remote Sens., 14.","DOI":"10.3390\/rs14092116"},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Qin, Z., Wu, Z., and Li, J. (2020). Impact of the One-Stream Cloud Detection Method on the Assimilation of AMSU-A Data in GRAPES. Remote Sens., 12.","DOI":"10.3390\/rs12223842"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"4681","DOI":"10.1080\/01431160500196786","article-title":"Automated cloud detection and classification of data collected by the Visible Infrared Imager Radiometer Suite (VIIRS)","volume":"26","author":"Hutchison","year":"2005","journal-title":"Int. J. Remote Sens."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"3937","DOI":"10.1175\/MWR-D-15-0300.1","article-title":"Microwave sounder cloud detection using a collocated high-resolution imager and its impact on radiance assimilation in tropical cyclone forecasts","volume":"144","author":"Han","year":"2016","journal-title":"Mon. Weather Rev."},{"key":"ref_34","unstructured":"Muth, C., Webb, W.A., Atwood, W., and Lee, P. (2005, January 29). Advanced technology microwave sounder on the national polar-orbiting operational environmental satellite system. Proceedings of the IEEE International Conference on Geoscience and Remote Sensing Symposium, Seoul, Republic of Korea."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"5531","DOI":"10.5194\/acp-7-5531-2007","article-title":"A cloud filtering method for microwave upper tropospheric humidity measurements","volume":"7","author":"Buehler","year":"2007","journal-title":"Atmos. Chem. Phys."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Yaping, Z., Jianwen, L., and Zhoujie, C. (2008, January 10\u201312). Detection of deep convective clouds using AMSU-B and GOES-9 data. Proceedings of the China-Japan Joint Microwave Conference, Shanghai, China.","DOI":"10.1109\/CJMW.2008.4772425"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"D05205","DOI":"10.1029\/2004JD004949","article-title":"Detection of tropicaldeep convective clouds from AMSU-B water vapor channels measurements","volume":"110","author":"Hong","year":"2005","journal-title":"J. Geophys. Res."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"4170","DOI":"10.1029\/2000JD000258","article-title":"Effect of Cold Clouds on Satellite Measurements Near 183 GHz","volume":"107","author":"Greenwald","year":"2002","journal-title":"J. Geophys. Res."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"7749","DOI":"10.5194\/amt-14-7749-2021","article-title":"Improved cloud detection for the Aura Microwave Limb Sounder (MLS): Training an artificial neural network on colocated MLS and Aqua MODIS data","volume":"14","author":"Werner","year":"2021","journal-title":"Atmos. Meas. Technol."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1016\/j.rse.2018.09.029","article-title":"New neural network cloud mask algorithm based on radiative transfer simulations","volume":"219","author":"Chen","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"1129","DOI":"10.1175\/JAMC-D-11-02.1","article-title":"A naive bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-X","volume":"51","author":"Heidinger","year":"2012","journal-title":"J. Appl. Meteorol. Climatol."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.rse.2014.10.028","article-title":"Advancing the uncertainty characterisation of cloud masking in passive satellite imagery: Probabilistic formulations for NOAA AVHRR data","volume":"158","author":"Karlsson","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"2329","DOI":"10.1175\/JTECH-D-16-0183.1","article-title":"Determination of CERES TOA fluxes using machine learning algorithms. Part I: Classification and retrieval of CERES cloudy and clear scenes","volume":"34","author":"Thampi","year":"2017","journal-title":"J. Atmos. Ocean. Technol."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"6464","DOI":"10.1080\/01431161.2019.1594438","article-title":"Development of a high spatiotemporal resolution cloud-type classification approach using Himawari-8 and CloudSat","volume":"40","author":"Zhang","year":"2019","journal-title":"Int. J. Remote Sens."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"2257","DOI":"10.5194\/amt-13-2257-2020","article-title":"A machine-learning-based cloud detection and thermodynamic-phase classification algorithm using passive spectral observations","volume":"13","author":"Wang","year":"2020","journal-title":"Atmos. Meas. Technol."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"390","DOI":"10.1016\/j.rse.2017.11.003","article-title":"Development of a support vector machine based cloud detection method for MODIS with the adjustability to various conditions","volume":"205","author":"Ishida","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"4907","DOI":"10.3390\/rs6064907","article-title":"Automated detection of cloud and cloud shadow in single-date Landsat imagery using neural networks and spatial post-processing","volume":"6","author":"Hughes","year":"2014","journal-title":"Remote Sens."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"3233","DOI":"10.5194\/amt-7-3233-2014","article-title":"Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing","volume":"7","author":"Kox","year":"2014","journal-title":"Atmos. Meas. Technol."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"3547","DOI":"10.5194\/amt-10-3547-2017","article-title":"Cirrus cloud retrieval with MSG\/SEVIRI using artificial neural networks","volume":"10","author":"Strandgren","year":"2017","journal-title":"Atmos. Meas. Technol."},{"key":"ref_50","unstructured":"Atkinson, N., Bormann, N., Karbou, F., Randriamampianina, R., and Simmer, C. (2022, June 23). Micro Wave Sounder (MWS) Science Plan EUMETSAT, Eumetsat Allee 1, 64295 Darmstadt (Germany). Available online: https:\/\/www.eumetsat.int\/media\/43204."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"3151","DOI":"10.1109\/JSTARS.2021.3061946","article-title":"Preliminary Development and Testing of an EPS-SG Microwave Sounder Proxy Data Generator Using the NOAA Microwave Integrated Retrieval System","volume":"14","author":"Lee","year":"2021","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"1036","DOI":"10.1109\/TGRS.2004.843249","article-title":"NOAA Operational Hydrological Products Derived from the Advanced Microwave Sounding Unit","volume":"43","author":"Ferraro","year":"2005","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"8068","DOI":"10.1029\/2002RS002679","article-title":"Advanced microwave sounding unit cloud and precipitation algorithms","volume":"38","author":"Weng","year":"2003","journal-title":"Radio Sci."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"1376","DOI":"10.1002\/jgrd.50172","article-title":"Detecting snowfall over land by satellite high-frequency microwave observations: The lack of scattering signature and a statistical approach","volume":"118","author":"Liu","year":"2013","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"1069","DOI":"10.1175\/1520-0469(2000)057<1069:ROICPU>2.0.CO;2","article-title":"Retrieval of ice cloud parameters using a microwave imaging radiometer","volume":"57","author":"Weng","year":"2000","journal-title":"J. Atmos. Sci."},{"key":"ref_56","unstructured":"Heidinger, A., Walther, A., Botambekov, D., Straka, W., and Wanzong, S. (2022, November 30). The Clouds from AVHRR Extended User\u2019s Guide. Available online: https:\/\/cimss.ssec.wisc.edu\/clavr\/clavr_page_files\/clavrx_users_guide_v5.4.1.pdf."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"2717","DOI":"10.5194\/gmd-11-2717-2018","article-title":"An update on the RTTOV fast radiative transfer model (currently at version 12)","volume":"11","author":"Saunders","year":"2018","journal-title":"Geosci. Model Dev."},{"key":"ref_58","doi-asserted-by":"crossref","unstructured":"Geer, A.J., Bauer, P., Lonitz, K., Barlakas, V., Eriksson, P., Mendrok, J., Doherty, A., Hocking, J., and Chambon, P. (2021). Bulk hydrometeor optical properties for microwave and sub-mm radiative transfer in RTTOV-SCATT v13.0. Geosci. Model Dev. Discuss., 1\u201345.","DOI":"10.5194\/gmd-2021-73"},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"1999","DOI":"10.1002\/qj.3803","article-title":"The ERA5 Global Reanalysis","volume":"146","author":"Hersbach","year":"2020","journal-title":"Q. J. R. Meteorol. Soc."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"1039","DOI":"10.1175\/JTECH-D-16-0188.1","article-title":"Surface Emissivity at Microwaves to Millimeter Waves over Polar Regions: Parameterization and Evaluation with Aircraft Experiments","volume":"34","author":"Wang","year":"2017","journal-title":"J. Atmos. Ocean. Technol."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"1238","DOI":"10.1109\/TGRS.2010.2064779","article-title":"An Improved Fast Microwave Water Emissivity Model","volume":"49","author":"Liu","year":"2011","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"1301","DOI":"10.5194\/essd-10-1301-2018","article-title":"A general database of hydrometeor single scattering properties at microwave and sub-millimetre wavelengths","volume":"10","author":"Eriksson","year":"2018","journal-title":"Earth Syst. Sci. Data"},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"2257","DOI":"10.1175\/2009JAMC2170.1","article-title":"A revised cloud overlap scheme for fast microwave radiative transfer in rain and cloud","volume":"48","author":"Geer","year":"2009","journal-title":"J. Appl. Meteorol. Clim."},{"key":"ref_64","unstructured":"Geer, A., Bormann, N., Lonitz, K., Weston, P., Forbes, R., and English, S. (2022, January 26). Recent Progress in All-Sky Radiance Assimilation, ECMWF Newsletter No.161, Autumn 2019. Available online: https:\/\/www.ecmwf.int\/en\/newsletter\/161\/meteorology\/recent-progress-all-sky-radiance-assimilation."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"1453","DOI":"10.1002\/qj.49712757418","article-title":"A satellite radiance-bias correction scheme for data assimilation","volume":"127","author":"Harris","year":"2001","journal-title":"Q. J. R. Meteorol. Soc."},{"key":"ref_66","unstructured":"Kallner, A. (2018). Laboratory Statistics, Elsevier. [2nd ed.]."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"1145","DOI":"10.1016\/S0031-3203(96)00142-2","article-title":"The use of the area under the ROC curve in the evaluation of machine learning algorithms","volume":"30","author":"Bradley","year":"1997","journal-title":"Pattern Recognit."},{"key":"ref_68","doi-asserted-by":"crossref","unstructured":"Jurman, G., Riccadonna, S., and Furlanello, C. (2012). A comparison of MCC and CEN error measures in multi-class prediction. PLoS ONE, 7.","DOI":"10.1371\/journal.pone.0041882"},{"key":"ref_69","unstructured":"Thrampoulidis, C., Oymak, S., and Soltanolkotabi, M. (2020). Theoretical Insights into Multiclass Classification: A High-dimensional Asymptotic View. arXiv."},{"key":"ref_70","unstructured":"Nair, V., and Hinton, G.E. (2010, January 21\u201324). Rectified linear units improve restricted boltzmann machines. Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel."},{"key":"ref_71","unstructured":"Agarap, A.F. (2018). Deep learning using rectified linear units (relu). arXiv."},{"key":"ref_72","unstructured":"Kingma, D.P., and Ba, J. (2015). Adam: A Method for Stochastic Optimization.CoRR. arXiv."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1186\/s40537-020-00305-w","article-title":"Survey on categorical data for neural networks","volume":"7","author":"Hancock","year":"2020","journal-title":"J. Big Data"},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/0034-4257(91)90048-B","article-title":"Congalton, A review of assessing the accuracy of classifications of remotely sensed data","volume":"37","author":"Russell","year":"1991","journal-title":"Remote Sens. Environ."},{"key":"ref_75","unstructured":"Sun, H., Wolf, W., King, T., Barnet, C., and Goldberg, M. (February, January 27). Co-Location algorithms for satellite observations. Proceedings of the 14th Conference on Satellite Meteorology and Oceanography, Atlanta, GA, USA."},{"key":"ref_76","first-page":"209","article-title":"Application of MODIS satellite products to the air pollution research in Beijing","volume":"48","author":"Li","year":"2005","journal-title":"Sci. China Ser. D Earth Sci."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/7\/1798\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,28]],"date-time":"2023-03-28T11:16:18Z","timestamp":1680002178000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/7\/1798"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,28]]},"references-count":76,"journal-issue":{"issue":"7","published-online":{"date-parts":[[2023,4]]}},"alternative-id":["rs15071798"],"URL":"https:\/\/doi.org\/10.3390\/rs15071798","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2023,3,28]]}}}