{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,7]],"date-time":"2024-09-07T06:37:31Z","timestamp":1725691051355},"reference-count":59,"publisher":"MDPI AG","issue":"6","license":[{"start":{"date-parts":[[2023,3,19]],"date-time":"2023-03-19T00:00:00Z","timestamp":1679184000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"NASA Making Earth System Data Records for USE in Research Environments (MEaSUREs) Program"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Passive microwave remote sensing of soil moisture (SM) requires a physically based dielectric model that quantitatively converts the volumetric SM into the soil bulk dielectric constant. Mironov 2009 is the dielectric model used in the operational SM retrieval algorithms of the NASA Soil Moisture Active Passive (SMAP) and the ESA Soil Moisture and Ocean Salinity (SMOS) missions. However, Mironov 2009 suffers a challenge in deriving SM over organic soils, as it does not account for the impact of soil organic matter (SOM) on the soil bulk dielectric constant. To this end, we presented a comparative performance analysis of nine advanced soil dielectric models over organic soil in Alaska, four of which incorporate SOM. In the framework of the SMAP single-channel algorithm at vertical polarization (SCA-V), SM retrievals from different dielectric models were derived using an iterative optimization scheme. The skills of the different dielectric models over organic soils were reflected by the performance of their respective SM retrievals, which was measured by four conventional statistical metrics, calculated by comparing satellite-based SM time series with in-situ benchmarks. Overall, SM retrievals of organic-soil-based dielectric models tended to overestimate, while those from mineral-soil-based models displayed dry biases. All the models showed comparable values of unbiased root-mean-square error (ubRMSE) and Pearson Correlation (R), but Mironov 2019 exhibited a slight but consistent edge over the others. An integrated consideration of the model inputs, the physical basis, and the validated accuracy indicated that the separate use of Mironov 2009 and Mironov 2019 in the SMAP SCA-V for mineral soils (SOM <15%) and organic soils (SOM \u226515%) would be the preferred option.<\/jats:p>","DOI":"10.3390\/rs15061658","type":"journal-article","created":{"date-parts":[[2023,3,20]],"date-time":"2023-03-20T07:09:37Z","timestamp":1679296177000},"page":"1658","source":"Crossref","is-referenced-by-count":4,"title":["A Performance Analysis of Soil Dielectric Models over Organic Soils in Alaska for Passive Microwave Remote Sensing of Soil Moisture"],"prefix":"10.3390","volume":"15","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5546-2518","authenticated-orcid":false,"given":"Runze","family":"Zhang","sequence":"first","affiliation":[{"name":"Department of Engineering Systems and Environment, University of Virginia, Charlottesville, VA 22904, USA"}]},{"given":"Steven","family":"Chan","sequence":"additional","affiliation":[{"name":"NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA"}]},{"given":"Rajat","family":"Bindlish","sequence":"additional","affiliation":[{"name":"NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7431-9004","authenticated-orcid":false,"given":"Venkataraman","family":"Lakshmi","sequence":"additional","affiliation":[{"name":"Department of Engineering Systems and Environment, University of Virginia, Charlottesville, VA 22904, USA"}]}],"member":"1968","published-online":{"date-parts":[[2023,3,19]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/0022-1694(95)02970-2","article-title":"Passive microwave remote sensing of soil moisture","volume":"184","author":"Njoku","year":"1996","journal-title":"J. Hydrol."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"399","DOI":"10.1007\/s10712-008-9044-0","article-title":"Global soil moisture patterns observed by space borne microwave radiometers and scatterometers","volume":"29","author":"Wagner","year":"2008","journal-title":"Surv. Geophys."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"1729","DOI":"10.1109\/36.942551","article-title":"Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission","volume":"39","author":"Kerr","year":"2001","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"704","DOI":"10.1109\/JPROC.2010.2043918","article-title":"The soil moisture active passive (SMAP) mission","volume":"98","author":"Entekhabi","year":"2010","journal-title":"Proc. IEEE"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"4994","DOI":"10.1109\/TGRS.2016.2561938","article-title":"Assessment of the SMAP passive soil moisture product","volume":"54","author":"Chan","year":"2016","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1016\/j.rse.2017.01.021","article-title":"Validation of SMAP surface soil moisture products with core validation sites","volume":"191","author":"Colliander","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"931","DOI":"10.1016\/j.rse.2017.08.025","article-title":"Development and assessment of the SMAP enhanced passive soil moisture product","volume":"204","author":"Chan","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"112052","DOI":"10.1016\/j.rse.2020.112052","article-title":"Global scale error assessments of soil moisture estimates from microwave-based active and passive satellites and land surface models over forest and mixed irrigated\/dryland agriculture regions","volume":"251","author":"Kim","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"112126","DOI":"10.1016\/j.rse.2020.112126","article-title":"Identifying relative strengths of SMAP, SMOS-IC, and ASCAT to capture temporal variability","volume":"252","author":"Zhang","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"ref_10","unstructured":"Ulaby, F.T., Moore, R.K., and Fung, A.K. (1986). Radar Remote Sensing and Surface Scattering and Emission Theory, Artech House."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"109","DOI":"10.5194\/gi-5-109-2016","article-title":"Soil moisture sensor calibration for organic soil surface layers","volume":"5","author":"Bircher","year":"2016","journal-title":"Geosci. Instrum. Methods Data Syst."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1109\/TGRS.1985.289498","article-title":"Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models","volume":"23","author":"Dobson","year":"1985","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.rse.2019.01.015","article-title":"A comprehensive validation of the SMAP Enhanced Level-3 Soil Moisture product using ground measurements over varied climates and landscapes","volume":"223","author":"Zhang","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"2059","DOI":"10.1109\/TGRS.2008.2011631","article-title":"Physically and mineralogically based spectroscopic dielectric model for moist soils","volume":"47","author":"Mironov","year":"2009","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"238","DOI":"10.1016\/j.rse.2017.01.024","article-title":"Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms","volume":"192","author":"Wigneron","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"190036","DOI":"10.2136\/vzj2019.04.0036","article-title":"A dielectric mixing model accounting for soil organic matter","volume":"18","author":"Park","year":"2019","journal-title":"Vadose Zone J."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/0034-4257(90)90087-3","article-title":"Observed effects of soil organic matter content on the microwave emissivity of soils","volume":"31","author":"Jackson","year":"1990","journal-title":"Remote Sens. Environ."},{"key":"ref_18","unstructured":"O\u2019Neill, P., Bindlish, R., Chan, S., Chaubell, J., Colliander, A., Njoku, E., and Jackson, T. (2022, May 12). Algorithm Theoretical Basis Document Level 2 & 3 Soil Moisture (Passive) Data Products, Revision G, 12 October 2021, SMAP Project, JPL D-66480, Jet Propulsion Laboratory, Pasadena, CA. Available online: https:\/\/nsidc.org\/sites\/nsidc.org\/files\/technical-references\/L2_SM_P_ATBD_rev_G_final_Oct2021.pdf."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"288","DOI":"10.1109\/TGRS.1980.350304","article-title":"An empirical model for the complex dielectric permittivity of soils as a function of water content","volume":"18","author":"Wang","year":"1980","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"803","DOI":"10.1109\/36.387598","article-title":"Dielectric properties of soils in the 0.3\u20131.3-GHz range","volume":"33","author":"Peplinski","year":"1995","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"419","DOI":"10.1109\/LGRS.2012.2207878","article-title":"Temperature-and texture-dependent dielectric model for moist soils at 1.4 GHz","volume":"10","author":"Mironov","year":"2012","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Park, C.-H., Behrendt, A., LeDrew, E., and Wulfmeyer, V. (2017). New approach for calculating the effective dielectric constant of the moist soil for microwaves. Remote Sens., 9.","DOI":"10.3390\/rs9070732"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"3778","DOI":"10.1109\/TGRS.2018.2887117","article-title":"Experimental analysis and empirical model of the complex permittivity of five organic soils at 1.4 GHz in the temperature range from \u221230 \u00b0C to 25 \u00b0C","volume":"57","author":"Mironov","year":"2019","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"6407","DOI":"10.5194\/hess-25-6407-2021","article-title":"An inverse dielectric mixing model at 50 MHz that considers soil organic carbon","volume":"25","author":"Park","year":"2021","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"e2021WR030957","DOI":"10.1029\/2021WR030957","article-title":"Potential Satellite Monitoring of Surface Organic Soil Properties in Arctic Tundra from SMAP","volume":"58","author":"Yi","year":"2022","journal-title":"Water Resour. Res."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"126673","DOI":"10.1016\/j.jhydrol.2021.126673","article-title":"Comparison of soil dielectric mixing models for soil moisture retrieval using SMAP brightness temperature over croplands in India","volume":"602","author":"Suman","year":"2021","journal-title":"J. Hydrol."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"3084","DOI":"10.1109\/TGRS.2014.2368585","article-title":"Comparison of Dobson and Mironov dielectric models in the SMOS soil moisture retrieval algorithm","volume":"53","author":"Mialon","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"4345","DOI":"10.1109\/JSTARS.2014.2372031","article-title":"Evaluation of dielectric mixing models for passive microwave soil moisture retrieval using data from ComRAD ground-based SMAP simulator","volume":"8","author":"Srivastava","year":"2014","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_29","unstructured":"O\u2019Neill, P., Chan, S., Njoku, E., Jackson, T., Bindlish, R., and Chaubell, J. (2021). L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, Version 8., NASA National Snow and Ice Data Center Distributed Active Archive Center."},{"key":"ref_30","doi-asserted-by":"crossref","unstructured":"Hengl, T., Mendes de Jesus, J., Heuvelink, G.B., Ruiperez Gonzalez, M., Kilibarda, M., Blagoti\u0107, A., Shangguan, W., Wright, M.N., Geng, X., and Bauer-Marschallinger, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE, 12.","DOI":"10.1371\/journal.pone.0169748"},{"key":"ref_31","unstructured":"Das, N.N., and O\u2019Neill, P. (2023, March 16). Soil Moisture Active Passive (SMAP) Ancillary Data Report, Soil Attributes, 15 August 2020, JPL D-53058, Version B, Jet Propulsion Laboratory, Pasadena, CA, USA, Available online: https:\/\/smap.jpl.nasa.gov\/documents."},{"key":"ref_32","first-page":"187","article-title":"SNOTEL (SNOwpack TELemetry) and SCAN (soil climate analysis network)","volume":"1074","author":"Schaefer","year":"2001","journal-title":"Autom. Weather. Station. Appl. Agric. Water Resour. Manag. Curr. Use Future Perspect."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"2073","DOI":"10.1175\/2007JTECHA930.1","article-title":"The USDA natural resources conservation service soil climate analysis network (SCAN)","volume":"24","author":"Schaefer","year":"2007","journal-title":"J. Atmos. Ocean. Technol."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"1","DOI":"10.2136\/vzj2012.0097","article-title":"Global automated quality control of in-situ soil moisture data from the International Soil Moisture Network","volume":"12","author":"Dorigo","year":"2013","journal-title":"Vadose Zone J."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"1675","DOI":"10.5194\/hess-15-1675-2011","article-title":"The International Soil Moisture Network: A data hosting facility for global in-situ soil moisture measurements","volume":"15","author":"Dorigo","year":"2011","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"5749","DOI":"10.5194\/hess-25-5749-2021","article-title":"The International Soil Moisture Network: Serving Earth system science for over a decade","volume":"25","author":"Dorigo","year":"2021","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"832","DOI":"10.1175\/2010JHM1223.1","article-title":"Performance metrics for soil moisture retrievals and application requirements","volume":"11","author":"Entekhabi","year":"2010","journal-title":"J. Hydrometeorol."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1109\/TGRS.1985.289497","article-title":"Microwave dielectric behavior of wet soil-part 1: Empirical models and experimental observations","volume":"23","author":"Hallikainen","year":"1985","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Crow, W.T., Berg, A.A., Cosh, M.H., Loew, A., Mohanty, B.P., Panciera, R., de Rosnay, P., Ryu, D., and Walker, J.P. (2012). Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys., 50.","DOI":"10.1029\/2011RG000372"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"197","DOI":"10.5194\/tc-13-197-2019","article-title":"Sensitivity of active-layer freezing process to snow cover in Arctic Alaska","volume":"13","author":"Yi","year":"2019","journal-title":"Cryosphere"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"574","DOI":"10.1029\/WR016i003p00574","article-title":"Electromagnetic determination of soil water content: Measurements in coaxial transmission lines","volume":"16","author":"Topp","year":"1980","journal-title":"Water Resour. Res."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/j.1365-2389.1992.tb00115.x","article-title":"Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR","volume":"43","author":"Roth","year":"1992","journal-title":"J. Soil Sci."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"329","DOI":"10.4141\/cjss93-035","article-title":"In-situ determination of the water desorption characteristics of peat substrates","volume":"73","author":"Paquet","year":"1993","journal-title":"Can. J. Soil Sci."},{"key":"ref_44","first-page":"417","article-title":"Accuracy of soil moisture measurement by TDR technique","volume":"14","author":"Skierucha","year":"2000","journal-title":"Int. Agrophys."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"315","DOI":"10.2166\/nh.2001.0018","article-title":"Calibration of time domain reflectometry for water content in peat soil","volume":"32","author":"Kellner","year":"2001","journal-title":"Hydrol. Res."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1111\/j.1365-2389.1996.tb01409.x","article-title":"Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil","volume":"47","author":"Malicki","year":"1996","journal-title":"Eur. J. Soil Sci."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.geoderma.2010.02.003","article-title":"A critical review of the conventional SOC to SOM conversion factor","volume":"156","author":"Pribyl","year":"2010","journal-title":"Geoderma"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/j.rse.2018.12.013","article-title":"Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product","volume":"222","author":"Gray","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"180214","DOI":"10.1038\/sdata.2018.214","article-title":"Present and future K\u00f6ppen-Geiger climate classification maps at 1-km resolution","volume":"5","author":"Beck","year":"2018","journal-title":"Sci. Data"},{"key":"ref_50","unstructured":"O\u2019Neill, P., Chan, S., Bindlish, R., Chaubell, J., Colliander, A., Chen, F., Dunbar, S., Jackson, T., Peng, J., and Mousavi, M. (2021). Calibration and Validation for the L2\/3_SM_P Version 8 and L2\/3_SM_P_E Version 5 Data Products, Jet Propulsion Laboratory. SMAP Project, JPL D-56297."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"453","DOI":"10.1002\/jpln.200521961","article-title":"Topsoil characterization\u2014Recommendations for revision and expansion of the FAO-Draft (1998) with emphasis on humus forms and biological features","volume":"169","author":"Broll","year":"2006","journal-title":"J. Plant Nutr. Soil Sci."},{"key":"ref_52","unstructured":"Zanella, A., Jabiol, B., Ponge, J.-F., Sartori, G., De Waal, R., Van Delft, B., Graefe, U., Cools, N., Katzensteiner, K., and Hager, H. (2023, March 16). European Humus Forms Reference Base. Available online: https:\/\/hal.science\/hal-00541496\/file\/Humus_Forms_ERB_31_01_2011.pdf."},{"key":"ref_53","unstructured":"Huang, P., Patel, M., and Bobet, A. (2023, March 16). FHWA\/IN\/JTRP-2008\/2 Classification of Organic Soils. Available online: https:\/\/www.geostructures.com\/library\/technical-bulletins\/pdf\/Classification-of-Organic-Soils-FHWA-IN-JTRP-2008-2.pdf."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"2495","DOI":"10.5194\/tc-14-2495-2020","article-title":"Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble","volume":"14","author":"Mudryk","year":"2020","journal-title":"Cryosphere"},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"5377","DOI":"10.1038\/s41467-019-13361-5","article-title":"Integrating hydrology and biogeochemistry across frozen landscapes","volume":"10","author":"Vonk","year":"2019","journal-title":"Nat. Commun."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"312","DOI":"10.1038\/ngeo2674","article-title":"Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology","volume":"9","author":"Liljedahl","year":"2016","journal-title":"Nat. Geosci."},{"key":"ref_57","unstructured":"Reichle, R., De Lannoy, G., Koster, R.D., Crow, W.T., Kimball, J.S., Liu, Q., and Bechtold, M. (2022). SMAP L4 Global 3-Hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data, Version 7, NASA National Snow and Ice Data Center Distributed Active Archive Center."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"5607","DOI":"10.1080\/01431161.2010.507260","article-title":"Sensitivity of L-band NWP forward modelling to soil roughness","volume":"32","author":"Sabater","year":"2011","journal-title":"Int. J. Remote Sens."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.advwatres.2017.09.006","article-title":"Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms","volume":"109","author":"Karthikeyan","year":"2017","journal-title":"Adv. Water Resour."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/6\/1658\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,20]],"date-time":"2023-03-20T08:26:10Z","timestamp":1679300770000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/6\/1658"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,19]]},"references-count":59,"journal-issue":{"issue":"6","published-online":{"date-parts":[[2023,3]]}},"alternative-id":["rs15061658"],"URL":"https:\/\/doi.org\/10.3390\/rs15061658","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,3,19]]}}}