{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T16:16:45Z","timestamp":1740154605460,"version":"3.37.3"},"reference-count":49,"publisher":"MDPI AG","issue":"4","license":[{"start":{"date-parts":[[2023,2,4]],"date-time":"2023-02-04T00:00:00Z","timestamp":1675468800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"National key research and development program for international cooperation","award":["2020YFE0200800"]},{"name":"Special Fund for High Resolution Images Surveying and Mapping Application System","award":["42-Y30B04-9001-19\/21"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China (NSFC)","doi-asserted-by":"crossref","award":["41971418"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"At present, some mapping satellites, such as GaoFen-7 and ZiYuan3-03, are equipped with both optical stereo cameras and laser altimeters that can synchronously obtain stereo images and sparse ground laser altimetry points (LAPs). To effectively improve the geometric accuracy of these satellite stereo images, this study proposed an integrated processing method for LAPs and stereo images derived from the same satellite. This method makes full use of the advantages of synchronously obtaining stereo images and LAPs, and designs measurement technology for accurate pixel coordinates of LAPs in stereo images, which works toward solving a technical difficulty that has restricted their integration to achieve higher accuracy. The method also constructs a combined block adjustment model of LAPs and stereo images. We selected 70 GaoFen-7 stereo images and 463 GaoFen-7 LAPs from Hebei Province, China, and 12 ZiYuan3-03 stereo images and 81 ZiYuan3-03 LAPs from Heilongjiang Province, China, to conduct integrated processing experiments. The vertical accuracy of the GaoFen-7 images in all types of terrain were improved substantially and reached the accuracy requirements of 1:10,000 (even 1:5000) scale mapping in China. The vertical accuracy of the ZiYuan3-03 images in various terrain areas were also improved markedly, satisfying the accuracy requirement of 1:50,000 scale mapping. These experimental results indicate that the working mode of synchronously obtaining LAPs and stereo images using the same satellite is advanced, and the proposed method is correct and effective.<\/jats:p>","DOI":"10.3390\/rs15040869","type":"journal-article","created":{"date-parts":[[2023,2,6]],"date-time":"2023-02-06T10:29:05Z","timestamp":1675679345000},"page":"869","source":"Crossref","is-referenced-by-count":5,"title":["Integrating Stereo Images and Laser Altimetry Points Derived from the Same Satellite for High-Accuracy Stereo Mapping"],"prefix":"10.3390","volume":"15","author":[{"given":"Xinming","family":"Tang","sequence":"first","affiliation":[{"name":"Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of the People\u2019s Republic of China, Beijing 100048, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2391-5356","authenticated-orcid":false,"given":"Ping","family":"Zhou","sequence":"additional","affiliation":[{"name":"Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of the People\u2019s Republic of China, Beijing 100048, China"}]},{"given":"Li","family":"Guo","sequence":"additional","affiliation":[{"name":"Land Satellite Remote Sensing Application Center, Ministry of Natural Resources of the People\u2019s Republic of China, Beijing 100048, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8331-2266","authenticated-orcid":false,"given":"Hongbo","family":"Pan","sequence":"additional","affiliation":[{"name":"Geosciences and Info-Physics, Central South University, Changsha 410083, China"}]}],"member":"1968","published-online":{"date-parts":[[2023,2,4]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"1848","DOI":"10.1126\/science.266.5192.1848","article-title":"Ancient Multiring Basins on the Moon Revealed by Clementine Laser Altimetry","volume":"266","author":"Spudis","year":"1994","journal-title":"Science"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1007\/s11214-009-9512-y","article-title":"The Lunar Orbiter Laser Altimeter Investigation on the Lunar Reconnaissance Orbiter Mission","volume":"150","author":"Smith","year":"2009","journal-title":"Space Sci. Rev."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"451","DOI":"10.1007\/s11214-007-9273-4","article-title":"The Mercury Laser Altimeter Instrument for the MESSENGER Mission","volume":"131","author":"Cavanaugh","year":"2007","journal-title":"Space Sci. Rev."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"1582","DOI":"10.1007\/s11430-010-4020-1","article-title":"Laser altimetry data of Chang\u2019E-1 and the global lunar DEM model","volume":"53","author":"Li","year":"2010","journal-title":"Sci. China Earth Sci."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"L21S01","DOI":"10.1029\/2005GL024009","article-title":"Overview of the ICESat Mission","volume":"32","author":"Schutz","year":"2005","journal-title":"Geophys. Res. Lett."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"111325","DOI":"10.1016\/j.rse.2019.111325","article-title":"The Ice, Cloud, and Land Elevation Satellite\u20142 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System","volume":"233","author":"Neumann","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"e2019EA000777","DOI":"10.1029\/2019EA000777","article-title":"Overview of the GF-7 Laser Altimeter System Mission","volume":"7","author":"Tang","year":"2020","journal-title":"Earth Space Sci."},{"key":"ref_8","first-page":"1","article-title":"Combined Block Adjustment of Stereo Imagery and Laser Altimetry Points of the ZY3-03 Satellite","volume":"19","author":"Zhou","year":"2022","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1111\/phor.12249","article-title":"In-orbit geometric calibration and experimental verification of the ZY3-02 laser altimeter","volume":"33","author":"Xie","year":"2018","journal-title":"Photogramm. Rec."},{"key":"ref_10","unstructured":"Spiegel, M., Baumgartner, A., and Ebner, H. (2003, January 6\u20138). Orientation of Mars Express\/HRSC imagery using laser altimeter data as control information. Proceedings of the ISPRS Workshop High Resolution Mapping from Space 2003, Hannover, Germany."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1179","DOI":"10.14358\/PERS.71.10.1179","article-title":"Combined Adjustment of MOC Stereo Imagery and MOLA Altimetry Data","volume":"71","author":"Yoon","year":"2005","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"520","DOI":"10.1016\/j.epsl.2009.12.040","article-title":"An assessment of surface matching for the automated co-registration of MOLA, HRSC and HiRISE DTMs","volume":"294","author":"Lin","year":"2010","journal-title":"Earth Planet. Sci. Lett."},{"key":"ref_13","unstructured":"Di, K., Yue, Z., Peng, M., and Liu, Z. (2010, January 15\u201319). Co-registration of CHANG\u2019E-1 stereo images and laser altimeter data for 3D mapping of lunar surface. Proceedings of the ASPRS\/CaGIS 2010 Specialty Conference, Orlando, FL, USA."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"1615","DOI":"10.1016\/j.asr.2012.06.037","article-title":"Co-registration of Chang\u2019E-1 stereo images and laser altimeter data with crossover adjustment and image sensor model refinement","volume":"50","author":"Di","year":"2012","journal-title":"Adv. Space Res."},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Ye, J., Qiang, Y., Zhang, R., Liu, X., Deng, Y., and Zhang, J. (2021). High-Precision Digital Surface Model Extraction from Satellite Stereo Images Fused with ICESat-2 Data. Remote Sens., 14.","DOI":"10.3390\/rs14010142"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"665","DOI":"10.5194\/tc-13-665-2019","article-title":"The Reference Elevation Model of Antarctica","volume":"13","author":"Howat","year":"2019","journal-title":"Cryosphere"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"112621","DOI":"10.1016\/j.rse.2021.112621","article-title":"Digital terrain model elevation corrections using space-based imagery and ICESat-2 laser altimetry","volume":"264","author":"Magruder","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"714","DOI":"10.1007\/s11430-009-0055-6","article-title":"High-accuracy topographical information extraction based on fusion of ASTER stereo-data and ICESat\/GLAS data in Antarctica","volume":"52","author":"Dongchen","year":"2009","journal-title":"Sci. China Ser. D Earth Sci."},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Takaku, J., Tadono, T., and Tsutsui, K. (2014, January 13\u201318). Algorithm development of high resolution global DSM generation by ALOS prism. Proceedings of the IGARSS 2014\u20132014 IEEE International Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada.","DOI":"10.1109\/IGARSS.2014.6947564"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1111\/phor.12138","article-title":"ZY-3 Block adjustment supported by GLAS laser altimetry data","volume":"31","author":"Li","year":"2016","journal-title":"Photogramm. Rec."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"1268","DOI":"10.1109\/LGRS.2017.2705339","article-title":"Vertical Accuracy Effect Verification for Satellite Imagery with Different GCPs","volume":"14","author":"Zhou","year":"2017","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_22","first-page":"599","article-title":"Refined processing of satellite imaging geometric model assisted by laser altimetry data","volume":"22","author":"Cao","year":"2018","journal-title":"J. Remote Sens."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"569","DOI":"10.14358\/PERS.84.9.569","article-title":"Integration of ZY3-02 satellite laser altimetry data and stereo images for high-precise surveying and mapping","volume":"84","author":"Li","year":"2018","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Zhang, G., Xu, K., Jia, P., Hao, X., and Li, D. (2019). Integrating Stereo Images and Laser Altimeter Data of the ZY3-02 Satellite for Improved Earth Topographic Modeling. Remote Sens., 11.","DOI":"10.3390\/rs11202453"},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Zhang, G., Jiang, B., Wang, T., Ye, Y., and Li, X. (2021). Combined Block Adjustment for Optical Satellite Stereo Imagery Assisted by Spaceborne SAR and Laser Altimetry Data. Remote Sens., 13.","DOI":"10.3390\/rs13163062"},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Chen, J., Tang, X., Xue, Y., Li, G., Zhou, X., Hu, L., and Zhang, S. (2022). Registration and Combined Adjustment for the Laser Altimetry Data and High-Resolution Optical Stereo Images of the GF-7 Satellite. Remote Sens., 14.","DOI":"10.3390\/rs14071666"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1080\/19479832.2012.734340","article-title":"Triple linear-array image geometry model of ZiYuan-3 surveying satellite and its validation","volume":"4","author":"Tang","year":"2013","journal-title":"Int. J. Image Data Fusion"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"1131","DOI":"10.14358\/PERS.79.12.1131","article-title":"Basic Products of the ZiYuan-3 Satellite and Accuracy Evaluation","volume":"79","author":"Pan","year":"2013","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"1034","DOI":"10.1109\/JSTARS.2020.2977935","article-title":"Design and Data Processing of China\u2019s First Spaceborne Laser Altimeter System for Earth Observation: GaoFen-7","volume":"13","author":"Xie","year":"2020","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_30","first-page":"1338","article-title":"Processing and preliminary accuracy validation of the GF-7 satellite laser altimetry data","volume":"50","author":"Li","year":"2021","journal-title":"Acta Geod. Cartogr. Sin."},{"key":"ref_31","unstructured":"NASA Goddard Space Flight Center (2022, November 21). The GLAS Algorithm Theoretical Basis Document for Laser Footprint Location (Geolocation) and Surface Profiles. 1 July 2014, Available online: https:\/\/ntrs.nasa.gov\/citations\/20140017859."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"129","DOI":"10.5194\/isprs-archives-XLIII-B1-2020-129-2020","article-title":"Preliminary quality analysis of GF-7 satellite laser altimeter full waveform data","volume":"XLIII-B1-2","author":"Li","year":"2020","journal-title":"ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"6509105","DOI":"10.1109\/LGRS.2022.3169166","article-title":"Geometric Accuracy Verification of GF-7 Satellite Stereo Imagery Without GCPs","volume":"19","author":"Zhou","year":"2022","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_34","first-page":"384","article-title":"GF-7 dual-beam laser altimeter on-orbit geometric calibration and test verification","volume":"50","author":"Tang","year":"2021","journal-title":"Acta Geod. Cartogr. Sin."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"224","DOI":"10.1109\/TGRS.2013.2237781","article-title":"On-Orbit Geometric Calibration of ZY-3 Three-Line Array Imagery With Multistrip Data Sets","volume":"52","author":"Zhang","year":"2013","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"927","DOI":"10.14358\/PERS.81.12.927","article-title":"Geometric Accuracy Analysis Model of the Ziyuan-3 Satellite without GCPs","volume":"81","author":"Tang","year":"2015","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_37","first-page":"1628","article-title":"Geometric accuracy evaluation model of domestic push-broom mapping satellite image. Geomat","volume":"43","author":"Zhou","year":"2018","journal-title":"Inf. Sci. Wuhan Univ."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"3130","DOI":"10.1049\/ipr2.12306","article-title":"In-orbit geometric calibration approach and positioning accuracy analysis for the Gaofen-7 laser footprint camera","volume":"15","author":"Xie","year":"2021","journal-title":"IET Image Process."},{"key":"ref_39","unstructured":"NASA Goddard Space Flight Center (2022, November 21). The Algorithm Theoretical Basis Document for the Atmospheric Delay Correction to GLAS Laser Altimeter Ranges. 1 October 2012, Available online: https:\/\/ntrs.nasa.gov\/search.jsp?R=20130001652."},{"key":"ref_40","unstructured":"NASA Goddard Space Flight Center (2022, November 21). The algorithm theoretical basis document for tidal corrections. 1 December 2012, Available online: https:\/\/ntrs.nasa.gov\/search.jsp?R=20130013632."},{"key":"ref_41","first-page":"20210356","article-title":"Laser altimetry data processing and combined surveying application of ZY3-03 satellite","volume":"51","author":"Li","year":"2022","journal-title":"Infrared Laser Eng."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1023\/B:VISI.0000029664.99615.94","article-title":"Distinctive Image Features from Scale-Invariant Keypoints","volume":"60","author":"Lowe","year":"2004","journal-title":"Int. J. Comput. Vis."},{"key":"ref_43","first-page":"175","article-title":"Adaptive least squares correlation: A powerful image matching technique","volume":"14","author":"Gruen","year":"1985","journal-title":"S. Afr. J. Photogramm. Remote Sens. Cartogr."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"909","DOI":"10.14358\/PERS.71.8.909","article-title":"Bias-compensated RPCs for Sensor Orientation of High-resolution Satellite Imagery","volume":"71","author":"Fraser","year":"2005","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1016\/j.isprsjprs.2003.10.001","article-title":"Insights into the affine model for high-resolution satellite sensor orientation","volume":"58","author":"Fraser","year":"2004","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"821","DOI":"10.14358\/PERS.21-00009R2","article-title":"A Method of Extracting High-Accuracy Elevation Control Points from ICESat-2 Altimetry Data","volume":"87","author":"Li","year":"2021","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_47","doi-asserted-by":"crossref","unstructured":"Krieger, G., Fiedler, H., Zink, M., Hajnsek, I., Younis, M., Huber, S., Bachmann, M., Gonzalez, J.H., Werner, M., and Moreira, A. (2007, January 10\u201312). The TanDEM-X mission: A satellite formation for high-resolution SAR interferometry. Proceedings of the Radar Conference, EuRAD 2007, Munich, Germany.","DOI":"10.1109\/EURAD.2007.4404942"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"1529","DOI":"10.1109\/TGRS.2006.888937","article-title":"Automatic and Precise Orthorectification, Coregistration, and Subpixel Correlation of Satellite Images, Application to Ground Deformation Measurements","volume":"45","author":"Leprince","year":"2007","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_49","unstructured":"(2013). Digital Products of Fundamental Geographic Information\u20141:5000 1:10,000 1:25,000 1:50,000 1:100,000\u2014Part 1:Digital Line Graphs (Standard No. CH\/T 9009.1-2013)."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/4\/869\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,6]],"date-time":"2025-01-06T07:11:42Z","timestamp":1736147502000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/4\/869"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2,4]]},"references-count":49,"journal-issue":{"issue":"4","published-online":{"date-parts":[[2023,2]]}},"alternative-id":["rs15040869"],"URL":"https:\/\/doi.org\/10.3390\/rs15040869","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2023,2,4]]}}}