{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T14:21:11Z","timestamp":1725632471356},"reference-count":42,"publisher":"MDPI AG","issue":"3","license":[{"start":{"date-parts":[[2023,1,30]],"date-time":"2023-01-30T00:00:00Z","timestamp":1675036800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Ministry of Science and Higher Education of the Russian Federation"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Natural hazards and geomagnetic disturbances can generate a combination of atmospheric and ionospheric waves of different scales. The carrier phase of signals of global navigation satellite system (GNSS) can provide the highest efficiency to detect and study the weak ionospheric disturbances in contrast to total electron content (TEC) and TEC-based indices. We consider the border between the informative part of the carrier phase spectrum and the uninformative noises\u2014the deviation frequency\u2014as the promising means to improve the GNSS-based disturbance detection algorithms. The behavior of the deviation frequency of the carrier phase spectra was studied under quiet and disturbed geomagnetic conditions. The results showed that the deviation frequency value increases under magnetic storms. This effect was revealed for all GNSS constellations and signals regardless the GNSS type, receiver type\/make and data rate (50 or 100 Hz). For the 100 Hz data, the most probable values of the deviation frequency grouped within ~28\u201340 Hz under quiet condition and shifted to ~37\u201348 Hz during the weak geomagnetic storms. Additionally, the lower values of deviation frequency of ~18\u201325 Hz almost disappear from the distribution of the deviation frequencies as it becomes narrower during geomagnetic storms. Considering that the small-scale irregularities shift the deviation frequencies, we can use this indicator as a \u201cred alert\u201d for weakest small-scale irregularities when the deviation frequency reaches ~35\u201350 Hz.<\/jats:p>","DOI":"10.3390\/rs15030792","type":"journal-article","created":{"date-parts":[[2023,1,31]],"date-time":"2023-01-31T07:04:52Z","timestamp":1675148692000},"page":"792","source":"Crossref","is-referenced-by-count":1,"title":["An Increase of GNSS Data Time Rate and Analysis of the Carrier Phase Spectrum"],"prefix":"10.3390","volume":"15","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2893-9522","authenticated-orcid":false,"given":"Vladislav","family":"Demyanov","sequence":"first","affiliation":[{"name":"Institute of Solar-Terrestrial Physics, Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia"},{"name":"Department of Automatic and Telecommunication, Irkutsk State Transport University, Irkutsk 664074, Russia"}]},{"given":"Ekaterina","family":"Danilchuk","sequence":"additional","affiliation":[{"name":"Department of Radio-Wave Physics and Radio-Engineering, Irkutsk State University, Irkutsk 664003, Russia"}]},{"given":"Maria","family":"Sergeeva","sequence":"additional","affiliation":[{"name":"SCiESMEX, LANCE, Instituto de Geofisica, Unidad Michoacan, Universidad Nacional Autonoma de Mexico, Antigua Carretera a Patzcuaro 8701, Morelia 58089, Michoacan, Mexico"},{"name":"CONACYT, Instituto de Geofisica, Unidad Michoacan, Universidad Nacional Autonoma de Mexico, Antigua Carretera a Patzcuaro 8701, Morelia 58089, Michoacan, Mexico"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3098-224X","authenticated-orcid":false,"given":"Yury","family":"Yasyukevich","sequence":"additional","affiliation":[{"name":"Institute of Solar-Terrestrial Physics, Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia"}]}],"member":"1968","published-online":{"date-parts":[[2023,1,30]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"1265","DOI":"10.1029\/2019RG000668","article-title":"Ionospheric Detection of Natural Hazards","volume":"57","author":"Astafyeva","year":"2019","journal-title":"Rev. Geophys."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"1045","DOI":"10.1029\/95GL00168","article-title":"GPS detection of ionospheric perturbations following the January 17, 1994, Northridge Earthquake","volume":"22","author":"Calais","year":"1995","journal-title":"Geophys. Res. Lett."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"46607","DOI":"10.1038\/srep46607","article-title":"Real-Time Detection of Tsunami Ionospheric Disturbances with a Stand-Alone GNSS Receiver: A Preliminary Feasibility Demonstration","volume":"7","author":"Savastano","year":"2017","journal-title":"Sci. Rep."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"1196","DOI":"10.1016\/j.asr.2011.06.014","article-title":"Investigation into impact of tropical cyclones on the ionosphere using GPS sounding and NCEP\/NCAR Reanalysis data","volume":"48","author":"Polyakova","year":"2011","journal-title":"Adv. Space Res."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Shestakov, N., Orlyakovskiy, A., Perevalova, N., Titkov, N., Chebrov, D., Ohzono, M., and Takahashi, H. (2021). Investigation of Ionospheric Response to June 2009 Sarychev Peak Volcano Eruption. Remote Sens., 13.","DOI":"10.3390\/rs13040638"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"6535","DOI":"10.1002\/2015GL064792","article-title":"Ionospheric disturbances in the vicinity of the Chelyabinsk meteoroid explosive disruption as inferred from dense GPS observations","volume":"42","author":"Perevalova","year":"2015","journal-title":"Geophys. Res. Lett."},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Sergeeva, M., Demyanov, V., Maltseva, O., Mokhnatkin, A., Rodriguez-Martinez, M., Gutierrez, R., Vesnin, A., Gatica-Acevedo, V., Gonzalez-Esparza, J., and Fedorov, M. (2021). Assessment of Morelian Meteoroid Impact on Mexican Environment. Atmosphere, 12.","DOI":"10.3390\/atmos12020185"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"1061","DOI":"10.1186\/BF03352331","article-title":"The use of GPS arrays in detecting the ionospheric response during rocket launchings","volume":"52","author":"Afraimovich","year":"2000","journal-title":"Earth Planets Space"},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"829","DOI":"10.1016\/S1364-6826(96)00105-8","article-title":"Observations of total electron content perturbations on GPS signals caused by a ground level explosion","volume":"59","author":"Fitzgerald","year":"1997","journal-title":"J. Atmos. Solar-Terr. Phys."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1007\/s10291-022-01365-6","article-title":"The GUARDIAN system-a GNSS upper atmospheric real-time disaster information and alert network","volume":"27","author":"Martire","year":"2023","journal-title":"GPS Solut."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10291-020-00983-2","article-title":"SIMuRG: System for Ionosphere Monitoring and Research from GNSS","volume":"24","author":"Yasyukevich","year":"2020","journal-title":"GPS Solut."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1007\/s10291-017-0688-4","article-title":"On the accuracy of the GPS L2 observable for ionospheric monitoring","volume":"22","author":"McCaffrey","year":"2017","journal-title":"GPS Solut."},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Demyanov, V., Sergeeva, M., Fedorov, M., Ishina, T., Gatica-Acevedo, V., and Cabral-Cano, E. (2020). Comparison of TEC Calculations Based on Trimble, Javad, Leica, and Septentrio GNSS Receiver Data. Remote Sens., 12.","DOI":"10.3390\/rs12193268"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1002\/navi.33","article-title":"GPS Carrier Phase Spectrum Estimation for Ionospheric Scintillation Studies","volume":"60","author":"Zhang","year":"2013","journal-title":"J. Inst. Navig."},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Demyanov, V., Danilchuk, E., Yasyukevich, Y., and Sergeeva, M. (2021). Experimental Estimation of Deviation Frequency within the Spectrum of Scintillations of the Carrier Phase of GNSS Signals. Remote Sens., 13.","DOI":"10.20944\/preprints202111.0099.v1"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"875","DOI":"10.5047\/eps.2011.06.035","article-title":"Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake","volume":"63","author":"Tsugawa","year":"2011","journal-title":"Earth Planets Space"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"885","DOI":"10.5047\/eps.2011.07.015","article-title":"Numerical simulations of atmospheric waves excited by the 2011 off the Pacific coast of Tohoku Earth-quake","volume":"63","author":"Matsumura","year":"2011","journal-title":"Earth Planets Space"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"1360","DOI":"10.1002\/2016JA023727","article-title":"GPS detection of ionospheric Rayleigh wave and its source following the 2012 Haida Gwaii earthquake","volume":"122","author":"Jin","year":"2017","journal-title":"J. Geophys. Res. Space Phys."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"863","DOI":"10.5047\/eps.2011.06.034","article-title":"Acoustic resonance and plasma depletion detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake","volume":"63","author":"Saito","year":"2011","journal-title":"Earth Planets Space"},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Kersten, T., and Paffenholz, J.-A. (2020). Feasibility of Consumer Grade GNSS Receivers for the Integration in Multi-Sensor-Systems. Sensors, 20.","DOI":"10.3390\/s20092463"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"1883","DOI":"10.1007\/s10291-017-0664-z","article-title":"Spectral characteristics of auroral region scintillation using 100 Hz sampling","volume":"21","author":"McCaffrey","year":"2017","journal-title":"GPS Solut."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"783","DOI":"10.1007\/s10291-016-0568-3","article-title":"Investigating the inconsistency of ionospheric ROTI indices derived from GPS modernized L2C and legacy L2 P(Y) signals at low-latitude regions","volume":"21","author":"Yang","year":"2016","journal-title":"GPS Solut."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"437","DOI":"10.1007\/s00190-018-1172-9","article-title":"Performance analysis of dual-frequency receiver using combinations of GPS L1, L5, and L2 civil signals","volume":"93","author":"Bolla","year":"2018","journal-title":"J. Geodesy"},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Demyanov, V.V., Sergeeva, M.A., and Yasyukevich, A.S. (2019). Satellites Missions and Technologies for Geosciences, IntechOpen.","DOI":"10.5772\/intechopen.83246"},{"key":"ref_25","unstructured":"(2023, January 16). JAVAD DELTA-3 for TRE-3. Rev.1.1. Available online: http:\/\/www.javad.com\/jgnss\/products\/."},{"key":"ref_26","unstructured":"(2023, January 16). Septentrio PolaRx5S. Available online: http:\/\/www.septentrio.com."},{"key":"ref_27","first-page":"63","article-title":"SibNet\u2014Siberian Global Navigation Satellite System Network: Current state","volume":"4","author":"Yasyukevich","year":"2018","journal-title":"Sol. Terr. Phys."},{"key":"ref_28","unstructured":"(2023, January 16). JAVAD GrAnt. Rev. 2.5. Available online: https:\/\/www.javad.com\/jgnss\/products\/antennas\/."},{"key":"ref_29","unstructured":"(2018). Standard No. IS-GPS-200 J. Available online: https:\/\/www.gps.gov\/technical\/icwg\/IS-GPS-200J.pdf."},{"key":"ref_30","unstructured":"(2010). Standard No. IS-GPS-705 A. Available online: http:\/\/everyspec.com\/MISC\/IS-GPS-705D_53534\/."},{"key":"ref_31","unstructured":"Global Navigation Satellite System GLONASS (2016). Code Division Multiple Access Service Navigation Signal in L1 Frequency Band. ICD GLONASS CDMA L1, Global Navigation Satellite System GLONASS. [1st ed.]. Available online: https:\/\/russianspacesystems.ru\/wp-content\/uploads\/2016\/08\/ICD-GLONASS-CDMA-L1.-Edition-1.0-2016.pdf."},{"key":"ref_32","unstructured":"Global Navigation Satellite System GLONASS (2016). Code Division Multiple Access Service Navigation Signal in L3 Frequency Band. ICD GLONASS CDMA L3, Global Navigation Satellite System GLONASS. [1st ed.]. Available online: https:\/\/russianspacesystems.ru\/wp-content\/uploads\/2016\/08\/ICD-GLONASS-CDMA-L3.-Edition-1.0-2016.pdf."},{"key":"ref_33","unstructured":"European Gnss (Galileo) (2023, January 16). Open Service Signal in Space Interface Control Document. Issue 2.0. OS SIS ICD. European GNSS Agency. Available online: https:\/\/www.gsc-europa.eu\/sites\/default\/files\/sites\/all\/files\/Galileo_OS_SIS_ICD_v2.0.pdf."},{"key":"ref_34","unstructured":"Gurtner, W., and Estey, L. (2009). RINEX: The Receiver Independent Exchange Format, version 3.01, Astronomical Institute, University of Bern. Available online: https:\/\/files.igs.org\/pub\/data\/format\/rinex301.pdf."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"324","DOI":"10.1109\/PROC.1982.12313","article-title":"Radio wave scintillations in the ionosphere","volume":"70","author":"Yeh","year":"1982","journal-title":"Proc. IEEE"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"A27","DOI":"10.1051\/swsc\/2013049","article-title":"A review of GPS\/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena","volume":"3","author":"Afraimovich","year":"2013","journal-title":"J. Space Weather. Space Clim."},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Jovanovic, A., Tawk, Y., Botteron, C., and Farine, P.-A. (2010, January 4\u20136). Multipath Mitigation Techniques for CBOC, TMBOC and AltBOC Signals Using Advanced Correlators Architectures. Proceedings of the IEEE\/ION Position, Location and Navigation Symposium, Indian Wells, CA, USA.","DOI":"10.1109\/PLANS.2010.5507231"},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Padokhin, A.M., Mylnikova, A.A., Yasyukevich, Y.V., Morozov, Y.V., Kurbatov, G.A., and Vesnin, A.M. (2021). Galileo E5 AltBOC Signals: Application for Single-Frequency Total Electron Content Estimations. Remote Sens., 13.","DOI":"10.3390\/rs13193973"},{"key":"ref_39","unstructured":"Ray, J.K. (2000). Mitigation of GPS Code and Carrier Phase Multipath Effects Using a Multi-Antenna System, University of Calgary."},{"key":"ref_40","unstructured":"Kaplan, E.D. (1996). Understanding GPS: Principles and Applications, Artech House Publisher."},{"key":"ref_41","unstructured":"Perov, A.I., and Kharisov, V.N. (2010). GLONASS: Principles of the Construction and Functioning, Radiotekhnika. [4th ed.]. (In Russian)."},{"key":"ref_42","unstructured":"Matzka, J., Bronkalla, O., Tornow, K., Elger, K., and Stolle, C. (2021). Geomagnetic Kp Index, Version 1.0. GFZ Data Services, German Research Centre for Geosciences."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/3\/792\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,3]],"date-time":"2023-02-03T09:12:38Z","timestamp":1675415558000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/3\/792"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1,30]]},"references-count":42,"journal-issue":{"issue":"3","published-online":{"date-parts":[[2023,2]]}},"alternative-id":["rs15030792"],"URL":"https:\/\/doi.org\/10.3390\/rs15030792","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,1,30]]}}}